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Abstract

We discuss representations of non-finite polyhedra as quotients of regular poly-
topes. We provide some structural results about the minimal regular covers of
non-finite polyhedra and about the stabilizer subgroups of their flags under the flag
action of the automorphism group of the covering polytope. As motivating examples
we discuss the minimal regular covers of the Archimedean tilings, and we construct
explicit minimal regular covers for three of them.

Keywords: Abstract polytope, uniform tiling, Archimedean tiling, quotient poly-
tope, regular cover, string C-group.

1 Introduction

Symmetric maps on surfaces and the automorphism groups of symmetric maps have been
studied since the early 20th century, though mostly in the case where the surfaces con-
sidered are compact (see [Bra27], [CM80]). Tilings of the Euclidean or hyperbolic plane
are examples of maps on non-compact surfaces and require somewhat different methods
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of investigation. In the late 20th century, maps whose vertex-figures are polygons were
seen to be abstract polyhedra (rank 3 polytopes) [MS02, Section 6B]. While much work
has been done on the study of regular abstract polytopes (the primary reference work on
the subject being [MS02]), the study of less constrained polytopes is still largely in its
infancy. A particularly important tool for the study of non-regular abstract polytopes is
the seminal work of Michael Hartley [Har99a], in which he demonstrates that any abstract
polytope may be realized as the quotient of some regular abstract polytope. The current
work is part of an attempt to better understand the structure of these quotients both geo-
metrically, as covering maps, and algebraically via the group actions induced by Hartley’s
theory of regular covers. In [HW10], Hartley and Williams described explicit represen-
tations for the sporadic Archimedean solids, as well as developing general techniques for
generating such covers. Further, they identified the smallest possible, or minimal, regular
covers that may be obtained in each case via the type of quotient operation described in
[Har99a] were identified.

More generally, in the context of the study of maps, much is known about the reg-
ular covers of maps and the closely related monodromy groups of maps (e.g., [Orb07,
Wil76, Wil94, Wil02]). In the context of abstract polyhedra, that is, 3-polytopes, it is
straightforward to extend these ideas to demonstrate that the minimal regular cover of
a polyhedron is itself a polyhedron (i.e., its monodromy group satisfies the intersection
condition; details will be provided in the forthcoming [MPW]). Thus in the case of poly-
hedra, minimal regular covers both exist and are unique. However, for abstract polytopes
of rank 4 or higher, minimal covers are not, in general, unique, nor do the monodromy
groups of these polytopes necessarily satisfy the intersection condition. In particular,
there is an abstract 4-polytope (the Tomotope) that is known to admit infinitely many
distinct minimal regular covers [MPW12].

Contrary to the case when the maps are finite, there has been little attention given
to regular covers of infinite maps. Natural candidates to consider are the Archimedean
tilings, that is, vertex-transitive tessellations of the plane where all tiles are convex regular
polygons. Tilings with symmetry properties have been the subject of intense interest and
investigation, especially since the publication of Grünbaum and Shephard’s Tilings and
Patterns [GS87].

In [PW11], we provided representations of the Archimedean tilings as quotients of
regular hyperbolic tilings using a general representation theory developed by Hartley in
[Har99a] (more basic information about such representations is available in [Har99b]
and [HW10]). The goal of the current work is to identify minimal regular covers for
the Archimedean tilings, in the sense that any other regular cover of a tiling is also a
cover of the minimal one. More precisely, the Archimidean tilings are quotients of regular
polyhedra obtained using the type of quotient described in [Har99a], such that any other
cover of that type also covers the minimal cover. This paper provides a partial solution
to this problem, determining minimal covers for the Archimedean tilings (3.6.3.6), (4.8.8),
and (3.12.12). These three tilings share the property that the number of flag-orbits is at
most 3 and that the generators of some relevant groups, like the stabilizer of all flags in
some flag-orbit for (3.6.3.6) and (4.8.8), act on each flag either like the identity or like a
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half-turn. Finding the minimal regular covers of the remaining five tessellations demands
other techniques in addition to the ones used for the three described in this paper, and
we shall determine them in Part 2.

In Section 2 we discuss the definition and structure of abstract polytopes, the corre-
spondence of regular abstract polytopes with string C-groups, and provide formal descrip-
tions of regular covers in the context of abstract polyhedra. In Section 3 we discuss some
of our prior work on representing Archimedean tilings as quotients of hyperbolic tilings,
as well as presenting explicit details on the procedure used to generate those quotients.
We also correct some deficiencies we discovered in the theoretical framework provided in
[PW11]. In Section 4 we discuss the ways in which the covering maps of Archimedean
tilings are different from the covering maps of finite polyhedra, and we provide a detailed
discussion of the sizes of the fibers in these covers. Section 5 includes a general procedure
for identifying a regular minimal cover of a uniform tiling, as well as explicit descriptions
for the minimal regular covers for the Archimedean tilings (3.6.3.6), (4.8.8) and (3.12.12).
Section 6 contains a discussion of concluding remarks, a discussion of the evidence for the
existence of nontrivial minimal covers for the remaining Archimedean tilings, and open
questions.

2 Basic Concepts, Including a Discussion of String

C-Groups

Following [MS02, §2A], we define an abstract d-polytope P to be a partially ordered set
whose elements are called faces, with partial order denoted by 6, that satisfies the fol-
lowing four properties. It contains a minimum face F−1 and a maximum face Fd. All
maximal totally ordered subsets of P , called the flags of P , include F−1 and Fd and con-
tain precisely d + 2; the set of all flags of P is denoted F(P). Consequently, 6 induces a
strictly increasing rank function such that the ranks of F−1 and Fd are −1 and d respec-
tively. Finally, P is strongly connected and satisfies the “diamond condition” (see [MS02,
Section 2A] for details).

In the present paper we are interested only in abstract polyhedra, that is, abstract
polytopes of rank 3; however Lemma 7 of §4 applies to abstract polytopes of general
rank. Throughout the remainder of this paper we will use “polyhedra” to mean either
the geometric objects or abstract polyhedra, as appropriate. The vertices and edges of
an abstract polyhedron are its faces of rank 0 and 1 respectively. In this context there
is little possibility of confusion if we refer to the rank 2 faces simply as faces. We define
a section F/G of a polytope to be the collection of all faces H such that G 6 H 6 F ,
that is F/G := {H ∈ P | G 6 H 6 F}. The vertex-figure at a vertex v is the section
{F ∈ P | v 6 F}. In the case of polyhedra, the diamond condition requires that every
edge contains precisely two vertices and is contained in precisely two faces, and the section
determined by a face f and a vertex v contains either exactly two edges or is the empty
set. As a consequence of the diamond condition, given i ∈ {0, 1, 2} and a flag Ψ, there
exists a unique flag Ψi that coincides with Ψ in all faces except in the face of rank i.
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The flag Ψi is called the i-adjacent flag of Ψ. The requirement of strong connectivity
for polyhedra implies that each face and each vertex-figure is isomorphic to a polygon,
that is, a cycle in the graph theoretic sense. The degree of a vertex v is the number of
edges containing v, and the co-degree of a face f is the number of edges contained in f .
Whenever every vertex of a polyhedron P has the same degree p, and every face of P has
the same co-degree q we say that P is equivelar and has Schläfli type {p, q}.

An automorphism of a polyhedron P is an order preserving bijection of its elements.
We say that a polyhedron is regular if its automorphism group Γ(P) is transitive on the set
of flags of P , which we will denote by F(P). The Platonic solids and the familiar regular
tessellations by triangle (36), squares (44) and hexagons (63) are examples of abstract
regular polyhedra.

A string C-group G of rank 3 is a group with distinguished involutory generators
ρ0, ρ1, ρ2, where (ρ0ρ2)

2 = ε, the identity in G, and 〈ρ0, ρ1〉 ∩ 〈ρ1, ρ2〉 = 〈ρ1〉 (this is called
the intersection condition). The automorphism group of an abstract regular polyhedron
P is always a string C-group of rank 3. Given an arbitrarily chosen base flag Φ of P , ρi is
the (unique) automorphism mapping Φ to the i-adjacent flag Φi. Furthermore, any string
C-group of rank 3 is the automorphism group of an abstract regular polyhedron [MS02],
so, up to isomorphism, there is a one-to-one correspondence between the string C-goups
of rank 3 and the abstract regular polyhedra. Thus, in the study of regular abstract
polyhedra we may either work with the polyhedron as a poset or with its automorphism
group. In this paper the automorphism group of a regular polyhedron P will be denoted
by Γ(P), or simply by Γ whenever there is no possibility of confusion.

For any polyhedron P we define permutations r0, r1, r2 on F(P) by

Ψri := Ψi,

for every flag Ψ of P and i = 0, 1, 2 (note that these are not automorphisms of P).
The group Mon(P) := 〈r0, r1, r2〉 will be referred to as the monodromy group of P (see
[HOW09], but note that this definition differs from the definition in [Zvo98], where the
author only considers words with even length in the generators ri).

The flag action of a string C-group Γ = 〈ρ0, ρ1, ρ2〉 on P is the contravariant group
homomorphism Γ→ Mon(P) defined by ρi 7→ ri, provided such a homomorphism exists.
In this context, if α = α′ρi for some α, α′ ∈ Γ then Ψα = (Ψα′)ri = (Ψα′)i. Note that,
by definition of automorphism, the action of each ri (and thus the flag action) commutes
with the automorphisms of any given polyhedron. That is,

(Ψri)α = (Ψα)ri (1)

for i = 0, 1, 2 and α ∈ Γ(P), and more generally,

(Ψw)α = (Ψα)w

for every w ∈ Mon(P), α ∈ Γ(P).
Whenever we have a flag action from Γ(P) to Mon(Q), where Q is an Archimedean

tiling, and an element γ ∈ Γ(P) preserving flag orbits, for any flag of Q there exists a
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unique isometry Iγ of R2 mapping a given flag Φ to Φγ. Furthermore, if γ, δ ∈ Γ(P), and
Iγ, Iδ are the corresponding isometries with respect to a given flag Φ, then Φγδ = ΦIδIγ.
In other words, there is a contravariant group homomorphism from Γ(P) to Mon(Q).
Note that this group homomorphism depends on the choice of Φ; however, the group
homomorphisms corresponding to two flags in the same orbit under Γ(Q) are isomorphic
(in the sense that if Ψ = Φφ for some φ ∈ Γ(Q), and Iγ, Jγ are the isometries corresponding
to γ ∈ Γ(P) with respect to Φ and Ψ respectively, then Iγ = φ−1Jγφ). In the upcoming
sections we will use such a group homomorphism, where the place of Γ is occupied by an
arbitrary subgroup of Γ generated by w1, . . . , wk. That is,

Proposition 1. Let Q be an Archimedean tiling, P a regular cover of Q, Φ any flag of
Q, ∆ = 〈δ1, . . . , δs〉 6 Γ(P), and for i = 1, . . . , s let hi denote the unique isometry of R2

mapping a given flag Φ to Φδi. Then there is a contravariant group homomorphism from
∆ to 〈h1, . . . , hs〉. Moreover, this homomorphism is an isomorphism if and only if every
element in ∆ acts nontrivially on Φ.

We say that the regular polytope P is a cover of Q, denoted by P ↘ Q, if Q admits
a flag action from Γ(P). (This implies the notion of covering described in [MS02, p. 43].)
For example, the (universal) polyhedron with automorphism group isomorphic to the
Coxeter group [∞,∞] := 〈ρ0, ρ1, ρ2 | (ρ0ρ2)

2 = id〉 covers all other polyhedra. Whenever
the least common multiple of the co-degrees of the faces of a polyhedron P is p, and the
least common multiple of the vertex degrees of P is q, P is covered by the tessellation
{p, q} whose automorphism group is isomorphic to the string Coxeter group

[p, q] := 〈ρ0, ρ1, ρ2 | (ρ0ρ2)
2 = (ρ0ρ1)

p = (ρ1ρ2)
q = id〉.

(Recall that {p, q} can be viewed as a regular tessellation of the sphere, Euclidean plane
or hyperbolic plane, depending on whether 1

p
+ 1

q
is bigger than, equal to, or less than 1

2
,

respectively.)
Whenever P ↘ Q, Q is totally determined by P and the stabilizer N of a chosen base

flag Φ of Q under the flag action of Γ(P). Indeed, Q = P/N , the polytope whose faces
are orbits under the action of N on P . For further details, see [Har99a].

The monodromy groups of polyhedra are particularly nice, as seen in the following
theorem, whose proof will appear in [MPW].

Theorem 2. Let Q be an abstract polyhedron, and Mon(Q) its monodromy group. Then
Mon(Q) is a string C-group.

Since Theorem 2 says that Mon(Q) is a string C-group for any polyhedron Q, then by
the identification between string C-groups and regular abstract polytopes, any polyhedron
is automatically equipped with a regular cover determined by its monodromy group.
Moreover, it is straightforward to demonstrate that Mon(Q) ∼= Γ/Core(Γ, N), if Γ is the
automorphism group of a regular cover of Q, N is the stabilizer in Γ of a flag in Q under
the flag action of Γ and the core, Core(Γ, N), is the largest normal subgroup of Γ in N
(see[MPW] for details). Note that

Core(Γ, N) =
⋂
g∈Γ

g−1Ng.
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Theorem 2.3 of [HW10] states the following. Let Γ be the automorphism group of a
regular polytope P acting on a polytope Q via the flag action, and let R be any other
regular cover of Q. If Γ/Core(Γ, N) is a string C-group, then R also covers the polytope
determined by Γ/Core(Γ, N). In other words, applying Theorem 2 we see that Mon(Q)
is a minimal regular cover for Q.

As a consequence of the previous discussion, the monodromy group of a regular poly-
tope P is isomorphic to Γ(P)/Core(Γ, N), where N is the stabilizer of any flag in P . Note
that in this case Core(Γ, N) is trivial, since the stabilizer of all flags is the same as the
stabilizer of any individual flag (due to regularity) and every conjugate of the stabilizer
N of a flag of P is the stabilizer of another flag of P . Hence Γ(P) ∼= Mon(P) (for further
details of this fact see [MPW]).

This leads to a useful reinterpretation of the condition for a regular polytope P to be
a cover of Q. The fact that Q admits a flag action by Γ(P) is equivalent to observing
that there is an epimorphism from Mon(P) to Mon(Q). Thus, we find it more natural to
understand the cover P ↘ Q as an epimorphism of monodromy groups, instead of as a
contravariant homomorphism from an automorphism group to a monodromy group. This
perspective is motivated by the natural way in which i-adjacent flags of P are mapped
into i-adjacent flags of Q. Henceforth we shall proceed according to this notion and use
the generators r0, r1, r2 of Mon(P) instead of those of Γ(P) to denote the action on the
flags of Q.

For a given abstract polyhedron P , we define its flag graph GF(P) as the edge-labeled
graph whose vertex set consists of all flags of P , where two vertices (flags) are joined by
an edge labeled i if and only if they are i-adjacent for some i = 0, 1, 2.

3 Prior Results on Covers of Archimedean Tilings

In [PW11], we provided explicit presentations for regular covers of the Archimedean
tilings. In the current work, we seek to improve on those presentations by providing
minimal covers. Before doing that however, some discussion of the results in [PW11] is in
order. To construct an explicit representation of an abstract polytope Q using Hartley’s
theoretical framework it is necessary to find an adequate description for the stabilizer of
a base flag under the flag action of the automorphism group of a regular cover of Q. As
a first step, we recall the following theorem from [PW11, Theorem 4]:

Theorem 3. Let the polyhedron Q be a map on the sphere or the Euclidean plane, Φ the
base flag of Q, and Γ a string C-group with generators ρ0, ρ1, ρ2 and a flag action on Q.
Then StabΓ(Φ) is generated by the set of elements of the form

Wv = w−1
v (ρ1ρ2)

qvwv and Wf = w−1
f (ρ0ρ1)

pf wf ,

where v is any vertex of Q of degree qv, f is any face of Q with pf edges, and wv and wf

are words which map Φ to a flag containing v or f , respectively.

In light of the contravariant isomorphism between the automorphism group of the
covering polytope and the monodromy group of Q, in the language of this paper we
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would instead describe this relationship in terms of the subgroups of Mon(Q) generated by
w̃v(r2r1)

qvw̃−1
v and w̃f (r1r0)

pf w̃−1
f , where w̃f , w̃v are the elements in Mon(Q) corresponding

to the flag actions of wf and wv. Notice that the generating set for the stabilizer of a base
flag for a tiling given by Theorem 3 is stated in the form of sufficiency, not necessity. In
particular, the theorem says that the set containing each of the generators is determined
by infinitely many words wf and wv sending Φ to a flag on f or v, for each of the infinite
number of choices for f and v will be sufficient. However, there is likely to be an enormous
amount of redundancy in such a description. In [PW11, Lemma 5] we tried to reduce
that reduncancy via the application of the following lemma:

Lemma 4. Let Q be a polyhedron, Φ a flag of Q, and Γ a string C-group with generators
ρ0, ρ1, ρ2 and flag action on Q. If w(ρiρi+1)

qw−1 ∈ StabΓ(Φ) then w′(ρiρi+1)
qw′−1 ∈

StabΓ(Φ) for any w′ such that Φw′ and Φw coincide in their face if i = 0, and in their
vertex if i = 1.

On the basis of this lemma, we proposed that a generating set for the stabilizer of a
specified base flag in each of the Archimedean tilings is a collection of elements of the form
βiγjαkγ

−jβ−i, where β and γ are words acting on the base flag as linearly independent
translations, and αk is a conjugate of (ρ0ρ1)

q by a short word which will take the base
flag into a flag containing a q-gonal face. Informally, each of these words corresponds to a
walk in the flag graph involving first a number of steps to the left or the right (determined
by the exponent i on the β), followed by a number of steps up or down (determined by
the exponent j on the γ), plus a little loop at the end determined by αk, where the entire
element βiγjαkγ

−jβ−i corresponds to a walk in the flag graph shaped like a lollipop with
a potentially very long, and somewhat bent, stem. In this formulation, each face of the
tiling determines a single generator (see [PW11, Section 4]). Note that analogous words
corresponding to edges or vertices of the Archimedean tilings are trivial in the covering
group, so it is not necessary to included them in the generating set for the stabilizer
subgroup.

In [PW11] we tried to argue using Lemma 4 that only one word wf for each face and
one word wv for each vertex of Q in Theorem 3 is required to generate the stabilizer
subgroup for the base flag (instead of infinitely many for each face and vertex). However,
the presented argument instead demonstrated that when the last flags traversed by w
and w′ agree in the face or vertex, then the elements w(ρiρi+1)

qw−1 and w′(ρiρi+1)
q(w′)−1

are conjugates in Γ. This is insufficient to show a single generator suffices for each face
or vertex of the tiling. Although we conjecture that one generator per vertex or face of
Q is sufficient to generate the stabilizer of a base flag in Q whenever the flag graph of
Q is planar, in the remainder of this section we provide an alternative demonstration
that the generating sets for the stabilizers of a base flag given below are sufficient for the
Archimedean tilings.

Theorem 5. The sets {βiγjαkγ
−jβ−i | i, j ∈ Z, 0 6 k 6 n} as given in Table 1 (following

the descriptions given in [PW11]) are sufficient to generate the stabilizer subgroup of the
specified base flags in the corresponding Archimedean tilings.
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For each tiling listed in Table 1 the location of the base flag is indicated in the tiling
symbol by an arrow. For example, (3.3.

−→
4.3.4) indicates the base flag’s position in the

vertex figure, namely that it contains a square and shares an edge with a triangle. For
more details on base flag selection see [PW11]. This is essentially a restatement of the
results included in Section 4 of [PW11]. Note that in the notation of this paper, r0 =
a, r1 = b, r2 = c, and we are using the a, b, c notation here to be consistent with the
remainder of the statements in [PW11] about these coverings. Likewise, for words w, y in
Γ or Mon(Q), wy = y−1wy. The generator definitions given in Table 1 differ from those
given in [PW11] as follows:

• In the tiling (3.3.4.3.4) we replaced α3 = ((ab)3)cbcbc with ((ab)3)bcbcb.

• In the tiling (3.3.3.3.6) we replaced α1 = αcbacbc
0 with αcbcabc

0 and α7 = αcbca
0 with

αcbac
0 .

These changes are necessary only so that the portions of the walk determined by the word
w with which we are conjugating αk does not circuit a face of the tiling and so may be
included in the spanning tree without forming closed loops. For example, the original
walk α3 for (3.3.4.3.4) included the string cbcbc which induces a walk that forms a closed
loop with the walk induced by β−1 since the last five terms of β are bcbcb (recall (bc)5

is trivial in the cover). These changes have no impact algebraically since in (3.3.4.3.4)
bcbcb = cbcbc and in (3.3.3.3.6) ac = ca (as it does in all other intermediate covering
groups).

To establish the validity of the smaller generating sets we will make use of a more
fundamental theorem from [PW11, Theorem 1], which we restate here as Theorem 6.

Theorem 6. Let T be a spanning tree in GF(Q) rooted at Φ, a specified (base) flag of Q.
For each edge e = (Ψ, Υ) of GF(Q), define the unique walk βe as the unique path from Φ
to Ψ in T , across e and followed by the unique path from Υ to Φ. Let wβe be the word in Γ
inducing the walk βe. Then S = {wβe : e ∈ GF(Q) \ T} is a generating set for StabΓ(Φ).

To prove Theorem 5, it is sufficient, by Theorem 6, to construct for each Archimedean
tiling a spanning tree in the flag graph with the property that each of the wβe can be ex-
pressed as a product of words corresponding to lollilipops from the statement of Theorem
5. Such a spanning tree must have the following properties:

• The spanning tree is rooted at the base flag.

• The edges of the spanning tree contain all of the edges traversed by the walks from
the base flag induced by βiγjw, where αk = w(r0r1)

qw−1 to each (vertex and) face
of the polyhedron.

• The omitted edges of the spanning tree may be identified with cells of the flag graph
so that each omitted edge is associated to a walk in the tree to a cell of the flag
graph, a walk around that cell and a return walk along that same path in the tree.
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Table 1: Generating sets for the stabilizer subgroup of a regular cover for each of the
Archimedean tilings. Definitions modified from those give in [PW11] are indicated with
∗.

Tiling Covering group αi β γ

(3.
−→
6.3.6) [6, 4] α0 := ((ab)3)c ababacbc abcbabcb

α1 := ((ab)3)
cb

(4.
−→
8.8) [8, 3] α0 := ((ab)4)cb ababcbab cbababab

(3.3.
−→
4.3.4) [12, 5] α0 := (ab)4 abcbabcbcb cabcbacbcbabcb

α1 := ((ab)3)c

α2 := αcbc
0

∗α3 := ((ab)3)bcbcb

α4 := ((ab)3))cb

α5 := ((ab)3)cbac

(3.3.
←−
3.4.4) [12, 5] α0 := (ab)4 abcb cbab(cb)2ab

α1 := ((ab)3)c,
α2 := ((ab)3)cbc

(
−→
3.4.6.4) [12, 4] α0 := (ab)3, cbabcbcbabcbab caba(bc)2babcab

α1 := ((ab)4)cba

α2 := ((ab)4)cb

α3 := ((ab)4)c

α4 := ((ab)6)cbc

α5 := ((ab)3)cbabc

(3.3.3.
−→
3.6) [6, 5] α0 := (ab)3 ab(cb)3(abcb)2cb ca(ba)2(bc)2ab

∗α1 := αcbcabc
0

α2 := αcbc
0

α3 := αcbcb
0

α4 := αcb
0

α5 := αcba
0

α6 := αcbcba
0

∗α7 := αcbac
0

(3.
−−−→
12.12) [12, 3] α0 := ((ab)3)cb (bcba)2(ba)2 (ba)2(bcba)2

α1 := ((ab)3)cbabab

(4.
←−−
6.12) [12, 3] α0 := ((ab)4)cbabab (ab)3(cbab)2ab (ab)5cbabcb

α1 := ((ab)6)cbab

α2 := ((ab)4)cb

α3 := ((ab)6)c

α4 := ((ab)4)cba
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In practice, this final constraint must be done in a coherent fashion so that the cells
may be ordered in such a way that some corresponding product of trivial elements in
the universal cover Γ and elements of our generating set yields the desired enclosing walk
determined by the omitted edge.

Figures 4 and 6 provide templates for the requisite spanning trees for all of the tilings.
To explain how to interpret Figures 4 and 6, as well as to explain how we know these
trees achieve the desired objectives, we will explore the case of the tiling (3.3.3.4.4) in
some detail.

3.1 An Example Spanning Tree

We now consider the case of the tiling (3.3.3.4.4). For this tiling we choose a base flag
Φ containing an edge shared by a triangle and a square, and also containing a square of
the tiling (as indicated in Figure 1 by a large pale blue dot). Recall from Table 1, α0 =
(r0r1)

4, α1 = r2(r0r1)
3r2, α2 = r2r1r2(r0r1)

3r2r1r2, β = r0r1r2r1, γ = r2r1r0r1(r2r1)
2r0r1;

then StabΓ(P)(Φ) = 〈βjγkαiγ
−kβ−j〉 where i = 0, 1, 2 and j, k ∈ Z.

Figure 1: The main branches of our spanning tree in the flag graph rooted at the base
flag (indicated by a cyan dot). Edges in the main branches of the tree are indicated by
thick colored lines, edges not in the main branches of the tree are indicated with colored
hairlines. Colors indicate adjacency relationships between flags. Edges of GF(Q) will be
colored blue if they connect to 0-adjacent flags, red if they connect to 1-adjacent flags,
and green if they connect to 2-adjacent flags.
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Figure 2: The walk βe, which is equivalent to α1. The base flag is indicated by a cyan
dot, thick edges correspond to edges of the spanning tree, while the walk βe is indicated
by a sequence of purple arrows in the direction of the walk adjacent to the corresponding
edges of GF(3.3.3.4.4).

By way of example, consider the walk βe indicated in Figure 2. To establish equiv-
alence with α1 = r2(r0r1)

3r2 we multiply it by three carefully chosen trivial elements in
Mon((3.3.3.4.4)), namely β(r2r1)

5β−1, (r0r2)
2, ((r2r0)

2)r2r1r0r1r2 , corresponding to walks in
GF((3.3.3.4.4)) of circuits of cells corresponding to two edges and a vertex of (3.3.3.4.4),
respectively, as follows:

β(r2r1)
5β−1 · (r0r2)

2 · ((r0r1)
3)r2 · ((r2r0)

2)r2r1r0r1r2

= (r0r1r2r1r2r1r2r1r2r1r2r1r2r1r1r2r1r0)(r0r2r0r2)·
(r2r0r1r0r1r0r1r2)(r2r1r0r1r2r2r0r2r0r2r1r0r1r2).

Trimming all words r0r0, r1r1 and r2r2, which are equivalent to the identity, we get the
word r0r1r2r1r2r1r2r1r0r2r1r0r1r2, which is precisely the one corresponding to the walk βe

in the figure. Thus we have written a generator (in this case wβe) determined by an edge
in the complement of the spanning tree as a product of elements of the form βiγjαkγ

−jβ−1

(with trivial elements), i.e., wβe = β0γ0α1γ
−0β−0.

To describe the means by which such a spanning tree is constructed, we present now
the steps in constructing the spanning tree for (3.3.3.4.4). The main branches of our
spanning tree are the walks induced by wij := βiγj and by wijr2r1r2 (see Figure 3).
Note that these walks naturally form a tree since β and γ correspond to independent
translations of the base flag, and the additional steps induced by r2r1r2 don’t introduce
any loops in the graph.

In Figure 4 we have indicated two copies of collections of cells of the flag graph that
constitute regions whose borders are determined by walks of the form βγβ−1γ−1 and
βγ−1β−1γ, in which one edge has been omitted from the path (adjacent to a red triangle
in the figure). We next construct a spanning tree made of thick orange lines in the dual
graph of each region. Edges crossed by the orange lines will be omitted edges of the
spanning tree, and so we add to the main branches of our spanning tree those edges that
weren’t crossed by orange lines to complete our spanning trees in those regions (with the
exception of those traversed by βi as indicated by a dotted line in Figure 4). We also
draw triangles connecting nodes of the dual tree to omitted edges of the spanning tree
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Figure 3: A view of a larger region of the tiling (3.3.3.4.4) with the flag graph and main
branches of the spanning tree superimposed.

oriented towards the open end of each region (one triangle per omitted edge). We also
draw black edges connecting nodes of the dual graph corresponding to faces of the tiling
to the nodes of the flag graph determined by the end of the corresponding walk induced
by βiγjw. These triangles and black edges turn out to be helpful in ordering products
equivalent to the wβe , as we will see below.

If we copy the introduced edges (and dual complementing forest) into the other regions
enclosed by the walks starting on the base flag βiγjβ−1γ−1β with j > 0 or βiγjβ−1γβ
where j 6 −1, we obtain a spanning tree for the flag graph since the presence of the dual
trees prevent these edges from forming closed loops, and every node is on a branch of
the spanning tree since each node in the region enclosed by βγβ−1γ−1 is on a branch of
the tree. The only thing exceptional in the construction process is that for those regions
enclosed by βiγjβ−1γβ where j 6 −1 the orientation of the triangles for some of the nodes
is flipped across the omitted edges from those where j > −1, as seen in the aqua colored
region in Figure 4 (notice that some of these differ in orientation from those given in the
yellow region).

To see that the βiγjαkγ
−jβ−i are adequate to generate the stabilizer subgroup of the

base flag, it suffices to show that any of the wβe from Theorem 6 for this spanning tree
may be obtained as a product of these generators. Since the regular universal cover is
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Figure 4: The dashed orange line indicates an edge of the tree in the dual flag graph
that is omitted because of the presence of a walk induced by βi. Gray triangles indicate
correspondences between omitted edges of the flag graph and centers of the dual flag
graph used to associate vertex, edge and face walks with those edges.

Γ = [12, 5], all of the walks along the tree to a cell of the flag graph corresponding to
an edge or vertex (and so not corresponding to a face of the tiling), around that cell,
and back are trivial (the corresponding words are equivalent to the identity in [12, 5]).
Therefore, any of their conjugates may be inserted as needed anywhere in a product of
the given generators βiγjαkγ

−jβ−i.
Let e be any omitted edge of the walk; then, as in Figure 5a, there is a unique walk (or

lasso) βe from the base flag, through the tree to one endpoint of e, across e and finally back
along the tree from the other endpoint. The region enclosed by this walk is necessarily
simply connected and contains a finite number of face cells. The product of the Wfi

corresponding to these enclosed face cells, suitably ordered, is equivalent to wβe . To help
us understand this equivalence, consider the walk induced by βe1 as indicated in Figure
5a. We construct an ordering on the words corresponding to the face, vertex, and edge
lollipops for the enclosed cells of the flag graph by starting on the right hand side of the
edge e1 and to the right of the orange dual tree. Proceeding in a clockwise fashion around
the dual tree (as seen in Figure 5b), we add terms to the product corresponding to nodes
of the dual flag graph in the order we cross the corresponding edge of the flag graph (the
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correspondence being indicated by the triangles connecting omitted edges to the centers
of vertices, edges and faces of the tiling), being sure not to add those corresponding to a
cell center connected by a black edge to the spanning tree of the flag graph until we cross
that black edge (thus ensuring we introduce elements to the product about which we have
little flexibility while we are adding cells on the appropriate branch of the spanning tree).
Such an ordering is given in Figure 5b for the walk induced by βe1 , and guarantees the
reducibility of the product to wβe .

e1

(a) The walk induced by βe1

e1

1
2

34

9

6

7

8

10

5

(b) A walk around the dual tree
induces a product ordering.

Figure 5: In each of these figures, the cyan dot indicates a base flag. In (a) we see the
walk induced by βe1 , indicated by a sequence of purple arrows in the direction of the walk,
adjacent to the corresponding edges of the flag graph. In (b) traversals of grey triangles
are used to induce an order on the products of vertex, edge and face walks determined by
the centers of the cells of the dual graph. Cell centers are labeled in the order they need
to be added to the product.

Since such an ordering is possible for either orientation of the triangles, and for any
choice of omitted edge in the regions enclosed by βγβ−1γ−1 and βγ−1β−1γ, we can con-
struct such a product for any omitted edge of the flag graph.

We conclude this section by providing specific examples of spanning trees sufficient for
proving the remaining of Theorem 5, given in Figure 6. Note that the trees shown here
reflect the changes to the generating sets mentioned in the statement of Theorem 5.
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(a) (4.8.8) (b) (3.3.3.3.6)

(c) (3.6.3.6) (d) (4.6.12)

Figure 6: Sample regions for the spanning trees of the remaining Archimedean tilings
necessary to establish the proof of Theorem 5. The vertex corresponding to the specified
base flag in the flag graph is indicated with a large cyan dot. Figure continues on the
next page.
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(e) (3.12.12) (f) (3.4.6.4)

(g) (3.3.4.3.4)

Figure 6: The remaining three sample regions required for the proof of Theorem 5.

4 Covers as Identification Mappings

A natural question to ask in the context of these covers is how the numbers of flags in the
covering polytope relate to the numbers of flags in the covered polytope. As an example,
consider the minimal cover of the truncated tetrahedron P3.6.6 by the regular polytope
{6, 3}(2,2) (see Figure 7). The polytope {6, 3}(2,2) has 12 hexagonal faces, of which four
hexagons get wrapped twice around the triangles they get mapped to, and the remaining
eight hexagons are mapped to the four hexagons of the truncated tetrahedron in pairs
(for more details, see [HW10]). Thus, each flag of the truncated tetrahedron is covered
by two flags of the polytope {6, 3}(2,2). We define a cover P ↘ Q to be a k-fold cover if
the preimage of every flag in Q has k flags in P . In this notation, {6, 3}(2,2)↘P3.6.6 is a
2-fold cover.

There is a useful relationship between the number of cosets of the core in the stabilizer
of a flag Φ and the number of flags in the preimage of Φ, summarized by the following
lemma. Let |G : K| denote the index in G of the subgroup K.
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(3.6.6){6,3}(2,2)

E

D

C

B

A
E

BA

C

D

A

Figure 7: The regular polytope {6, 3}(2,2) and its relationship to the truncated tetrahedron
(3.6.6). The regular polytope {6, 3}(2,2) is formed by quotienting the regular tessellation
{6, 3} by the translations that identify the vertices labeled A and B. The polyhedron
(3.6.6) is represented here by its Schlegel diagram with the outside face colored white.
The polytope {3, 6}(2,2) is a minimal cover of (3.6.6) (see [HW10]). Face identifications
formed by the quotient are indicated by tiles of matching colors. For example, the two red
hexagons in {6, 3}(2,2) cover the red hexagon in (3.6.6), and the two white hexagons are
mapped to the outside face of the Schlegel diagram. Triangles in (3.6.6) are double covered
by a single hexagon of {6, 3}(2,2). For example, the single green hexagon in {6, 3}(2,2) wraps
twice around the green triangle, identifying vertices C and A.

Lemma 7. Let P ↘ R ↘ Q with P and R regular, Γ the automorphism group of
P, Q = P/N (i.e., N the stabilizer of a flag in Q under the flag action of Γ), and
R = P/Core(Γ, N). Then R↘ Q is a k-fold cover if k = |N : Core(Γ, N)|.

Proof. Note that Core(Γ, N) is the stabilizer of every flag of R in Γ (and therefore also in
N) since it is the kernel of the first quotient map. By the Orbit-Stabilizer Theorem, there
is a bijection between the orbit of an element and the set of left cosets of the stabilizer of
that element. In this context, therefore, the elements of the flag orbits under the action
of N on R are in one to one correspondence with the left cosets of Core(Γ, N) in N . In
other words, the flag orbits in R are all of size |N : Core(Γ, N)|. This also shows that the
sizes of the orbits are all the same, so there is only one stabilizer subgroup in this case,
namely Core(Γ, N). Therefore R↘ Q is a k-fold cover.

It seems not unreasonable to suppose that in the context of covers of the uniform
tilings we ought to be able to identify such a value of k, or at least determine that a finite
value for k exists. As we shall see, this is not the case.
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Table 2: Elements w and v such that the base flag Φ of the tiling is stabilized by w and
acts as a translation on Φv via the flag action. Arrows are used to indicate the location
of the base flag.

Vertex Type w v

(
−→
3.6.3.6) [(r0r1)

3r2r1r2]
2 r2

(4.
−→
8.8) [r1r2(r1r0)

3]4 r1

(3.3.4.
←−
3.4) [(r0r1r2)

2(r0r1)
2(r2r1)

2]4 r1

(3.3.
←−
3.4.4) [r2(r1r0)

5r1]
4 r1

(
←−
3.4.6.4) [(r1r0)

2r1r2r1r0r1r2]
4 r1r2

(3.3.3.
←−
3.6) [r2r1r2r0r1r2(r1r0)

3]4 r1

(3.
−−−→
12.12) [r1r2(r1r0)

5]4 r1

(4.
←−−
6.12) [r1r2(r1r0)

3]6 r1

Proposition 8. Let Q be a uniform tessellation of the plane, Γ the string C-group of any
regular cover of Q, N the stabilizer in Γ of a flag in Q, and C the core of N in Γ. Then
C is a subgroup of infinite index in N .

Proof. In Table 2 we list each of the uniform tilings of the plane. The symbols have been
modified with an overset arrow to indicate the symmetry type of a base flag Φ of the
tiling. For example, if the arrow is over the substring a.b in a symbol, with the tail over
a and arrowhead over b, then the base flag contains a face with a sides and shares its
edge with a face that has b sides, and conversely if the arrow is oriented in the opposite
direction. Note that for (3.3.3.3.6) the given symbol is ambiguous (there are two possible
choices for Φ). Our presentation assumes that Φr2r1r2r0r1r2 is stabilized by (r0r1)

3.
Let Φ be a base flag of Q of the type specified in Table 2, w the word associated to

the tiling, and Ψ the flag obtained from Φ by the flag action of the given element v ∈ Γ.
Then Φw = Φ and Ψw = Ψt for some translation t in the symmetry group of Q. Clearly,
Φwk

= Φ and Ψwk
= Ψtk for any k ∈ Z. In particular, it follows that wk ∈ N for all k.

We know that the coset wkC coincides with the coset wmC (as cosets in N) if and
only if wk−m ∈ C; that is, Υwk−m

= Υ for every flag Υ of Q. In particular, Ψwk−m
= Ψ.

However, this occurs if and only if k = m. Therefore {wkC | k ∈ Z} is an infinite family
of left cosets of C in N implying that C has index ∞ in N .

5 Minimal Covers for Some of the Uniform Tilings

of E2

In what follows, we present the minimal regular covers of the tessellations (3.6.3.6), (4.8.8)
and (3.12.12). The remaining, more complicated cases will appear in a subsequent work.
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The tiling (3.6.3.6) has two orbits of flags; type A containing hexagonal faces and type
B containing triangular faces. The tilings (4.8.8) and (3.12.12) each have three orbits of
flags. For the tiling (4.8.8) type A consists of those flags containing a square, those of
type B contain an octagon and share an edge with another octagon while those of type C
are the remaining flags on the octagons. For the tiling (3.12.12) type A consists of those
flags containing a 12-gon and sharing an edge with another 12-gon, type B the remaining
flags containing a 12-gon, and type C being those flags containing a triangle.

5.1 General procedure

Let T be a uniform tiling, Γ := [p, q] its universal covering group, NA the stabilizer
of a specified flag Φ of type A (say), C the core in [p, q] of NA and therefore Γ/C is
the automorphism group of the minimal regular cover of T . As we mentioned earlier,
there is a contravariant isomorphism between Γ and Mon([p, q]); we shall abuse notation
and interpret Γ as equal to Mon([p, q]) with generators ri. To describe the minimal
regular covers of T we provide defining relations in terms of the generators of [p, q] for its
automorphism group Γ/C. The outline in each of the cases is as follows.

5.1.1 Step 1: Reduce to a finite generating set for NA

The group NA is generated by the infinite set {βiγjαkγ
−jβi} as in Theorem 5 (see also

[PW11]). Each element βiγjαkγ
−jβi acts on flags of type B (and C, when applicable) in

a particular geometric way. Some compositions of these actions act like the identity on
all flags: for example, if two generators g1, g2 act like linearly independent translations
on flags of type B (and C), then g1g2g

−1
1 g−1

2 must act like the identity on all flags. This
is equivalent to saying that g1g2g

−1
1 g−1

2 ∈ C. We construct a finite number of elements ηl,
l = 1, . . . ,m1 found this way.

Additionally, in the tilings considered in this paper, the commutator of some powers
of β and of γ also belong to C. We denote these elements by ηl, l = m1 + 1, . . . ,m2.

The first step to finding C is to consider the normal closure Cl1 := ClΓ({η1, . . . , ηm2})
of η1, . . . , ηm2 in Γ. Clearly Cl1 is a subgroup of C ⊆ NA and it is normal in Γ (and hence
in NA). Furthermore, Cl1 = C if and only if for every element in NA/Cl1 there exists a
flag it acts on in a nontrivial way. Unfortunately, this is typically not the case, but we
are able to show at least that NA/Cl1 is generated by a finite list w1, . . . , ws of elements
βiγjαkγ

−jβ−i · Cl1. This makes it easier to analyze the group and its action on the flags
of the tiling.

5.1.2 Step 2 : Intersect with NB

Let NB be the stabilizer of flags of type B. In Step 2 we a generating set for NA ∩ NB.
To do this, we first determine the action of each of the generators wi of NA/Cl1 on a
given flag Ψ of type B. When T is either (3.6.3.6) or (4.8.8), the generators wi preserve
all flag orbits. Consequently, NA ∩ NB is a normal subgroup of NA. (Note that this is
not true for tilings where the elements of NA do not preserve the flag orbits.) Moreover,
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NA/(NA∩NB) is the largest quotient of NA with the property that no non-trivial element
acts trivially on flags of type B of T .

For the tilings (3.6.3.6) and (4.8.8), the generators w1, . . . , ws of NA/Cl1 act on a given
flag Ψ of type B like half-turns h1, . . . , hs. It suffices to consider the action on only one
flag since the monodromy group commutes with the automorphism group. Now we use
the contravariant group homomorphism from NA/Cl1 to the isometry group 〈h1, . . . , hs〉
described in Proposition 1 (recall that hi is the unique isometry mapping Ψ to Ψwi), whose
kernel is (NA ∩ NB)/Cl1. Consequently, NA/(NA ∩ NB) ∼= 〈h1, . . . , hs〉. By inspecting
the actions of the elements hi on Ψ we can find a set of defining relations R := {R1 =
id, . . . , Rt = id} for 〈h1, . . . , hs〉. We shall abuse notation and consider Ri as a word on
the generators of NA/Cl1 corresponding to Ri’s inverse image. Note that Ri is then an
element in (NA∩NB)/Cl1. Furthermore, (NA∩NB)/Cl1 is the normal closure in NA/Cl1
of {R1, . . . , Rt}. In fact, any element in the normal closure in NA/Cl1 of {R1, ..., Rt} must
stabilize flags of both type A and type B, and so is an element of (NA∩NB)/Cl1. On the
other hand, any element of (NA ∩NB)/Cl1 stabilizes flags of type B, and must also be an
element in NA/Cl1, so it must be in the normal closure in NA/Cl1 of {R1, . . . , Rt}, since
the Ri generate all actions of the elements of NA/Cl1 that fix flags of type B.

When the tiling T being considered is (3.12.12), each of the generators w1, . . . , ws

in our presentation of NA/Cl1 interchanges flag orbits B and C. Hence, every element
in C/Cl1 must belong to the even subgroup (NA/Cl1)

+ consisting of all elements corre-
sponding to words with even length on the generators w1, . . . , ws. All products of any two
generators wi (not necessarily distinct) form a finite generating set of (NA/Cl1)

+. Each of
these generators acts like a half-turn or a translation on flags of type B. Therefore, to find
(NA ∩NB)/Cl1 we can proceed as for the tilings (3.6.3.6) and (4.8.8) with the generators
wi replaced by the generators of (NA/Cl1)

+.
We frequently make use of the following lemma from [CBGS08] to determine some of

the Ri’s.

Lemma 9. Let G be a group generated by three involutions g, h, k such that the product
ghk is also an involution. If the elements gh and hk have infinite order then G is iso-
morphic to the group 2222 (in the notation of [CBGS08]) of symmetries of the Euclidean
plane generated by three half-turns with respect to three non-co-linear points. Furthermore,
G = 〈g, h, k | g2 = h2 = k2 = (ghk)2 = id〉 is a group presentation for G.

5.1.3 Step 3: Intersect with NC

For the tiling (3.6.3.6) which has only two orbits of flags, C = NA∩NB. For the remaining
two tilings, C = NA ∩ NB ∩ NC , where NC is the stabilizer of flags of type C. Our first
objective is to reduce to a finite set of generators as we did in Step 1. Note that the group
(NA ∩NB)/Cl1 = ClNA/Cl1({R1, . . . , Rt}) is generated by the set of all conjugates in NA

of R1, . . . , Rt, which in principle is an infinite set. However, these elements correspond to
only finitely many distinct actions on flags of type C. Using the actions of the generators of
NA/Cl1 and of R1, . . . , Rt, and the isometries determined by their actions on a given flag,
we find elements stabilizing all flags, that is, elements in C. Moreover, the set of generators
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of (NA ∩ NB)/Cl1 is reduced considerably after taking a quotient by the normal closure
of these elements. We carefully choose a finite number of these elements in C, called
ηm2+1, . . . , ηm3 , and we consider the normal closure Cl2 := ClΓ({η1, . . . , ηm3}). We prove
in §5.2.2, 5.3.2 and 5.4.2 that for some choice of elements ηi, (NA ∩ NB)/Cl2 is finitely
generated.

To find C = NA∩NB∩NC we consider the action on flags of type C of the generators of
(NA∩NB)/Cl2 and apply an analogous procedure to that used to determine (NA∩NB)/Cl1
in Step 2. Instead of Ri we denote the defining relations of NA/(NA ∩NB ∩NC) by Ti.

The final result is that C is the normal closure in Γ of the elements η1, . . . , ηm+3 together
with (representatives of) the elements Ti whose normal closure in (NA∩NB)/Cl2 is C/Cl2.
To see this we note first that each of the ηi and Ti were chosen so as to stabilize all three
classes of flags, so all of the elements in the subgroup generated by elements of Cl2 and
ClΓ({Ti}) must stabilize all three classes of flags. Thus once one demonstrates that any
element of (NA∩NB∩NC)/〈Cl2∪ClΓ{Ti}〉 is trivial, we know that C = 〈Cl2∪ClΓ{Ti}〉. In
other words, the elements ηi and Ti induce a set of defining relations for the automorphism
group of the regular cover of T .

5.2 The tiling (3.6.3.6)

Throughout, let

Γ = [6, 4] := 〈r0, r1, r2 | r2
0 = r2

1 = r2
2 = (r0r2)

2 = (r0r1)
6 = (r1r2)

4 = id〉,

let T be the uniform tiling (3.6.3.6), designate flags containing a hexagon as being of type
A, NA the stabilizer of a flag Φ of type A under the flag action of [6, 4], NB the stabilizer
of a flag of type B containing a triangle under the same action, C = NA ∩NB the core of
NA in [6, 4], and [6, 4]/C the automorphism group of the minimal cover of T .

Let α0 = r2(r0r1)
3r2, α1 = r1r2(r0r1)

3r2r1, β = r0r1r0r1r0r2r1r2, γ = (r0r1r2r1)
2 and

δ = r1r0βr0r1 = r0r1r0r2r1r2r0r1. By Theorem 5 we know that

NA = 〈βiγjαkγ
−jβ−i〉 (2)

for i, j ∈ N, k ∈ {0, 1}.
Before doing step (1) we show that NA is also generated by all elements of the form

βiδjαkδ
−jβ−i with i, j ∈ Z and k ∈ {0, 1}. To see this, note that

γ = (r0r1r2r1)
2 = r0r1r2(r0r1r0)

2r1r0r1r2r1 = r0r1r2r0r1r0(r0r1)
3r2r1 = δα1.

It follows that
γjαkγ

−j = (δα1)
jαk(δα1)

−j,

which equals

δα1δ
−1δ2α1δ

−2 . . . δj−1α1δ
−(j−1)δjα1δ

−jδjαkδ
−jδjα1δ

−jδj−1α1δ−(j−1) . . . δα1δ
−1

for i, j ∈ N, k ∈ {0, 1}. It follows that

〈γjαkγ
−j〉 = 〈δjαkδ

−j〉,

the electronic journal of combinatorics 19(3) (2012), #P6 21



and therefore
NA = 〈βiδjαkδ

−jβ−i〉. (3)

5.2.1 Reducing to a finite generating set for NA

Note that β2 and δ2 act like the identity on flags containing a triangle of T . Since α0

and α1 are involutions, the elements η1 := δ2α0δ
−2α0, η2 := δ2α1δ

−2α1, η3 := β2α0β
−2α0,

η4 := β2α1β
−2α1 and η5 := δ−1β−2δβ2 are all elements of C.

Let Cl1 := ClΓ({η1, . . . , η5}). The generating set of NA given in (3) induces the
generating set {

βiδjαkδ
−jβ−i · Cl1 | k ∈ {0, 1}

}
of NA/Cl1. Because αk is an involution, we have that βiδjαkδ

−jβ−i · Cl1 equals

βiδjαkδ
−jβ−i · βiδj−2(ηk+1)δ

−j+2β−i · Cl1

= βiδjαkδ
−2(δ2αkδ

−2αk)δ
−j+2β−i · Cl1

= βiδj−2αkδ
−j+2β−i · Cl1.

Let ĵ = 0 if j is even and ĵ = 1 if j is odd. Then

βiδjαkδ
−jβ−i · Cl1 = βiδĵαkδ

−ĵβ−i · Cl1. (4)

Now,

βiαkβ
−i · Cl1 = βiαkβ

−i · βi−2ηk+3β
−i+2 · Cl1

= βiαkβ
−i · βi−2β2αkβ

−2αkβ
−i+2 · Cl1

= βi−2αkβ
−i+2 · Cl1.

Thus if we let î = 0 if i is even and î = 1 if i is odd, then

βiαkβ
−i · Cl1 = β îαkβ

−î · Cl1. (5)

Finally,

βiδαkδ
−1β−i · Cl1 = βiδαkδ

−1β−i · βiδαkη5αkδ
−1β−i · Cl1

= βiδαkδ
−1β−i · βiδαk(δ

−1β−2δβ2)αkδ
−1β−i · Cl1

= βi−2δβ2αkδ
−1β−i · Cl1

= βi−2δβ2αkδ
−1β−i · βiδ(β−2ηk+3β

2)δ−1β−i · Cl1

= βi−2δβ2αkδ
−1β−i · βiδ(αkβ

−2αkβ
2)δ−1β−i · Cl1

= βi−2δαkβ
2δ−1β−i · Cl1

= βi−2δαkβ
2δ−1β−i · βi(δη−1

5 δ−1)β−i · Cl1

= βi−2δαkβ
2δ−1β−iβi(δβ−2δ−1β2)β−i · Cl1

= βi−2δαkδ
−1β−i+2 · Cl1.
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Consequently,

βiδαkδ
−1β−i · Cl1 = β îδαkδ

−1β−î · Cl1, (6)

where î = 0 if i is even and î = 1 if i is odd.
From (4), (5) and (6) we conclude that every generator βiδjαkδ

−jβ−i of NA is equiv-

alent modulo Cl1 to β îδĵαkδ
−ĵβ−î for some î, ĵ ∈ {0, 1}. Therefore NA/Cl1 is generated

by the eight elements β îδĵαkδ
−ĵβ−î with î, ĵ, k ∈ {0, 1}.

5.2.2 Intersect with NB

We note that the generators

α0 · Cl1, α1 · Cl1, δα0δ
−1 · Cl1 (7)

of NA/Cl1 act on flags of type B like three half-turns with respect to three non-colinear
points. The action of the remaining 5 generators can be described as a product of the
actions of the previous three in the following way:

βα0β
−1 · Cl1 = α1 · Cl1,

βα1β
−1 · Cl1 = α0 · Cl1,

δα1δ
−1 · Cl1 = α0α1δα0δ

−1 · Cl1,

βδα0δ
−1β−1 · Cl1 = α0δα0δ

−1α1 · Cl1,

βδα1δ
−1β−1 · Cl1 = α1δα0δ

−1α1 · Cl1.

Since all generators of NA/Cl1 are involutions it follows that the five elements

ζ1 := βα0β
−1α1,

ζ2 := βα1β
−1α0,

ζ3 := δα1δ
−1α0α1δα0δ

−1,

ζ4 := βδα0δ
−1β−1α0δα0δ

−1α1,

ζ5 := βδα1δ
−1β−1α1δα0δ

−1α1

belong to C. We define η6 = ζ1; note that ζ2 is the conjugate of η6 by r1, since α1 = r1α0r1

and r1βr1 = β (here we use the fact that (r0r1)
6 = (r1r2)

4 = id). For convenience we let
η7 be the conjugation of ζ3 by δα1δ

−1 to obtain the simpler generator η7 := α0α1δα0α1δ
−1.

Finally, let η8 := ζ4 and η9 := ζ5.
Let Cl2 := ClΓ({η1, . . . , η9}). Then by construction Cl2 ⊆ C.

5.2.3 Show that Cl2 ∼= C.

Note that the three generators in (7) are involutions, the product of all three of them (in
any order) is another involution, and the product of any two of them acts as a translation
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on any flag containing a triangle. In particular, the product of any two of them has infinite
order. Now we make use of Lemma 9 to conclude that a sufficient set of defining relations
for NA/Cl1 is

I (α0 · Cl1)
2 = Cl1,

II (α1 · Cl1)
2 = Cl1,

III (δα0δ
−1 · Cl1)

2 = Cl1, and

IV [(α0 · Cl1)(α1 · Cl1)(δα0δ
−1 · Cl1)]

2 = Cl1.

These relations correspond to T1, T2, T3 and T4 in the notation of Section 5.1.3.We observe
that the relations (I), (II) and (III) are trivial in Γ/Cl1 since α0 and α1 are involutions in
Γ. To see that the last one is equivalent to η8, rewrite

βδα0δ
−1β−1 = α0δα0δ

−1α1

and note that the left hand side is an involution. Hence the right hand side is also an
involution and it is a conjugate of the desired relation. We recall that there is a natural
morphism φ : NA/Cl2 → NA/C mapping w · Cl2 to w · C, and that an element w · Cl2 is
in the kernel of φ if and only if w ∈ C, that is, w fixes all flags in T .

It is easy to see that the elements α0α1 and α0δα0δ
−1 act like translations with respect

to linearly independent vectors on any given flag containing a triangle. For a given group
G with generators gi we denote by G+ the even subgroup of G, consisting of the elements
that can be expressed as a product of an even number of these generators. Moreover,
α0α1 · Cl2 and α0δα0δ

−1 · Cl2 generate the even subgroup (NA/Cl2)
+ of NA/Cl2. Since

no non-trivial element in (NA/Cl2)
+ acts trivially on a flag containing a triangle, we

conclude that (NA/Cl2)
+ ∩ ker(φ) is trivial. On the other hand, any word w such that

w ·Cl2 /∈ (NA/Cl2)
+ maps any flag Ψ containing a triangle into a flag obtained from Ψ by

a rotation by an angle of π. Therefore, none of these words can belong to ker(φ). Hence
ker(φ) is trivial, so C = Cl2.

It can be proved that the set of relations obtained by setting ηi equal to the identity
id can be reduced to relations [(r1r0)

2r1r2]
4 = id and [(r1r0)

2r2]
6 = id. This implies

that the minimal regular cover of (3.6.3.6) can be obtained from the regular tessellation
of the hyperbolic plane with hexagons meeting six around each vertex, by making the
identifications indicated in Figure 8. Details are available on the second author’s website
([Wil11]).

5.3 The tiling (4.8.8)

Throughout what follows let

Γ := [8, 3] = 〈r0, r1, r2| r2
0 = r2

1 = r2
2 = (r0r2)

2 = (r0r1)
8 = (r1r2)

3 = id〉,

T be the uniform tiling (4.8.8), designate flags to be of type A if they contain a square,
let NA the stabilizer of a flag Φ of type A under the action of [8, 3], NB the stabilizer of
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Figure 8: Identifications of the hyperbolic tessellation yielding the minimal regular cover
of 3.6.3.6

a flag in an octagon sharing an edge with another octagon, and NC the stabilizer of a
flag in an octagon sharing an edge with a square under the same action. Since there are
only three transitivity classes of flags, C = NA ∩NB ∩NC is the core of NA in [8, 3], and
Γ = [8, 3]/C is the automorphism group of the minimal cover of T .

Let β := (r0r1)
2r2r1r0r1, γ := r2(r1r0)

3r1, α0 = ((r0r1)
4)r2r1 = ((r0r1)

−4)r2r1 , α =
(r0r1)

4 = (r0r1)
−4, δ = r2r1r0r1r2r0r1r0 and ε = r2r0r1r0r1r2r0r1. By Theorem 5 we

know that NB = 〈βiγjα0γ
−jβ−i | i, j ∈ Z〉. For the purposes of this argument, we

found the analysis easier to do looking at NA = 〈δiεjαδ−jε−j〉. As Hartley showed in
[Har99a], different choices of the base flag Φ in the construction of Γ/NΦ correspond to
conjugate stabilizers, and in our case NA = r2r1NBr1r2. It suffices therefore to show
that {δiεjαε−jδ−i} = r2r1{βiγjα0γ

−jβ−i | i, j ∈ Z}r1r2. To show this claim, it suffices to
observe that

r2r1α0r1r2 = α, r2r1γr1r2 = ε−1, and r2r1βr1r2 = δ.

As an example calculation, note that

r2r1γr1r2 = r2r1r2r1r0r1r0r1r0r1r1r2 = r1r2r1r1r0r1r0r1r0r2

= r1r2r0r1r0r1r0r2 = r1r0r2r1r0r1r0r2 = ε−1.

5.3.1 Reducing to a finite generating set for NA

We begin with a description of some elements ηi ∈ C. Let ηj+1 = ε−jδ−4εjδ4 for j ∈
{0, 1, 2, 3}, and let η5 = αδ−4αδ4, η6 = ε−4αε4α. Note that δ4 and ε4 act like the identity
on flags of type B and C, and δ and ε act like translations on flags of type A. Since
α2 is equal to the identity in Γ, and α preserves flag-orbits, each of the ηi ∈ C. Let
E1 = {η1, · · · , η6}, and define Cl1 := Cl(E1).

Consider NA/Cl1. The generating set for NA induces the generating set {δiεjαε−jδ−i ·
Cl1} for NA/Cl1.
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The group NA/Cl1 is generated by the 16 elements of the form δiεjαε−jδ−i for i, j ∈
{0, 1, 2, 3}. To see this, consider a generator δiεjαε−jδ−i · Cl1 of NA/Cl1. Since
δiεjη−1

6 ε−jδ−i ∈ Cl1,

δiεjαε−jδ−i · Cl1 = δiεjαε−jδ−i · δiεjη−1
6 ε−jδ−i · ClΓ(E)

= δiεjε−4αε4ε−jδ−i · Cl1

= δiεj−4αε4−jδ−i · Cl1.

Thus {δiεjαε−jδ−i · Cl1 | i ∈ Z, 0 6 j < 4} form a generating set for NA/Cl1. To reduce
this infinite generating set to the claimed 16 elements, we use ηj+1 for j = 0, 1, 2, 3 as
follows:

δiεjαε−jδ−i · Cl1 = δiεjαε−jδ−i · δiεjαηj+1αε−jδ−i · Cl1

= δiεjηj+1αε−jδ−i · Cl1

= δiεj · ε−jδ−4εjδ4 · αε−jδ−i · Cl1

= δi−4εjδ4αε−jδ−i · Cl1

= δi−4εjδ4αε−jδ−i · δiεjη5ε
−jδ−i · Cl1

= δi−4εjδ4α · αδ−4αδ4 · ε−jδ−i · Cl1

= δi−4εjαδ4ε−jδ−i · Cl1

= δi−4εjαδ4ε−jδ−i · δiεjη−1
j+1ε

−jδ−i · Cl1

= δi−4εjαδ4η−1
j+1ε

−jδ−i · Cl1

= δi−4εjαδ4 · δ−4ε−jδ4εj · ε−jδ−i · Cl1

= δi−4εjαε−jδ4δ−i · Cl1

= δi−4εjαε−jδ4−i · Cl1

As such, by induction, a finite generating set for NA/Cl1 is {δiεjαε−jδ−i ·Cl1 | 0 6 i, j <
4}.

5.3.2 Intersect with NB

Let wij := δiεjαε−jδ−i, 0 6 i, j < 4. We now investigate the action of the {wij} on the
remaining flags of (4.8.8). In particular, we wish to reduce the number of generators to
the minimal set necessary, and to determine what (if any) further identifications are made
by taking the quotient by C.

We observe that the action of each of the wij on flag types B and C is a rotation by
π radians about the center of an octagon.

In Table 3 we indicate which labeled center relative to the indicated flag in Figure 9
corresponds to the action of each of the generating wij on the indicated flag. For example,
the (1, 2) entry in Table 4B corresponds to the rotation around the center marked “5” in
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2

7

38

4 6

5

1

(B) Half-turn centers for a flag whose edge is contained in two octagons
(indicated by the shaded triangle).

7 2

5

3

8

4

1 6

(C) Half-turn centers for a flag on an octagon whose edge is contained in a
square(indicated by the shaded triangle).

Figure 9: Rotation centers for the flags containing octagons in (4.8.8) as determined by
the generators of NA/Cl1.

Table 3: In Table (B) we see the action table for flags of type B whose edges are contained
in two octagons. In Table (C) we see the action table for flags of type C whose maximal
proper face is an octagon, and whose edge is also contained in a square.

ε
0 1 2 3

δ

0 1 2 3 4
1 4 3 5 6
2 3 4 1 2
3 2 1 7 8

(B) Type B

ε
0 1 2 3

δ

0 1 2 4 6
1 2 1 5 3
2 3 5 8 7
3 5 3 2 1

(C) Type C
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Figure 9B, and it corresponds to the action of the word w12 = δε2αε−2δ−1 on the indicated
flag of type B.

Since α2 = id, each of the wij is an involution. Because many of the wij share the
same actions on flags of type B, we may define some relations in NA to help us reduce the
number of relations needed to describe the intersection of NA with NB. For example, we
observe that the actions of w03 and w10 on flags of type B are the same (since the (0, 3)
and (1, 0) entry in Table 4B both equal 4). The list of equivalent actions from generators
on flags of type B in terms of w10, w30, w11 obtained in this form is

w30 = w01 = w23

w11 = w20 = w02

w10 = w21 = w03

w00 = w31 = w22 = w30w11w10

w12 = w11w30w11

w13 = w10w30w11

w32 = w30w11w30w11w10

w33 = w30w11w30.

Since the rotation centers of the actions of w10, w11 and w30 on flags of class B and
C don’t all lie on a line, the action of (w10w11w30)

2 on all flags is trivial. On the other
hand, the product of any two of w10, w11 and w30 acts like a translation on flags of type
B. Then, by Lemma 9, 〈w10, w11, w30〉 ∼= G2222, where G2222 is the group 2222 given in
[CBGS08]. It follows that

(NA ∩NB)/Cl1 =

ClNA/Cl1(R1 := w00w10w11w30, R2 := w00w31, R3 := w00w22,

R4 := w30w01, R5 := w30w23, R6 := w11w20, R7 := w11w02,

R8 := w10w21, R9 := w10w03, R10 := w12w11w30w11,

R11 := w32w10w11w30w11w30, R12 := w13w11w30w10,

R13 := w33w30w11w30, R14 := (w10w11w30)
2),

since under this set of relations every generator wij of NA/Cl1 is equivalent to an expres-
sion in terms of w10, w11 and w30.

We now have an expression for (NA ∩ NB)/Cl1 as a normal closure of a finite list of
elements in NA. This description is somewhat unwieldy for determining the actions of
(NA∩NB)/Cl1 on flags of type C, since it has, in principle, an infinite generating set. We
can improve this situation dramatically by observing that there is a contravariant group
isomorphism from (NA∩NB)/Cl1 to the group generated by the isometries whose actions
coincide with those of R1, . . . , R14 on a fixed flag of type C. Since each of the wij acts like
a half-turn on flags of type C, and each of the Rk acts like a translation on flags of type
C then

wijRkwij = R−1
k . (8)
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In other words, wijRkwijRk is in C for each choice of 0 6 i, j 6 3, 1 6 k 6 14. Let

E ′
1 = E1 ∪ {wijRkwijRk | 0 6 i, j 6 3, 1 6 k 6 14}

and Cl′1 = ClΓ(E ′
1). Consider (NA ∩ NB)/Cl′1. While the set of conjugates in NA of

{R1, ..., R14} still form a generating set, we need only consider the elements obtained as
products of the Ri, since any product of conjugates of the Ri may be reduced using the
relations in Cl′1 to a product of the Ri and their inverses. Thus (NA ∩ NB)/Cl′1 = 〈Ri :
1 6 i 6 14〉 6 Γ/Cl′1.

5.3.3 Intersect with NC

We now consider the actions of each of the generators Ri ·Cl′1 for (NA ∩NB)/Cl′1 on flags
of type C. First note that (w10w11w30)

2 is in C, and observe that each of the remaining
generators Ri · Cl′1 acts like a translation on any given flag of type C. Moreover, many
of them have equivalent actions on flags of type C. For example, both R2 = w00w31 and
R6 = w11w20 translate a flag of type C by four adjacent octagons in the same direction,
and so R2(R6)

−1 must be in C. Thus we observe that in terms of their actions on flags of
type C

R6 = R2 = R1 = R5 = (R9)
−1

R3 = R11 = R13 = (R10)
−1 = (R12)

−1

R4 = R7 = (R8)
−1

Note that the three sets of generators listed above correspond to translations in three
different directions, so we may determine by inspection that

(R4)
−1(R3)

−1R6 = w01w30w22w00w11w20

is a product of the three types of generators that has a trivial action. Consequently, we
let

E2 = E ′
1 ∪ {R6(R2)

−1, R6(R1)
−1, R6(R5)

−1, R6R9, R3(R11)
−1, R3(R13)

−1,

R3R10, R3R12, R4(R7)
−1, R4(R8)

−1, (R4)
−1(R3)

−1R6}.

We now consider Cl2 := ClΓ(E2). We observe that the inclusion of the elements in E2

allows us to significantly reduce the number of generators for (NA∩NB)/Cl2. For example,
note that

R2 · Cl2 = w00w31 · Cl2 = w00w31 · w31w00w20w11 · Cl2 = w11w20 · Cl2.

Similar computations allow us to conclude that (NA ∩NB)/Cl2 = 〈w11w20 · Cl2, w00w22 ·
Cl2〉. Each of these acts non-trivially as a translation on flags of type C in linearly
independent directions, and so we observe that T1 := w11w20w00w22w20w11w22w00 ∈ C.
Let C∗ = ClΓ(E2 ∪ {T1}). Since C = NA ∩NB ∩NC , and since w11w20 · Cl∗, w00w22 · Cl∗
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generate (NA ∩NB)/Cl∗, and we have accounted for all possible actions of an element of
(NA ∩NB)/Cl∗ on a flag of type C, any element of NA \Cl∗ must have non-trivial action
on a flag of either type B or of type C. Therefore, C = ClΓ(E2∪{T1}). The set of defining
relations we have found for this cover has 242 relations (listed in Table 4), this makes any
description of the local geometry of the minimal cover complicated to obtain and so is
material for another paper.

Table 4: The 242 elements needed to form the kernel of the cover of (4.8.8) from [8, 3],
with the necessary labels for compactness of presentation.

Labels α := (r0r1)
4, δ := r2r1r0r1r2r0r1r0 , ε := r2r0r1r0r1r2r0r1

wij := δiεjαε−jδ−i

R1 := w00w10w11w30, R2 := w00w31, R3 := w00w22,
R4 := w30w01, R5 := w30w23, R6 := w11w20, R7 := w11w02,
R8 := w10w21, R9 := w10w03, R10 := w12w11w30w11,
R11 := w32w10w11w30w11w30, R12 := w13w11w30w10,
R13 := w33w30w11w30, R14 := (w10w11w30)

2.

Relations ε−1δ−4εδ4, ε−2δ−4ε2δ4, ε−3δ−4ε3δ4, ε−4δ−4ε4δ4,
αδ−4αδ4, ε−4αε4α,
wijRkwijRk for 0 6 i, j 6 3, 1 6 k 6 14,
R6(R2)

−1, R6(R1)
−1, R6(R5)

−1, R6R9, R3(R11)
−1,

R3(R13)
−1, R3R10, R3R12, R4(R7)

−1, R4(R8)
−1, (R4)

−1(R3)
−1R6

w11w20w00w22w20w11w22w00.

5.4 The tiling (3.12.12)

The first two steps for the determination of the core of the stabilizer of a flag in the
tessellation (3.12.12) are similar to those of (3.6.3.6) and of (4.8.8). As we shall see, the
third step is more involved than in the previous two cases. Throughout let

[12, 3] := 〈r0, r1, r2| r2
0 = r2

1 = r2
2 = (r0r2)

2 = (r0r1)
12 = (r1r2)

3 = id〉.

Let T be the uniform tiling (3.12.12), NA the stabilizer of a type A flag Φ containing an
edge shared by two 12-gons under the action of [12, 3], NB the stabilizer of a type B flag
in an 12-gon sharing an edge with a triangle, and NC the stabilizer of a type C flag in a
triangle under the same action. Then C = NA ∩NB ∩NC is the core of NA in [12, 3], and
Γ = [12, 3]/C is the automorphism group of the minimal cover of T .

Let α0 := r1r2(r0r1)
3r2r1, α1 := (r1r0)

2r1r2(r0r1)
3r2r1(r0r1)

2, β := (r1r2r1r0)
2(r1r0)

2

and γ := (r1r0)
2(r1r2r1r0)

2. By Theorem 5 we know that the set

{βiγjαkγ
−jβ−i | i, j ∈ Z, k ∈ {0, 1}}

is a generating set for NA.
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5.4.1 Reducing to a finite generating set for NA

First note that β2 and γ2 fix flags of types B and C. Therefore the elements η1 :=
β2α0β

−2α−1
0 , η2 := β2α1β

−2α−1
1 , η3 := γ2α0γ

−2α−1
0 and η′3 := γ2α1γ

−2α−1
1 belong to C.

Moreover, since α1 = (r1r0)
2α0(r1r0)

−2 and γ = (r1r0)
2β(r1r0)

−2, it follows that η′3 is the
conjugate of η1 by (r1r0)

2 and so we need not include it in a generating set for C as a
normal closure.

It can be verified easily that η4 := β2γβ−2γ−1 is also an element of C. Let Cl1 :=
ClΓ({η1, η2, η3, η4}).

Following an argument analogous to those presented in §5.2.1 we conclude that NA/Cl1
is generated by the eight elements

{βiγjαkγ
−jβ−i · Cl1}

with i, j, k ∈ {0, 1}.
We note that β and γ preserve all flag orbits, whereas α0 and α1 interchange flags

of type B with flags of type C. This implies that any element in NA/Cl1 that fixes
all flags must be expressed as a word with an even number of generators of the form
βiγjαkγ

−jβ−i · Cl1.
Before determining the even subgroup of NA it is convenient to reduce the number of

generators. To do this we determine a normal subgroup Cl
(a)
1 of Γ containing Cl1, under

which some of the generators of Cl1 can be expressed it terms of the others. To find
elements in Cl

(a)
1 we use the action of the eight generators of Cl1 on flags of types B and

C looking for products acting trivially on all flags.
Let η5 := βγα0γ

−1β−1α1βγα1γ
−1β−1α2

1βα1β
−1, η6 := βγα1γ

−1β−1α2
1α0γα0γ

−1α0,

η7 := γα1γ
−1(γα0γ

−1α0βα0β
−1)−1, η8 := βα1β

−1α0α1βα0β
−1, Cl

(a)
1 := ClΓ({η1, . . . , η8}).

It can be verified that η5, η6, η7 and η8 belong to C. Then NA/Cl
(a)
1 is generated by

the elements
βiγjαkγ

−jβ−i · Cl
(a)
1 (9)

with i, j, k ∈ {0, 1}. However, βγα0γ
−1β−1 · Cl

(a)
1 can be expressed in terms of the

remaining generators (using relation η5) and similarly βγα1γ
−1β−1 · Cl

(a)
1 , γα1γ

−1 · Cl
(a)
1

and βα1β
−1 · Cl

(a)
1 can be expressed in terms of the remaining four elements α0 · Cl

(a)
1 ,

α1 ·Cl
(a)
1 , βα0β

−1 ·Cl
(a)
1 and γα0γ

−1 ·Cl
(a)
1 (using relations η6, η7 and η8). Hence NA/Cl

(a)
1

is generated by the four elements α0 · Cl
(a)
1 , α1 · Cl

(a)
1 , βα0β

−1 · Cl
(a)
1 and γα0γ

−1 · Cl
(a)
1 .

By definition, [NA/Cl
(a)
1 ]+ is generated by the products of pairs of generators of

NA/Cl
(a)
1 . In addition, if x and y are generators of NA/Cl

(a)
1 , then yx can be expressed as

y2 · (xy)−1 · x2, so, to generate [NA/Cl
(a)
1 ]+, we only need one of the two products xy and

yx for each pair of distinct generators x and y of [NA/Cl
(a)
1 ]. Define X to be the following

list of 10 generators of [NA/Cl
(a)
1 ]+:

X := {α2
0 · Cl

(a)
1 , α0α1 · Cl

(a)
1 , α0βα0β

−1 · Cl
(a)
1 , α0γα0γ

−1 · Cl
(a)
1 , (10)

α2
1 · Cl

(a)
1 , α1βα0β

−1 · Cl
(a)
1 , α1γα0γ

−1 · Cl
(a)
1 , βα2

0β
−1 · Cl

(a)
1 ,

βα0β
−1γα0γ

−1 · Cl
(a)
1 , γα2

0γ
−1 · Cl

(a)
1 }.
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Reduce the number of generators of the even subgroup

Similar to the analysis for (4.8.8), we shall represent [NA/Cl
(a)
1 ]+∩NB/Cl

(a)
1 as the normal

closure in [NA/Cl
(a)
1 ]+ of some set of elements. The set of elements is generated (in

principle) by an infinite set, which we intersect with NC/Cl
(a)
1 . To do this we shall need

analogs to the equations in (8). To reduce the number of these equations it is convenient

to reduce the number of generators of [NA/Cl
(a)
1 ]+ itself. We do this by constructing

a larger normal subgroup Cl
(b)
1 of Γ so that in the quotient some of the generators of

[NA/Cl
(a)
1 ]+ may be expressed as products of the others.

To do this, first note that the element α1βα0β
−1 · Cl

(a)
1 acts like a translation on any

given flag Φ of type B whereas the remaining nine elements in 10 act on Φ like half-turns.
On the other hand, the elements α0α1 · Cl

(a)
1 , α1βα0β

−1 · Cl
(a)
1 and α1γα0γ

−1 · Cl
(a)
1 act

like translations on any given flag Ψ of type C (the last two actually act like the same
translation), whereas the remaining seven elements in (10) act on Ψ like half-turns.

We now use the contravariant group homomorphism from [NA/Cl
(a)
1 ]+ to the corre-

sponding isometry group described in Proposition 1. The kernel of this homomorphism is
[NA/Cl

(a)
1 ]+ ∩NB/Cl

(a)
1 . There exists another group homomorphism from [NA/Cl

(a)
1 ]+ to

the permutation group determined by the actions of its elements on flags of type C, and the
intersection of the kernels of these two morphisms is C/Cl

(a)
1 . These two homomorphisms

can be used to determine that the following elements belong to C:
• η9 := βα2

0β
−1α0βα0β

−1α2
1(βα0β

−1γα0γ
−1)−1α0βα0β

−1(βα0β
−1γα0γ

−1)−1,

• η10 := βα0β
−1γα0γ

−1α0βα0β
−1α0γα0γ

−1α2
1,

• η11 := α1γα0γ
−1(α1βα0β

−1)−1α0γα0γ
−1α0βα0β

−1,

• η12 := γα2
0γ

−1α2
1α1βα0β

−1,

• η13 := (α1βα0β
−1)−1α2

1α0βα0β
−1α0α1 = βα−1

0 β−1α1α0βα0β
−1α0α1.

Define Cl
(b)
1 := ClΓ({η1, . . . , η13}). Note that [NA/Cl

(b)
1 ]+ is generated by the left cosets

of Cl
(b)
1 determined by (a representative of each of) the elements in (10). However, the

elements βα2
0β

−1·Cl
(b)
1 , βα0β

−1γα0γ
−1·Cl

(b)
1 , α1γα0γ

−1·Cl
(b)
1 , γα2

0γ
−1·Cl

(b)
1 and α1βα0β

−1·
Cl

(b)
1 can be expressed in terms of the remaining five generators α2

0 · Cl
(b)
1 , α0α1 · Cl

(b)
1 ,

α0βα0β
−1 ·Cl

(b)
1 , α0γα0γ

−1 ·Cl
(b)
1 and α2

1 ·Cl
(b)
1 (by applying relations η9, η10, η11, η12 and

η13 respectively). Therefore [NA/Cl
(b)
1 ]+ is generated by the elements

• α2
0 · Cl

(b)
1 ,

• α0α1 · Cl
(b)
1 ,

• α0βα0β
−1 · Cl

(b)
1 ,

• α0γα0γ
−1 · Cl

(b)
1 , and

• α2
1 · Cl

(b)
1 .
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5.4.2 Determination of NA ∩NB

We now consider the elements α2
0, α2

1 and α0βα0β
−1. Note that each of them acts like a

half-turn on each flag with types B or C. Furthermore, the centers of these half-turns do
not lie in a line. Therefore the elements η14 := (α0βα0β

−1)2 and η15 := (α2
0α

2
1α0βα0β

−1)2

belong to C. Let Cl
(c)
1 := ClΓ({η1, . . . , η15}).

On the other hand, α0α1 and α0γα0γ
−1 act respectively like the identity and α2

1 on

flags of type B. Hence, by Lemma 9, [NA/Cl
(c)
1 ]+∩NB/Cl

(c)
1 is generated by all conjugates

in [NA/Cl
(c)
1 ]+ of R1 := η14 · Cl

(c)
1 , R2 := η15 · Cl

(c)
1 , R3 := α0α1 · Cl

(c)
1 and R4 :=

α0γα0γ
−1α2

1 · Cl
(c)
1 . Therefore [NA/Cl

(c)
1 ]+ ∩ NB/Cl

(c)
1 is generated by all conjugates in

[NA/Cl
(c)
1 ]+ of α0α1 · Cl

(c)
1 and α0γα0γ

−1α2
1 · Cl

(c)
1 .

5.4.3 Intersect with NC.

In order to determine the elements in [NA/Cl
(c)
1 ]+∩NB/Cl

(c)
1 acting trivially on flags type

C, we must first find a normal subgroup Cl2 such that [NA/Cl2]
+ ∩ NB/Cl2 is finitely

generated.
Above we showed that [NA/Cl

(c)
1 ]+ is generated by α2

0 ·Cl
(c)
1 , α0βα0β

−1 ·Cl
(c)
1 , α2

1 ·Cl
(c)
1 ,

α0α1 ·Cl
(c)
1 and α0γα0γ

−1 ·Cl
(c)
1 . On any flag of type C, the first three act like half-turns

and the last two act like translations. In addition, α0α1 and α0γα0γ
−1α2

1 also act like
translations on any flag of type C. We use the contravariant group homomorphism from
(NA/Cl

(c)
1 )+ ∩NB/Cl

(c)
1 to the corresponding isometry group described in Proposition 1,

to verify that the elements

• η16 := (α2
0)(α0α1)(α

2
0)(α0α1),

• η17 := (α2
0)(α0γα0γ

−1α2
1)(α

2
0)(α0γα0γ

−1α2
1),

• η18 := (α0βα0β
−1)(α0α1)(α0βα0β

−1)−1(α0α1),

• η19 := (α0βα0β
−1)(α0γα0γ

−1α2
1)(α0βα0β

−1)−1(α0γα0γ
−1α2

1),

• η20 := (α2
1)(α0α1)(α

2
1)(α0α1),

• η21 := (α2
1)(α0γα0γ

−1α2
1)(α

2
1)(α0γα0γ

−1α2
1),

• η22 := (α0α1)(α0γα0γ
−1α2

1)(α0α1)
−1(α0γα0γ

−1α2
1)
−1,

• η23 := (α0γα0γ
−1)(α0α1)(α0γα0γ

−1)−1(α0α1),

• η24 := (α0γα0γ
−1)(α0γα0γ

−1α2
1)(α0γα0γ

−1)−1(α0γα0γ
−1α2

1)

belong to C. Let Cl2 := ClΓ({η1, . . . , η24}). Then [NA/Cl2]
+∩NB/Cl2 is the group whose

elements are products of conjugates in [NA/Cl2]
+ of α0α1 ·Cl2 and α0γα0γ

−1α2
1 ·Cl2. Note

that relations η16, . . . , η24 imply that all such conjugates belong to the set

{α0α1 · Cl2, (α0α1)
−1 · Cl2, α0γα0γ

−1α2
1 · Cl2, (α0γα0γ

−1α2
1)
−1 · Cl2.}
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In other words, [NA/Cl2]
+ ∩NB/Cl2 is generated (as a group) by α0α1 · Cl2 and

α0γα0γ
−1α2

1 · Cl2. For example, relation η21 implies that

α2
1(α0γα0γ

−1α2
1)α

2
1 · Cl2 = (α0γα0γ

−1α2
1)
−1 · Cl2.

Hence, [NA/Cl2]
+∩NB/Cl2 is generated by α0α1 ·Cl2 and α0γα0γ

−1α2
1 ·Cl2. On the other

hand, [NA/Cl2]
+∩NB/Cl2 = (N+

A ∩NB)/Cl2 because of the fourth isomorphism theorem
and N+

A ∩NB = NA ∩NB since the elements in NA \N+
A map flags of type B onto flags of

type C and hence (NA \N+
A )∩NB = ∅. Therefore (NA∩NB)/Cl2 = [NA/Cl2]

+∩NB/Cl2.
It only remains to determine the elements in (NA ∩NB)/Cl2 which fix flags of type C.

Note that α0α1 · Cl2 and α1βα0β
−1α2

1α0βα0β
−1 · Cl2 act on any flag type C like

translations with respect to linearly independent vectors. Then a set of defining relations
for

〈α0α1 · Cl2, α0γα0γ
−1α2

1 · Cl2〉

is determined just by their commutativity. It follows that

η25 := α0α1(α0γα0γ
−1α2

1)(α0α1)
−1(α0γα0γ

−1α2
1)
−1

belongs to C. (The element η25 corresponds to the element T1 described in the outline.)
Note, however that η25 = η22. Then the set of elements in NA ∩NB/Cl2 fixing all flags of
type C is the normal closure in (NA/ ∩NB)/Cl2 of η25 · Cl2, that is, it is trivial.

Since the core of NA in Γ is NA∩NB∩NC , and since the elements α0α1·Cl2, α0γα0γ
−1α2

1·
Cl2 generate (NA ∩ NB)/Cl2, we were able to account for all of the actions on flags of
type C, and so any element in NA \Cl2 must have a nontrivial action on a flag of type B
or on a flag of type C. Hence C = Cl2.

The set of relations {ηi = id | i = 1, . . . , 24} is not minimal (collected in Table 5). For
example, η16 = id can be rewritten as (α−1

0 α1)
2 = id, which is the conjugate by α−1

1 of
relation η20 = id. However, determining a minimal set of elements ηi required to generate
C is beyond the scope of this paper. As in the case of (4.8.8), with this many relations it
is difficult to provide a coherent picture of the local or global geometry of the cover.

6 Epilogue

6.1 Minimal Covers for the Remaining Archimedean Tilings

In the current work we have been able to provide descriptions of minimal regular covers
of the Archimedean tilings (3.6.3.6), (4.8.8) and (3.12.12). Each of the remaining tilings is
covered by a regular hyperbolic tiling of Schläfli type {p, q}, where p is the least common
multiple of the number of sides of a polygon in the tiling, and q is the degree of any vertex
in the tiling (since these tilings are uniform). In fact, these hyperbolic tilings are universal
covers for any polyhedron where the least common multiples of the number of sides of
a polygon and of the degrees of the vertices in the polyhedron are p and q respectively.
A natural question to ask in the context of the current work is whether or not there are
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Table 5: The list of elements set equal to id to form the minimal regular cover of (3.12.12)
from [12, 3] with requisite labels for compactness of presentation.

Labels α0 := r1r2(r0r1)
3r2r1, α1 := (r1r0)

2r1r2(r0r1)
3r2r1(r0r1)

2,
β := (r1r2r1r0)

2(r1r0)
2, γ := (r1r0)

2(r1r2r1r0)
2.

Relations β2α0β
−2α−1

0 , β2α1β
−2α−1

1 , γ2α0γ
−2α−1

0 ,
β2γβ−2γ−1,βγα0γ

−1β−1α1βγα1γ
−1β−1α2

1βα1β
−1,

βγα1γ
−1β−1α2

1α0γα0γ
−1α0, γα1γ

−1(γα0γ
−1α0βα0β

−1)−1,
βα1β

−1α0α1βα0β
−1,

βα2
0β

−1α0βα0β
−1α2

1(βα0β
−1γα0γ

−1)−1α0βα0β
−1(βα0β

−1γα0γ
−1)−1,

βα0β
−1γα0γ

−1α0βα0β
−1α0γα0γ

−1α2
1,

α1γα0γ
−1(α1βα0β

−1)−1α0γα0γ
−1α0βα0β

−1,γα2
0γ

−1α2
1α1βα0β

−1,
(α1βα0β

−1)−1α2
1α0βα0β

−1α0α1,
(α0βα0β

−1)2, (α2
0α

2
1α0βα0β

−1)2, (α2
0)(α0α1)(α

2
0)(α0α1),

(α2
0)(α0γα0γ

−1α2
1)(α

2
0)(α0γα0γ

−1α2
1),

(α0βα0β
−1)(α0α1)(α0βα0β

−1)−1(α0α1),
(α0βα0β

−1)(α0γα0γ
−1α2

1)(α0βα0β
−1)−1(α0γα0γ

−1α2
1),

(α2
1)(α0α1)(α

2
1)(α0α1), (α2

1)(α0γα0γ
−1α2

1)(α
2
1)(α0γα0γ

−1α2
1),

(α0α1)(α0γα0γ
−1α2

1)(α0α1)
−1(α0γα0γ

−1α2
1)
−1,

(α0γα0γ
−1)(α0α1)(α0γα0γ

−1)−1(α0α1),
(α0γα0γ

−1)(α0γα0γ
−1α2

1)(α0γα0γ
−1)−1(α0γα0γ

−1α2
1).

smaller regular covers than these universal covers for the remaining Archimedean tilings.
As mentioned in Section 2, given a polyhedron P , universal regular cover {p, q} and a base
flag Φ of P , by Theorems 5.2 and 5.3 of [Har99a] P ∼= {p, q}/N where N is the stabilizer in
[p, q] of Φ. Moreover, as seen in Theorem 2, in the case of polyhedra, the minimal regular
cover of P is determined by [p, q]/Core([p, q], N). To show that [p, q] is not the minimal
cover for the tilings (3.3.3.3.6), (3.3.3.4.4), (3.3.4.3.4), (3.4.6.4) and (4.6.12) it suffices to
show that Core([p, q], N) is non-trivial in each case. We do this by observing that each of
the elements given in Table 6 are nontrivial in [p, q], and fix each flag of the corresponding
tiling, and so are in Core([p, q], N), so Core([p, q], N) is nontrivial in all five cases. We
intend to address the structure of minimal covers of the remaining Archimedean tilings
in a subsequent paper.

6.2 Open Questions and Concluding Remarks

The current work suggests a number of questions that do not, as yet, appear to have been
fully addressed in the literature.

While it is known that the monodromy groups of polyhedra are string C-groups
[MPW], there exists a polytope T (the “Tomotope”) of higher rank where Mon(T ) is
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Table 6: Nontrivial elements of Core([p, q], N) for each of the remaining Archimedean
tilings.

Tiling Universal Cover Nontrivial core element

(3.3.3.3.6) {6, 5} [r1r2(r1r0)
2]4

(3.3.3.4.4) {12, 5} (r0r1r2r1)
8[r1r2(r1r0)

5]8

(3.3.4.3.4) {12, 5} [r1r2(r1r0)
5]4

(3.4.6.4) {12, 4} (r1r0r1r2)
12

(4.6.12) {12, 3} [(r1r0)
5r1r2(r1r0)

3r1r2]
6

not a string C-group [MPW12]. Is it is possible to determine a broadly interesting class
of polytopes whose monodromy groups are all string C-groups? In particular, are the
monodromy groups of all chiral polytopes string C-groups?

A related question is the range of possible group structures of monodromy groups,
especially in the case of polyhedra. The monodromy group of a polytope is isomorphic
to a subgroup of Sn where n is the number of flags, what then is the smallest index
of this subgroup in Sn for polytopes of rank d with n flags? In general, what groups
can be the monodromy groups of abstract polytopes? Note that this includes all of the
string C-groups since the monodromy group of a regular polytope is isomorphic to its
automorphism group.

There remains much to be understood about the structure of quotients of regular
abstract polytopes, and about the structure of less symmetric polytopes more generally.
The concepts and results discussed in this paper provide some of the necessary framework
for approaching these questions in the context of non-finite polyhedra.
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[GS87] Branko Grünbaum and G. C. Shephard. Tilings and patterns. W. H. Freeman
and Company, New York, 1987.

[Har99a] Michael I. Hartley. All polytopes are quotients, and isomorphic polytopes are
quotients by conjugate subgroups. Discrete Comput. Geom., 21:289–298, 1999.

[Har99b] Michael I. Hartley. More on quotient polytopes. Aequationes Math., 57:108–120,
1999.
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