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Abstract

A packing of subsets Si,...,S, in a group G is an element (gi,...,g,) of G"
such that ¢151, ..., .Sy are disjoint subsets of G. We give a formula for the number
of packings if the group G is finite and if the subsets Sy, ..., S, satisfy a genericity
condition. This formula can be seen as a generalization of the falling factorials which
encode the number of packings in the case where all the sets S; are singletons.

Keywords: Enumerative combinatorics; packings in groups; additive combina-
torics; additive number theory; Stirling number

1 Introduction

A (left- )packing of n non-empty subsets Sy, ..., S, in a group G is an element (g1, ..., gn)
of G™ such that the left-translates ¢;S1, ..., g,S, of the sets §; are disjoint. The sets
S1,...,8, are labelled by their indices. In particular, permuting the elements g¢1,..., g,
of a packing (g1,...,9,) € G" of §; = --- = §,, yields a different packing. Moreover, in
the case where S; for example is of the form S = HS; for some subgroup H of G, a
packing (g1, ..., gn) gives rise to §(H) distinct packings (g1h, g2,...,9n), h € H.

There is an obvious one-to-one map between packings of S1,...,S, C G and packings
of 18y, ..., a,S, C G for every (ay,...,a,) € G™.

This paper deals with enumerative properties of left-packings in the case where G is
a finite group. Using the involutive antiautomorphism g —— g~!, its content can easily
be modified in order to deal with right-packings S1g1, ..., Sngn-

In the sequel, we denote by a(G; S, ..., S,) < N™ the number of packings of n non-
empty subsets Sy, ..., S, in a finite group G with N elements. Computing a(G; Sy, ..., Sy)
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for arbitrary subsets Sy, ..., S, in a finite group G is probably difficult. There are however
easy lower and upper bounds:

Proposition 1. We set a = a(G;S1,...,8,) and b = «(G; Sy, ..., 8, Sni1) where
S1y. ., Spr1 are (n + 1) non-empty subsets in a finite group G. We have the inequal-

ities
(N — $(Sn+1) Zﬁ(sz‘)) a<b< (N - Zﬂ(«%) a.

In particular, we have

- (N -y ﬁ<si>> ‘ )

if Spa1 1S a singleton.

Proposition 1 will be proven in Section 3.

A family &y, ...,S, of n non-empty subsets in a group G with identity element e is
generic if for every sequence iy, ..., of k distinct elements in {1,...,n} and for every
choice of elements g;, € SizlSij \ {e}, we have

g’ilgiz o glk 7£ €.

Otherwise stated, a family Si,...,S, of subsets in a group G is generic if the only
solution of the equations g;, ---g;, = e with g;; € Si;lSij for {i1,...,i,} = {1,...,n} is
given by g;, = e for all j.

Genericity excludes “accidental intersections” among translates ¢;Si, ..., ¢,S, in the
following sense: Given a collection of translates ¢S5, .. ., g,S,, we consider the associated
intersection graph with vertices S; and edges joining S;, S; if ¢:5:Ng;S; # 0. Genericity of
a family Si,...,S; in a group G is equivalent to the statement that all intersection graphs
are primal graphs of hyperforests. Intuitively speaking, intersections among translates of
a generic family are always “as small as possible”.

Example 2. Genericity in an additive abelian group G boils down to the fact that the
subset (S; —81) X -+ X (S, —S,,) of the group G™ intersects the subgroup {(z1,...,x,) €
G" | Yo¢,x; =0} of G" only in the identity element (0,...,0).

A generic family Sy, ..., S, of subsets in the additive group Z with prescribed cardinal-
ities s; = #(S;) can be constructed by starting with S; = {0, ..., sy — 1} and by defining S;
recursively as S; = {0, k;, 2k;, ..., (s;—1)k;} where k; is an arbitrary natural integer strictly
larger than 23;11 (max(S;) — min(S;)) = Z;;ll(s] —1)k;. A generic family is thus for ex-
ample given by the sets S; = {0,1}, S, = {0,2},...,S; = {0,271},..., S, = {0,2" 1}

Reduction of a generic family Sy,...,S, C Z modulo a natural integer N yields a
generic family of Z/N7Z except if N is a divisor of a non-zero integer in the finite set

{2 (S =S}
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Remark 3. The terminology “generic family” can be motivated as follows: Given n strictly
positive natural numbers sy, ..., s,, most uniform random choices of n subsets S1,...,S,
with £(S;) = s; (among all (i\j ) possible subsets) in a finite group G of order N should
yield a generic family if N is large compared to Y, _, k!7, with 7,...,7, defined by
> o et = TT;—; (1 +55(s; — 1)t). Indeed, the number kl7; is an upper bound on the
number of elements in the set Ej containing all products of the form g;, ---g;, with
i, € S;lSij \{e} and iy,..., i, given by k > 2 distinct elements of {1,...,n}. Under the
(naive but hopefully correct) assumption that the elements of E} are uniformly distributed
in GG, the probability for non-genericity of Sy, ..., S, is at most % > iy klky. Observe also
the trivial inequalities Y, klwy < n! D70 ok = 0! T[T (14 s;(s; — 1)) < n! ]}, s7.

The aim of this paper is to describe a universal formula for the number of packings
for a generic family of subsets Si,...,S,, in a finite group GG. The number of associated
packings depends then only on the cardinalities of G and &, ...,S,,. Moreover for fixed
cardinalities of Sy, ..., S, the dependency on the cardinality of G is polynomial of degree
n. A trivial example is the generic family given by n subsets reduced to singletons. The
associated number of packings in a finite group with N elements is then easily seen to be
given by the polynomial n! (]7\{) =N(N—-1)---(N—n+1) € Z[N] with coefficients given
by Stirling numbers of the first kind. This polynomial is also called a falling factorial and
denoted by NZ. Using the formulae of our paper, it is possible to define the falling factorial
N2 associated to a partition A = A\, \a, ... by counting packings of generic families with
A1 subsets having vy, vs, ..., v, elements where v; = {j |\; > i} is the i—th part of the
transposed partition ¥ = A* of \. The map A\ —— N2 is however perhaps not exceedingly
interesting. On one hand, it is not into since N2 = N for every partition A\ of the form
1,1,1,.... On the other hand, fixing the content Zj A; of the partition A, our formulae
show that the coefficients of N2 depend linearly on the elementary symmetric functions
= ZK]. ViV, 03 = Zi<j<k VilVjVk,y ..., 05 = V1lg - -y, of the partition v = A\

The study of generic packings in groups is, as far as I am aware, a new addition
to the already large set of classical notions of packings. Well-known and well-studied
examples are lattice-packings in Euclidean spaces or more generally sphere-packings in
metric spaces. Error-correcting codes corresponding to packings of spheres (with respect
to the Hamming distance given by the number of distinct coordinates) into IFZ are discrete
analogues. The associated theories have however a different flavour since one tries to pack
a huge (perhaps infinite) number of identical copies of spheres as tightly as possible.

Subsets in generic families are in general all distinct: Repetition destroys genericity
except in the case of singletons. Moreover, packings of generic sets have typically very
small densities. Generic families are mainly interesting for enumerative properties of the
corresponding packings.

This paper is organized as follows: Section 2 contains the main result, Theorem 4.
It expresses the number of packings of a generic family S;,...,S, in a finite group in
terms of a formal power series U = U(z, 01, 09,...) € A[[z]] with coefficients in the ring
A =Z[oy,09,...] of polynomials in elementary symmetric functions oy = > -, #(S;), 09 =
> i B(S)E(S)), - of 8(S1), - .., #(Sn). The series U is given explicitly by Formula 4 and
involves combinatorial integers ¢; j(n) (defined recursively by Formula 2) which extend
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Stirling numbers of the first kind. The first few coefficients of U are given by

1 — 09z — (1 — 01)o3 + 04)2?

—((2 =301+ 0})os + (5 — 301) 05 + 306)2°

—((6 — 110y 4 602 — 03)o5 + (26 — 260, + 602) 06
+(35 — 1501 )07 + 1508)z* + . ..

with omitted terms divisible by 2°.

Section 3 discusses the combinatorics of packings associated to an arbitrary (not nec-
essarily generic) family Sy, ..., S, of subsets in a group.

In Section 4, we specialize the results of Section 3 by applying them to generic packings.
The underlying combinatorics are then simpler and yield a proof of Proposition 5, a crucial
ingredient for establishing the main result.

Sections 5 and 6 contain the proof of Propositions 7 and 8 thus completing the proof
of Theorem 4.

Section 7 uses Theorem 4 and its proof for computing the Mdbius function of the poset
of finite labelled hyperforests. An anonymous referee pointed out that this computation,
a byproduct arising in the proof of our main result, might be of independent interest.
Remark 22 states already known formulae for the enumeration of (weighted) labelled
hypertrees.

Section 8 deals with computational aspects and examples.

Section 9 contains a conjectural asymptotic formula for the coefficients of the series
U(z,0,—1,—-1,—1,...).

Section 10 describes a few experimental observations concerning arithmetical proper-
ties of the coefficients of U(x,0,—1,—1,—1,...).

Section 11 is also experimental and describes a few integer sequences related to the
numbers ¢; ;(n) appearing, up to signs, as coefficients of the series U.

The paper ends with Section 12 discussing a few aspects of coverings which can be
seen as dual objects of packings.

2 Main result

For n =1,2,..., we consider the following set ¢; ;(n) of strictly positive integers indexed
by i€ {n+1,...,2n} and j € {0,1,...,2n —i}: We set t50(1) = 1 and define ¢, ;(n)
recursively by the formula

tign) = (i = 2)ti1;(n— 1)+t — 1) + (i — 3)ti2(n — 1) (2)

for n > 2. We set t; ;(n) = 0 in all other cases, i.e. if i <nor j<0ori+j> 2n.

Given a natural integer n > 1, the set of all ("}') non-zero integers t; ;(n) can be
organized into a triangular array 7'(n) with rows indexed by {n+1,...,2n} and columns
indexed by {0,...,n — 1} such that T'(n) determines T'(n + 1) recursively by Formula 2

THE ELECTRONIC JOURNAL OF COMBINATORICS 19(3) (2012), #P7 4



reminiscent of the recurrence relation (Z) = (Zj) + (";1) for binomial coefficients. The

first six triangular arrays T'(1),...,7(6) are

6 11 6 1
1 11 égl 26 26 ©
1 3 35 15
15

120 274 225 8 156 1
1044 1604 855 190 15
3304 3325 1050 105

24 50 35 10 1
154 200 80 10

gilg ?82 1 4900 2940 420
105 3465 945
945

Observe that the first row of T'(1),7(2), ... coincides, up to signs, with Stirling numbers
of the first kind. More precisely, we have

n—1 n—1
Ztn+1,k(n>xk+1 = H(:c +7) 251 n,j)( (3)
k=0 j=0

This is of course an easy consequence of the recurrence relation 2. The integers ¢; ;(n)
seem to be related to a few interesting integer-sequences, see Section 11 for examples.

We consider the formal power series U € Al[z]] with coefficients in the ring A =
Z|oy, 09,03, .. .] of integral polynomials in oy, 09, ... defined by

0 2n—1
U(z,01,09,...) —I—Zx ZUZZt” . (4)

n=1 i=n+1 7=0

Theorem 4. The number of packings of a generic family Sy,...,S, of n non-empty
subsets in a finite group G with N elements equals

N"U(N' 01,09,...) (5)

for U given by Formula 4 and for oi,04,... defined by

Zo]t] = H (14 4(Sp)t) -

Remark that Formula 5 of Theorem 4 is polynomial of degree n in N for fixed complex

numbers oy, 09,... such that 0,.1 = 0,10 = --- = 0. Indeed, the coefficient of 2™ in
U(x,01,09,...) belongs to the ideal generated by o,,11,0mi2, .., 02, of Z[oy,09,...]
and is thus zero for m > n if 0,41 = 010 =--- = 0.

The ingredients for proving Theorem 4 are the following four results:
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Proposition 5. There ezists a series U € Z[[x,01,09,...]] such that Formula 5 with
01,09, ... defined as in Theorem Jj gives the number of packings for every generic family
of n non-empty subsets in a finite group with N elements.

Moreover, the coefficient of a non-constant monomial x™ in this series U is of degree
at most 2m with respect to the grading dego; =i and belongs to the ideal of Z|oy, 03, .. .|
generated by Gpi1, Omao, .-y Oom-

The proof of Proposition 5 relies on combinatorial properties of intersection graphs
encoding non-trivial intersections among subsets ¢;Si, ..., 9,S, of a group G. These
properties are encoded by the poset HF (n) of hyperforests with n labelled vertices and
order relation given by F’ < F if every hyperedge of F” is contained in some hyperedge
of F. The poset HF(n) is a lattice with minimal element the trivial graph defined by n
isolated labelled vertices and with maximal element the hypertree consisting of a unique
hyperedge containing all n labelled vertices. Our proof of Proposition 5 uses Mobius
inversion in HF(n). It needs only the existence (which is obvious) of a Mébius function
on the poset HF(n). The explicit description of U given by Theorem 4 allows however a
posteriori the computation (given by Proposition 19) of the Mdbius function of HF(n).
Remark that the poset H7,, of hypertrees with n labelled vertices appearing for example
in [3] is a subposet of the order dual of HF(n) obtained by restricting the inverse order
of HF(n) to the subset of all hypertrees in HF(n).

Proposition 6. A series U as in Proposition 5 satisfies the functional equation
(1 — Ul.Z')U(l', 01,092,03,... ) = U(CC, 5'1,5'2, 6’3, . ) (6)
where 6; = 0;_1 + 0;, using the convention oy = 1.

Proof. Equation 6 corresponds to equation 1 if oy, 09, ... are elementary symmetric func-
tions of a finite set of natural integers. The general case follows by remarking that the
algebra of symmetric polynomials is a free polynomial algebra on the set of elementary
symmetric polynomials. [

Proposition 7. The series U defined by Formula 4 satisfies the functional equation 6.

Proposition 8. The functional equation 6 has at most one solution of the form U =
1+4... such that the coefficient of a nonconstant monomial x™ is of degree at most 2n (with
respect to the grading dego; = i) and belongs to the ideal generated by 0yi1, Opio, ..., 0o,
in Zloy, 09, ... ].

Proof of Theorem /. Proposition 5 ensures the existence of a series enumerating packings
of generic families in finite groups. This series coincides with the series given by Formula 4
by Propositions 6, 7 and 8. Il

Remark 9. Tterating identity 6 n times we have

U(l’,Ul,O'Q,.. Hl— O'l—f-j ) U(Jf,a'l,a'g,é'g,...)
7=0
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where

A particular case is the specialization
n n n o
oo (1) G) () ) T

associated to generic families Sy, ..., S, given by n singletons.

Remark 10. Tt is widespread lore that interesting combinatorial identities have g—ana-
logues generally encoding an additional feature of the involved combinatorial objects. 1
do not know if the integers ¢; ;(n) or the series U have such a g—analogue with interesting
properties.

3 Combinatorics of packings for arbitrary families
Si,...,S8, of subsets in a group G

3.1 Proof of Proposition 1

Proof of Proposition 1. A packing of Sy,...,S, given by (g1,...,9,) € G™ extends to a
packing (g1, - -, Gn, gnt1) € G of Sy, ..., Spyy ifand only if g, 11 € G\ (U, 9:Si(Sna1)™h)
where S = {¢g7! | g € §}. Since ¢;Si(S,11)"! contains at most (S, 1)4(S;) elements,
we have the first inequality.

Considering a fixed element h € S,,;; we have the inequality

B (UL19Si(Snn) ") = #(UL19:Sih™") = 1 (UL19:Si)

For a packing (g1, ..., gn), we have

HUL10S) = ) H(S)

showing the second inequality.
Both inequalities are sharp if §(S,,+1) = 1. This proves equality 1. [

3.2 Intersection graphs

We fix a group G and a family Sy,...,S,, of n non-empty subsets in G. Given an element
g =(91,...,9n) of G", we consider the corresponding intersection graph Z(g) with vertices
1,...,n and edges {7,j} between distinct vertices 4, j if ¢;:S; N g;S; # 0 in G. Observe
that g = (g1,...,9n) in G™ defines a packing if and only if Z(g) is the trivial graph with
n isolated vertices.
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Given a finite simple graph I" with vertices 1,...,n and edges E(I'), we consider the
set

Rr=A{(g1,--.,92) € G" | :5: N g;S; # 0 for every {i,j} € E(I')} .

An element g in G™ belongs thus to Rr if and only if ' is a subgraph of the intersection
graph Z(g).

We denote by &r the set of equivalence classes of Rp defined by (g1,...,9,) ~
(hi,. .., hy) if gih;' = gjhj_1 for every edge {i,j} of I'. Two elements g = (g1,...,9xn)
and h = (hy,..., h,) of Rr represent thus the same equivalence class of &r if and only if
the map i —— g;h; " is constant on (vertices of) connected components.

Proposition 11. Suppose that G is a finite group with N elements. We have then
tH(Rr) = #(Er) N
where ¢(I') denotes the number of connected components of T.

Proof. We set ¢ = ¢(I") and we denote the connected components of I by I'y,...,T'.. We
get a free action of G° on Rr by considering

(a1, ...yae) - (gry- -y Gn) — (%_(11)917 e 7a'?(ln)g")

where (i) € {1,...,c} is defined by the inclusion of the vertex ¢ in the v(¢)—th connected
component I',;y of I". Orbits in Ry of this action are thus in one-to-one correspondence
with equivalence classes of &r. O

Remark 12. The set &r associated to a graph I" with ¢ connected components contains
at most (max; #(S;))*" > distinct equivalence classes. Indeed, we have R(I") ¢ R(T) if
' is a subgraph of I". Replacing I" by a spanning forest, we can thus assume that I' is a
forest. The equivalence class of an element g € R(I") is now determined by the relative
positions of ¢;S; and g¢;S; for all n — ¢ edges {i,j} of the forest I' and the number of
different relative positions of ¢;S; and g;S; is at most #(S;)4(S;) < (max; #(S;))”.

3.3 Mobius inversion

Proposition 13. The number a = a(G; Sy, ..., S,) of packings of a family Sy,...,S, in
a finite group G with N elements is given by

@ = (-1 () VD

T'eB
where the sum is over the Boolean poset B of all 2(3) simple graphs with vertices 1,...,n

and where e(I') = #(E(I")), respectively c¢(I"), denotes the number of edges, respectively
connected components, of a graph I' € B.
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Proof. Proposition 11 shows that it is enough to prove the equality

a=> (=1)MRr) .

reB

An element g = (g1,...,9,) € G" defines a packing if and only if its intersection graph
Z(g) is trivial. It provides thus a contribution of 1 to « in this case since it is only involved
as an element of Rr if I is the trivial graph with isolated vertices 1,...,n and no edges.

An element g = (g1, ..., g,) € G" with non-trivial intersection graph Z(g) containing
e > 1 edges yields a contribution of 0 to « since contributions coming from the 2¢71
subgraphs of Z(g) containing an even number of edges cancel out with contributions
associated to the 2°~! subgraphs having an odd number of edges. O

Remark 14. Introducing
ar ={ge€G" | Z(g) =T},

we have a = ap where T" denotes the trivial graph with n isolated vertices 1,...,n. Our
proof of Proposition 13 computes a by applying Mdbius inversion (more precisely, its dual
form, see Proposition 3.7.2 of [5])

a= wl)ERr) (7)

reB

(with p(I') = (—1)*®) denoting the Mobius function of the Boolean lattice B of all simple
graphs on 1,...,n) to the numbers

given by Proposition 11.

4 Proof of Proposition 5: Combinatorics of generic
packings

A hypergraph consists of a set V of vertices and of a set of hyperedges where a hyperedge
is a subset of V containing at least 2 vertices. Two vertices are adjacent if they belong
to a common hyperedge. A path is a sequence of consecutively adjacent vertices. A
hypergraph is connected if any pair of vertices can be joined by a path. A cycle is a
closed path involving only distinct vertices. A hyperforest is a hypergraph with distinct
hyperedges intersecting in at most a common vertex and with every cycle contained in a
hyperedge. A hypertree is a connected hyperforest.

The primal graph of a hypergraph with vertices V is the ordinary graph with vertices
V and ordinary edges encoding adjacency in the hypergraph. An ordinary graph I' is the
primal graph of a hyperforest if and only if every cycle and every edge of I' is contained
in a unique maximal complete subgraph. Maximal complete subgraphs of such a graph I
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are in one-to-one correspondence with hyperedges of the associated hyperforest. Primal
graphs of hyperforests are often called block-graphs or chordal and diamond-free graphs.
In the sequel, we identify generally hyperforests with their primal graphs.

Lemma 15. The intersection ¢;S; N g;S; associated to an edge {i,j} in an intersection
graph Z(g) is reduced to a unique element if Sy, ..., S, is a generic family of G.

Proof. Otherwise there exist two distinct elements a;,b; € S; and two distinct elements
a;,b; € §; such that g;a; = g;b; and g;a; = g;b;. This shows

giaib; 'g; tgiazb; gt = e
and implies the relation b; 'a;b; 'a; = e with b; 'a; € §7'S; \ {e} and b, 'a; € S;7'S;\ {e}
in contradiction with genericity of the family &y, ..., S,. [

Proposition 16. Intersection graphs of generic families are (primal graphs of) hyper-
forests.

Proof. Consider k cyclically consecutive vertices i1, 49, ..., %k 1, %, igr1 = %1 in an inter-
section graph Z(g) of a generic family &,...,S, C G. Lemma 15 implies the existence
of unique elements a;; € S;; and b;,,, € §;,, such that g; a;;, = g;;,,0 for every edge
{ij,i;41} of C. We get thus the relation

j+1 i1

i1 Ay (gizbiz)_lgizaiz (gi:sbi:s)_l © Giy, Qi (gh bil)_l =€

which is conjugate to the relation

(b an) (0, ai) - (b5 aw) = e

Genericity of the family Si,...,S, implies a;; = b;; for all j. The sets g;,S;; intersect
thus in the common element g;, a;, = - - - = g¢;, a;, (which is the unique common element of
pairwise distinct sets in {¢;,Siy, - - -, ¢;,Si, } by Lemma 15). All elements i1, . .., of Z(g)
are thus adjacent vertices contained in a common maximal complete subgraph of Z(g).

Suppose now that an edge {7, j} belongs to two distinct maximal complete subgraphs
K and K’ of Z(g). Maximality of K and K’ implies the existence of vertices k € K \ K’
and k' € K'\ K. Thus we get triplets of mutually adjacent vertices i,j,k C K and
i,7,k" C K'. Lemma 15 shows that ¢;S; N ¢;S; is reduced to a unique element a. We have
thus ¢,S; N ¢;S; N gxSk, = {a} C K. Similarly, we get a € giSyr. This implies £’ € K in
contradiction with &' € K’ \ K.

Distinct maximal complete subgraphs of Z(g) intersect thus at most in a common
vertex and every cycle of Z(g) is contained in a unique maximal complete subgraph of
Z(g). This implies that Z(g) is (the primal graph of) a hyperforest. O

For the sake of concision, we identify in the sequel such an intersection graph Z(g)
with the corresponding hyperforest.

Applying the proof of Proposition 16 to a Hamiltonian cycle visiting all vertices of a
hyperedge {i1,...,i} in an intersection graph Z(g) associated to a generic family we get
the following result:
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Proposition 17. Given a hyperedge {i1, ..., i1} in the intersection graph Z(g) of a generic
family Sy, ..., S,, there exists a unique element a € G such that ¢;,S;, N gi,,Si,, = {a} for
every pair of distinct vertices iy, iy, in {i1, ..., i}

Proposition 18. Let I' be a hyperforest with vertices 1,...,n indexing the subsets S; of
a generic family in a group G. Defining the equivalence relation Er of a hyperforest F' as
in Section 3.2, we have

gF _ H degF

Jj=1

with degp(j) denoting the degree of j defined as the number of distinct hyperedges con-
taining the vertex j.

Proof. Let e = {i1,...,i} be a hyperedge of an intersection graph Z(g). Since ﬂle 9:,Si;
is reduced to a unique element a, € G, we get a map i, : {i1,...,ix} — G such that
te(ij) € S;; by setting pe(iy) = g5, Ya.. This map depends only on the equivalence class in
E1(g) of Z(g) and the set of all such maps determines the equivalence class of Z(g) in &
for any hyperforest F' contained in Z(g). Since all cycles of a hyperforest are contained in
hyperedges, all possible choices of the maps . associated to hyperedges of F' correspond
to equivalence classes of £p. Different choices yield inequivalent classes. The set Er of all
equivalence classes is thus in one-to-one correspondence with the set []7_, SdegF DO

Proof of Proposition 5. Setting s; = £(S;), Proposition 18 can be rewritten as the identity

Jj(gF) _ H S?egF(j)

j=1

for every hyperforest F' with vertices {1,...,n}. We denote by HF(n) the set of all
hyperforests with vertices {1,...,n}. The set HF(n) is partially ordered by inclusion by
setting F' < F for F') F' € HF(n) if every hyperedge of F” is contained in some hyperedge
of F. Equivalently, F" < F' if adjacent vertices of F” are also always adjacent in F'. The
primal graph underlying F” is thus a subgraph of the primal graph underlying F'if F/ < F'.
Denoting by p the Mébius function of the poset HF (n), the number o« = o(G; Sy, ..., S,)
of packings of a generic family S, ...,S, in a group G of order N is given by

I | R ©

FeHF(n) j=1

(with ¢(F') denoting the number of connected components of a hyperforest F'). Since the
Mébius function of HF (n + 1) restricts to the Mébius function of HF(n), the summation
over HF(n) in Formula 8 can be extended (after setting s; = 0 for ¢ > n and using the
convention 0° = 1) over the poset HF of all hyperforests with vertices N\ {0} such that
almost all vertices are isolated (only finitely many vertices have strictly positive degree).

Summing over all possible labellings of an unlabelled hyperforest and remarking that
the Mo6bius function is invariant under permutations of labels shows that « is a symmetric
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function of sq,...,s,. This expresses a as a polynomial in o1 = > 85,00 = >
with contributions coming from finite unlabelled hyperforests.

More precisely, contributions to the coefficient N"~™ of « given by Formula 8 come
from hyperforests with vertices {1,...,n} consisting of ¢ > 0 non-trivial hypertrees in-
volving m + ¢ < n vertices of strictly positive degrees and n — m — ¢ isolated vertices.
The equalities $,1+1 = Sp42 = -+ = 0 imply that the summation over HF(n) in 8 can be
extended to a summation over all hyperforests in HF () for an arbitrary integer [ > n
since the vertices n + 1,n + 2,... have to be isolated vertices of a hyperforest yielding
a non-zero contribution to a. Observe now that we have ¢ < m since every non-trivial
hypertree contains at least two vertices. For a fixed value of m, a labelled hyperforest
with non-zero contribution to « has thus at most 2m non-isolated vertices (with equal-
ity achieved by a hyperforest consisting of m isolated edges joining 2m distinct vertices).
Summing over unlabelled hyperforests and considering the associated symmetric functions
01,09,... In $1,S9,... (obtained by a summation over all possible distinct labellings of
the underlying unlabelled hypertrees) we see that the contribution associated to an unla-
belled hyperforest with m + ¢ < 2m non-isolated vertices is in the ideal of Z[x, 01, 09, .. .]
generated by 0p1c, Omicils Omicsas---- LThe degree in oy, 09,... (with respect to the
grading deg(o;) = i) of such a contribution is maximal and equals 2m for ordinary unla-
belled forests having m ordinary edges. Indeed, let F' be a hyperforest with ¢ connected
components and m + ¢ vertices of strictly positive degrees. Replacing a hyperedge E of F
involving k > 3 vertices by a tree consisting of kK —1 ordinary edges connecting all vertices
of F increases the degree-sum of all vertices by £ — 2 > 0 and yields a contribution of
higher degree. Contributions of maximal degree correspond thus to ordinary forests on
m + ¢ vertices with ¢ connected components. Such a forest has m edges and yields a
contribution of degree 2m with respect to the grading deg(o;) = ¢. This ends the proof
of Proposition 5. O]

i<j SiSjy e

5 Proof of Proposition 7

Proof of Proposition 7. We have to show that

0o 2n 2n—1i

"y oy tig(n)(—or)

U=1- x
n=1 i=n+1 7=0
defined by Formula 4 satisfies the functional equation

(1 —ox)U(x,01,09,05,...) =U(x,1 + 01,01 + 09,09+ 03,...) ,

see 6. Both sides of 6 have the same constant term 1 and involve only non-constant
monomials of the form o;072™. It is thus enough to check that coefficients of both sides
of 6 agree for such monomials. This is easily checked for the coefficient of x. For a general
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monomial of the form ap{m", equation 6 amounts to the identity

— ((=1Yti(n) = (=1’ Mt; 51 (n — 1))

2n—1 k 2n—i—1 k
. (Z ti7k<n><—1>k( j) Y tm,k(n)(—l)k(j))
or equivalently to
big(n) iy (n— 1) = 3 (<14 (’j) (tan(n) + () )

k

where Y, f(k) = >,z f(k) since (’;) (tig(n) +tiz1k(n)) =0 for k < jor k > 2n — .
We prove 9 by induction on n. A straightforward computation shows that it holds n = 2.
Applying the recursion relation 2 which holds for all 7, j € Z if n > 2 to the right side

R=> (—1)k (;‘C) (tik(n) + tit1k(n))

of 9 we get

" = Sor()
(Z - 2)251‘_17k(n - 1) + ti_ljk_l(n - 1) + (l - 3)ti_27k(n - 1)
(i = Dt — 1) +tia(n— 1) + (i — 2tioap(n — 1))
= L+C

where
L= (-9 (’j) (tiss(n— 1) + tualn — 1))

+ > (=1 ( k )(til,k(n — 1)+ tip(n—1))

k j—1

(i —3) 3 (~1)kH (’j) (tioai(n — 1) + tira(n — 1))

k
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and

o _Z(_l)k+g‘—1( k )(ti_l,k(n_l)juti,k(n—l))
+Z k+a(’;> 1 (= 1)+ tipr(n— 1))
+Z 1)kt (’;) (n—1) +tiix(n — 1))

B T P

k J—1

_ Z 1)k (k i 1) (tiorp(n —1) + tip(n — 1))
+Z k+j() tix(n—1)+tip(n—1))

2 () (4 () vt s

which shows C' = 0 since (k;“l) = (jfl) + (I;)
Using induction on n and applying 9 we get
L = (Z — 2) (tifl’j (n — 1) + tiij,l(n — 2))
+(ticrj1(n—1) +ti1j2(n —2))
(i = 3)(ti2i(n — 1) + tia1(n — 2))

We have thus
L = (Z — 2)751-_1,]-(71 — ].) + ti_lyj_l(n — 1) + (Z — S)ti_gu‘ (n — 1)
+(Z — 2)@',1"7’,1(” — 2) -+ ti,l,j,g(n — 2) -+ (Z — B)tifzyjfl(n — 2)

and applying 2 we get
L= tm'(Tl) + t@j,l(n — 1)

which is the left side of 9. OJ

6 Proof of Proposition 8

Proof of Proposition 8. Assuming the existence of two distinct series Uy, U, fulfilling the
requirements of Proposition 8, the difference D = Uy — Uy = Y 7| D, 2" satisfies all
hypotheses except for the value of its constant term. Since U; and U, are different,
there exists a minimal natural integer n > 1 such that D, # 0. Let m > n + 1 be the
smallest integer such that D, = Zi’im 0,Ch i with C, i € Cloy,09,...] and C,,,, # 0.
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Since D, is of degree < 2n with respect to the grading given by deg(c;) = i, we have
Com € Cloy,...,090-m| CCloy,...,0n-1].
Equation 6 and minimality of n imply

Dn<1+0'1,01 +O’2,(72—|—0'3,...> = Dn(O'l,UQ,O'g,...)

or equivalently

2n 2n
Z(ak,l +0k)Cr k(14 01,01 + 02,00+ 03,...) = Z 0kCri(01,02,03,...) .
k=m k=m
Comparison of both sides modulo the ideal I generated by o,,, 01, Omaro, ... gives

Cn,m(]-+01701+U2702+037-") =0.

Algebraic independency of the symmetric functions oy, 05, ... shows thus C),,,, = 0 in
contradiction with our assumption. ]

7 'The Mobius function for the poset of finite labelled
hyperforests

Let P be a poset (partially ordered set) such that P has a unique minimal element m and
{y € P |y <z} is finite for all x € P. This allows the recursive definition of a Mobius
function p by setting p(m) =1 and p(z) = — > _ pu(y) for all z > m. Given a function
f : P — C with finite support, the value f(m) can then be recovered from the function
9(z) =>_,, [(y) using Mobius inversion

flm) =Y px)g(w)

zeP

see Proposition 3.7.2 of [5] (we use only the values p(m, ) of the Mobius function and
write pu(z) = p(m,x) in analogy with the usual, well-known number-theoretic M&bius
function of natural integers). Mobius inversion was the main ingredient in the proof of
Proposition 5. The poset HF of hyperforests consisting of all hyperforests (ordered by
inclusion) with finitely many hyperedges and vertices 1,2, 3,4, ... has a minimal element
given by the trivial graph having only isolated vertices. The number

H{F e HF | F' C F}

of all hyperforests contained in a given hyperforest F' € HF with n hyperedges of degrees
dy dn

dy,...,d, is bounded by the number (D) +-+(F) of (ordinary) subgraphs of the primal

graph underlying F'. The poset ‘HJF has thus a Mobius function.
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Proposition 19. The Mébius function pu(F') of a hyperforest F' in the poset HF of all
vertex-labelled hyperforests with finitely many hyperedges is given by

u(F) =[G -2 (10)

Jjz2
where r; denotes the number of hyperedges involving exactly j vertices of F'.

Remark 20. The poset HF is in fact a lattice with wedge F A F» given by the intersection
and join F; V Fy given by the smallest hyperforest containing F} and F3.

Proof of Proposition 19. Remark first that the order relation induced on subforests of a
given hyperforest F' € HF is the product order of all order-relations on hyperedges of F'.
An easy argument (or Proposition 3.8.2 of [5]) shows thus that we have

wFy= 11 we)

e€E(F)

where E(F') denotes the set of hyperedges of F' and where p(e) is the Mébius function
restricted to a hyperedge e € E(F'). This can of course be rewritten as

u(F) = L)

j>2

where Kj; is an abitrary hyperedge on j labelled vertices and where x; is the number of
hyperedges having j vertices of F'.

The proof of Proposition 5 shows that p(K;) coincides with the coefficient of o127 in
U. By Theorem 4 (whose proof needs only the existence but not the exact determination
of the M&bius function), this coefficient equals —t;410(j) = —(j — 2)! where the last
identity follows easily from Formula 2 defining the integers ¢; ;(n) recursively. O]

Remark 21. It would be interesting to have a simple direct proof that u(K,) = —(n —2)!
for a hypergraph K,, € HF reduced to a unique hyperedge involving n > 2 vertices.

Remark 22. Let HT (n) be the finite set of all hypertrees with & hyperedges and n
labelled vertices. Denoting by f(e) the number of vertices involved in a hyperedge e, we
have

Z H (8(e) — 2)! H S?eg(j) = (—1)" e ob 1S (= 1, k) (11)
TeEHT k(n) ec&(T) j=1

where 01 = 77| s; and 0, = [[,_, 5; and where Sy(n, k) denotes the Stirling number of

the first kind defined by

n—1

Y Sim k)t =z(@ - D@ -2)-(z—n+1)=J(@-j) .

J=0
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Indeed, the proof of Proposition 5 shows that a hyperforest with n non-isolated vertices,
k hyperedges and ¢ connected components yields only contributions to the coefficients of
2" 0,0 1 for s = 0,...,k — 1. The coefficient of 2" ‘o, in U is thus obtained
from contributions from all elements in the set H7 (n) of hypertrees with n non-isolated
vertices {1,...,n} and k hyperedges. This coefficient equals (—1)"*'o, 0+ 1S (n — 1,k)
by Formulae 4 and 3. Formulae 8 and 10 show that a hypertree T € H7 ;(n) contributes
a summand given by (=1)* [Tceq (8(e) = 2)! T}, s?eg(j) to the coefficient of 2" ', 0
in U.
Setting s; = --- = s, = 1, Formula 11 specializes to the identity

Z H (#(e) = 2)! = nF718 (n — 1, k)(—1)"+F+!

TEHT i (n) ecE(T)
which is analogous to a Theorem of Husimi (see [2] or [1]) expressing the total number
nF 1Sy (n — 1, k)

of elements in the set H7 (n) of labelled hypertrees with k hyperedges and n vertices in
terms of Stirling numbers of the second kind.

All these results are of course generalizations and variations of Cayley’s theorem cor-
responding to the case k = n — 1 and showing that there are n"~2 labelled trees on n
vertices.

Observe that all these identities can also be deduced for example from Exercice 5.30
in [5] using a well-known map between hypergraphs and ordinary bipartite graphs.

8 Computational aspects and examples

The computation of U(x,0q,09,...) up to o(z") is straightforward using the recurrence
relation 2. For a given fixed numerical value of oy, the following trick reduces memory
requirement and speeds the computation up: Setting

Cn(gl) = (771—1—1(0-17 n>’ ’7n+2(0-1’ n)? KR 7271(0-17 n))
with (o1, n) = Zfzz t; j(n)(—o1)? we have

o0

U(z,01,09,...)=1— Z(cn(al), (Onats oy Oop))x"

n=1

where (a,b) = >, a;b; for two finite-dimensional vectors a,b with coeflicients indexed
by a common finite set I. The coefficients v;(o1,n) of ¢,(01) can be computed from the
coefficients of ¢,_1(o1) by the formula

Yi(o,n) = (i —2 —o1)vi—1(o1,n — 1) + (i — 3)yi—a(o1,n — 1) (12)

with missing coefficients omitted in the case of i =n + 1 or i = 2n.
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The coeflicients of the first vectors ¢;(0), c2(0), c3(0), ... are given by the rows of

1

1 1
2 5 3

6 26 35 15

24 154 340 315 105,

see A112486 of [4].

8.1 The examples U(z,—1,—1,—1,...) and U(z,0,—1,—1,—1,...)

The series
U(x,-1,-1,-1,-1,...) =1

is the generating series of the sequence
S(n)=> ti;n)
.3

enumerating the sums of the triangles 7'(n) defined by the integers t; ;(n). We have

(1+2)U(z,—1,-1,—-1,-1,...)
U(z,0,-2,-2,-2,-2,...)
2U(2,0,-1,-1,—-1,-1,...) — 1

where U(x,0,—1,—1,—1,...) — 1 corresponds to the generating series of the sequence

)

2n
s(n) =Y tio(n)
i=n+1
starting as

1,2,10,82,938,13778, 247210, 5240338, 128149802, 3551246162, . . .,

cf. A112487 of [4], and obtained by summing the integers of the first column of the

triangles T'(1),T(2),.... In particular, we have 2s(n) = S(n — 1) + S(n) or equivalently
2n 2n  2n—1i 2n—22n—2—1
20 o) =D Dt D tiyln—1)
i=nt1 i=n+1 j=0 i=n  j=0

for all n > 2.
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8.2 Examples satisfying differential equations

The recursive definition of the integers t; j(n) implies easily that specializations of the
form

A !
o, = ch:l(n + ak)'z/\n+r7 n > 27

12, (n+by)!

Hk 1(” + ak) 6(/\n+r)z
Hl L (n+ )

(with A # 0 and b; € {—2,—3,—4,—5,...}) lead to differential equations with respect to
z for rational expressions of U(x, —y, 09, 03,04, ...). Such a series U is analytic if B > A.
We illustrate this with the following examples.

or

Op = ;N2 2,

8.2.1 Ul(w,—y, —2*T, =23 4 )
Setting o, = —2"T" for n = 2,3, ... the series f(z) = U(x,—y,09,03,...) — 1 satisfies

formally the differential equation

f=az (7 = @A o+ )

22+r 23+r Z4+r
8.22 U (x, YT T B T @ )
Setting o = — g +b), for n = 2,3,... the series f(z) = U(x, —y,09,03,...) — 1 satisfies
the differential equation

(b—r)b—1—7)f+2(b—71)zf + 22 f"
x22tr
= = +xz(r—b—z2(r+ 1)+ (r—=>0)(r—uy)f

+x2(b+y+z—2r)f +adf”

8.2.3 U (x) -, _6(2>\+r)z7 —6(3>‘+T)z, —6(4)‘+T)Z, o )
Setting 0, = —e™*7)? for n = 2,3, ..., the series
f(z)=U(x,—y,09,03,04,...) — 1

satisfies formally the differential equation

f = e (€(A+T>z+ (y_ <1+ 9 (1 )> 4 1+Aexz Z];) |
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8.2.4 U (z,—y,—(2+a)le® 2 —(34 a)le@ )z —(44 al)e )z )

Setting 0, = —(n +a)le™+7)% forn = 2,3,..., the series f(z) = U (x, —y,09,03,...) — 1
satisfies formally the differential equation

Ie)\z

= 5 A0+a) =) MMy =1 =)+ A+1)(r = A2+ a)e™) f
Az
ﬁ; (MA@ + a) — 2r) + (3% — 4\r(a + 1) + N(a® + a — 1)) f
[E@Az ; I€2)\Z s
+3 (A+ 21 +a) — 3r)e™) [+ Tf”’ + (2 + a)lze®A )
e(2A+7)z e(BA+r)z e(4XA+7)z
8.2.5 U (2,—y, it — s — ot )
Setting o, = —% for n =2,3,... the series f(z) = U (z, —y, 09,03,...) — 1 satisfies

the differential equation

(Ab = 7)(AMb = 1) = 7)f + (A(2b — 1) = 2r) [ + f"
= x%e(”‘”)z +2e™ (A —r) Ay — 1) — 1) = XA +1)e™) f

+ze™ (Ab—1+y) —2r + Ae™) [/ + e f"

Remark 23. The recursion relation 2 gives rise to partial differential equations for gener-
ating series of ¢; ;(n) which are exponential with respect to j and/or n.

8.3 A family of rational examples

Proposition 24. Let 01,09,... be a sequence of compler numbers of the form o, =
(—=1)"P(n) for all n > A where A is some natural integer and where P(s) € Cls| is a
polynomial. Then U(x,01,09,...) is a rational series.

Proof. Let d denote the degree of P. Applying identity 6 of Proposition 6 iteratively
d + 1 times we get a series of the form U(x,d1,09,...,044412,0,0,0,...) which is a
polynomial. O

As an illustration we consider the series U(z,y,1,—1,1,...). Proposition 6 shows
(1 —=a2y)U(z,y,1,-1,1,—-1,...) =U(x,1 +y,1 +9,0,0,...) =1— (1 +y)x .

We have thus U(z,y,1,-1,1,...) =1— 2.

l—zy
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8.4 Coefficients of U(x, 0y, P(2), P(3), P(4),...)

Proposition 25. Let P(s) € C[s] be a polynomial of degree d. There exist constants
g, ..., 0q € C such that

[2"U (2,01, P(2), P(3), P(4),...) = > _ay[z"™|U(2,00,1,1,1,1,1,...)

h=0
for allm > 1 with [x"]U denoting the coefficient of x™ in the series U,

Proof. The proof is by induction on d and holds certainly for d = 0. Setting ;(n) =

Z?Znﬂ t;j(n)(—o1)?, formula (12) implies

0 = —i"y(n+1)+i6 —2 = o)y (n) + (i — 3)y-2(n)
—i%y(n 4+ 1) + (i = D)y (n) + (0 = 2)T i a(n) +
Q10 — 1)7%i—1(n) + Q21 — 2)7i—2(n)

where ()1 and (), are polynomials of degree < d. Fixing n and summing over ¢ we get

on 2n+-2 2n
23 iyin) = ) ityn 1) = Y (Qr 4+ Q2)(i)vi(n) - (13)
i=n41 i=n+2 i=n+1

The right side of 13 equals now

[2"NU (2, 01,2%,3%,4%, .. ) — [2"|U(z, 01, (Q1 + Q2)(2), (Q1 + Q2)(3),...) .

It is thus by induction on d a linear combination of the coefficients of z”, ..., 2"+

in U(x,01,1,1,1,...). This proves the result for U(x,oy,2¢"1 391 ). The general
induction step follows by remarking that all coefficients of strictly positive degree in z of
U(z,01,09,...) are linear in 09,03, .. .. ]

9 Conjectural asymptotics for s(1),s(2),...

Computations with a few thousand values of s(n) suggest the following asymptotic formula

for the integral sequence s(n) = Z?ﬁnﬂ tio(n):

Conjecture 26. There exists a sequence Ay, Ay, ... of rational polynomials A;(z) € Q[x]
with A; of degree 7 such that

n"t "L Ap(1 —log 2 o
s(n) = T Tog 21/ (Z % + o(n ))

k=0

for all m € N.
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The first few polynomials Ag, A, ... are

Ay = 1
11 x
A = — =
! 24 12
265 47 2
g, = 2B AT o

1152 288 ' 288
48703 3649z 107z% 13923

Ay = _
3 114720 13824 T 6012 T 51840
A _ 2333717 2019163z . 1648922 N 2654923  571xt
17 309813120 4976640 | 331776 1244160 2488320
) 38180761 2930931892 1685926312
5 pr—

1337720832 477757440 N 119439360 *
6752203z  170729x*  163879x°

59719680 59719680 209018880

The coefficients By, of the formal power series Y -, Bi(z)t" = log (3 pe, Ak(z)t*) seem
to be simpler and start as

11 x
B, = —_——
! 24 12
1 x
B, = - —=
2 8 8
127 3 2 3
B, — 27 3¢ ot o

2880 16 ' 288 ' 360
B — 1 9x+11x2+x3
Y7 64 32 576 48

221 27x N 4122 N 138123 xt x®
40320 64 576 12960 1440 1260

B5:

Remark 27. The constant 1 —log 2 = .30685281944 . .. appearing in Conjecture 26 seems
also to be related to the index m, such that t,,, o(n) = max;(t;o(n)) with m,, given

tmpo(n) ViU go

asymptotically by 57 Moreover, we have seemingly lim,, . RO (and

I—Tog 2)°
the numbers ¢; o(n), suitably rescaled, should satisfy a central limit Theorem).
10 Modular properties of the sequence s(1),s(2),...

Proposition 28. The series U(x,01,09,...) € F,[[z]] is rational if 01,09, ... is an ulti-
mately periodic sequence of elements in F,.

Proof. Up to addition of a polynomial to U = U(z,01,09,...) we can suppose that
09,03, 04, ... is periodic with period k. We set &; = o; for ¢ > 2 and extend &5, 73, ..., to
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a k—periodic sequence indexed by Z. We suppose first o1 # 0 in [F,,. Using the identity
(—01)P~t =1 and periodicity of the sequence (;);cz, we have

pk—1
U= - Z =D D) DL 3) S IE
=0 a€Z 7=0 BEZ
[e's) pk—1 p—2
SEED I 2D wEAY bwp wreO) B
j=0 a€Z BEL
Since the recurrence relations 2 define the elements t; ;(2),t; ;(3), ... correctly for arbitrary
indices 7, 7 € Z we have
Z Z Livakp,j+B(p—1) (1)
a€Z BEZL
= (1-2) Z Z ti—1+akp,j+[3(p—1)(n - 1)
a€Z BEL
+D D timtrakpj-repe-n (n — 1)
€l BEZ
+(1—3) Z Z ti—2+akp,j+ﬁ(p—1)<n - 1)
€l BEZ
for n > 2. Setting
n) = Z Z ti-i—akp,j-i—ﬂ(p—l)(n - 1)
€l BEZL

for 0 <i < kpand 0 < j < p—1, the elements ¢, ;(n) of I, satisfy the recursion relation 2
with indices considered modulo kp for ¢ and modulo p — 1 for j. Since the kp(p — 1)
elements #; ;(n) of the finite field F, depend affinely on the kp(p — 1) elements #; ;(n — 1)
for n > 2, finiteness of the set (7, ) of indices implies the existence of an integer [ such
that #; ;(n + 1) = t;j(n) for all sufficiently large n and for all possible indices i and j.
This implies easily that the coefficients of U are ultimately periodic and ends the proof
for oy # 0.

The case o; = 0 involves only the integers t;o(n) and their analogues #;(n) with
indices in the finite set {0,...,pk — 1}. Details are similar to the previous case and left
to the reader. O]

The first non-trivial case of Proposition 28 is perhaps given by the generating series
U(z,0,—1,—1,—1,...) with coefficients of U(z,0,—1,—1,...) — 1 given by the sequence

= > tio(n)

1=n-+1

obtained by summing all coefficients in the first column of the triangular arrays

T(1),T(2),....

THE ELECTRONIC JOURNAL OF COMBINATORICS 19(3) (2012), #P7 23



Conjecture 29. There exists a sequence

| 9 0 ) 149 553

= — o g (8% g (8] = —. = — . = —. X = —

@ LTS T T T TR T T 5400 T 2025
1849741 775167119 325214957371

47 68040007 “* T 2857680000° T 1200225600000

of rational numbers such that

00 p—
(1+ 2P Zs x+2anx”_” (mod p)

n=1
for every prime number p.

Conjecture 30. The rational sequence «q, aq, ... has an asymptotic expansion given by

£ )

and converges with limit given by 2e2 = .27067056647322538378799 . . . .

The error term
& k:kfn 2 k
wma- 57 ()

k=1

is given by

_ (=p*t Yok 1—10g2 _om—1
T 1 " log2)s(n + 1) Z +o(n")

where o1 () € Q[z] is a polynomial of degree at most 2k. The first few polynomials are
given by

Y o= 1
B x
Yo = 1
A
Y4 = _E+£+E
x 522 1932  2*  52d
T T2 96 T Ree T2 2m2

11 Integer sequences obtained as weighted sums of
the numbers ¢; ;(n)

The sequence ¢;(x,y) defined by

i—1 n—1
x,y) = Z tii(n)a"y = Z x”Ztm(n)yJ

n,j>0 n=li/2] =0
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is given by ¢i(x,y) =0, ¢2(z,y) = x and by the recursion relation

gi(z,y) =2 ((i =2+ y)gi1 (7, y) + (i = 3)gi—2(,y))

for i > 3. The following table lists the first few non-zero coefficients ¢z(z,y), g3(z, y), . . .
(up to normalizations) and the seemingly corresponding sequences of [4] (which have often
interesting combinatorial interpretations) for a few specializations:

(=3, —2/3)(=1)"1/3 LL,L,1,1,1,... A12
4(—3,1/3)(=1)"1/3 1,4,25,226,2713,40696, ... | A10845
(=2, =3/2)(=1)"1/2 | 1,-1,-3,—5, -7, -9, —11, ...

4(—2,—1/2)(=1)" 1 /2 LLLLL,1,... A12
4(—2,1/2)(=1)™" /2 1,3,13,79,633, 6331, ... A10844
G(—1,—1)(=1) 1,0,—1,—2,—3,—4,—5, ...

%(—1,0)(=1)"1 LL,L,1,1,1,... Al2
(=1, 1)(=1)1 1,2,5,16, 65,326, 1957, . .. A522
4(—1,2)(=1)"1 1,3,11,49,261, 1631, . .. A1339
4(—1,3)(=1)"1 1,4,19,106,685,5056,... | A82030
(1, =2)(—1) LLLL11,... A12
(1, —1) 1,0,1,2,9,44,265,1854,... | AL66
%(1,0) 1,1,3,11,53,309,2119, ... A255
%(1,1) 1,2,7,32,181, 1214, . .. A153
%(1,2) 1,3,13,71, 465, 3539, . ... A261
%(1,3) 1,4,21,134,1001,8544, ... | A1909
%(2,=7/2)(=1)/2 1,5,17,37,65, 101, 145, 197, ... | AB3755
%(2,=5/2)(—1)7/2 1,3,5,7,9,11, . .. A5408
%(2,=3/2)(=1)7/2 LI,1,1,1,1,... Al2
%(2,—1)/2 1,0,2,8,60,544,6040,... | A53’71
%(2,—1/2)/2 1,1,5,29,233,2329, ... A354
%(3,—4/3)(=1)/3 L1L,1,1,1,1,... Al2
%(3,—1)/3 1,0,3,18,189, 2484, . .. A33030

The sequences A255, A153, A261 and A1909 corresponding to ¢;(1,0),¢;(1,1),¢(1,2)
and ¢;(1,3) can seemingly also be obtained by considering the weighted sums

n—j+k—1 .
s= X (" ey
7,n=0

for k =1,2,3 and 4.

The above table contains a few instances of the identities
1\ (=1)°
= (st
K K

2 1
1+(i—2)/<o:qi<m,— Al )

K

and .
(=1)

K
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which hold for x # 0 and for ¢ = 2,3,4,... and which can easily be proven by induc-

tion. (These two examples generalize probably to ¢; (n, —%) % = P\(i,k), A =
1,2,3,..., k#0, i =2,3,4,... for P, a suitable polynomial function of x and i.)
Another identity is given by the family of weighted examples
(—1)
'Kl — 1+ k) tii(n)————
= (CURE -1+ Z S + k—j)!

7,n=0

for all k € N and for all 7 > 2
A few other interesting weighted examples (there are probably many more) are given
by the following formulae

a = 3 (n— )t n)(~2) |

Jn=0
-3\’
b= = (n—1—=j)t;(n)2" (7) :
7,n=20
¢ o= Y tijn)(n—1-H(=1),
7,m=>0
di = (1)) tii(n)(n—1—H)i=1)",
7,n=20
)J
e = 3ty —
7,n=0 ’I’L o 1 o ‘]>
. tio(n)
n>1

Their initial coefficients (with leading zeros omitted) and the seemingly corresponding
sequences of [4] are as follows:

a;]1,0,0,1,1,8,36,229,1625,... | AT57
b; | 1,0,5,24,209, 2120, . .. A120765
¢ | 1,0,3,26,453, 11844, ... A89041
d; | 1,2,7,52,749, 17686, . .. A46662
e; 11,0,0,0,0,0,0,... AT

fi [ 1,2,12,84, 820, 9540, . .. A179495

Most of the proofs are probably easy: The corresponding sections of [4] give information
concerning generating functions which can be applied to differential equations analogous
to those of Section 8.2.

12 Coverings

Coverings and packings are dual notions. We discuss here a few aspects of the theory of
coverings in relation with packings by generic families.
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A (left-)covering with parts Sy, ...,S, of a group G is a vector (g, ..., g,) such that

G = U?Zl ngj-

A covering of a finite group G with N elements by non-empty subsets Sy, ..., S, exists
of course always if n > N.

We are interested in large collections of subsets Sy, ..., S, in a finite group G of order
N such that the sets Sy, ..., S, (or more precisely, suitable translates) cover G and the
number of all coverings depends only on the cardinalities of Sy,...,S, (and of N) for
every family Si,...,S, in the collection.

Three such collections can be described as follows:
Start with a family Si,..., S, which is generic for packings and add N — 37, £(S))
singletons. Coverings of G by such families are “tight”and essentially in one-to-one corre-

spondence (except for a factor (N — Z?Zl ﬂ(Sj)>! accounting for all permutations of the

added singletons) with packings by Si,...,S,.

The second family is obtained by adding N +n—1— 22:1 #(S;) singletons to a family
S1, ..., S, which is generic for packings. The fact that the number of associated coverings
depends only on all involved cardinalities is similar to the proof of Proposition 5 given in
Section 4. The proof needs probably computations with the full Mobius function. I do
not know if there is an efficient way for computing the number of associated coverings or
if there is a nice formula similar to the one assciated to enumerations of packings.

There is a further variation on this theme: Given an arbitrary natural integer a one
can consider adding N +a — Z;L:1 £(S;) singletons to a family Sy, ..., S, which is generic
for packings. For every natural integer a, such a family has the property that the number
of associated coverings depends only on all involved cardinalities. The choices a = 0
corresponding to the first family and a = n — 1 corresponding to the second family
are however natural in this context. Indeed, since the intersection graph of the sets
9181, - -, 9nSy is a hyperforest, the union U?_, g;S; contains at least 2?21 8(S;) — (n—1)
elements. This leaves at most N +n — 1 — 3 7 | 4(S;) missing elements which can be
covered using the additional singletons.

A third rather trivial family is given by considering complements G \ Si,...,G\ S,
where Sy,...,S, is a generic family for packings in G having at least two parts. The
number of coverings of such a family is easy to compute and given by N* — N H?Zl 8(S;).

It would perhaps be interesting to have other (and hopefully more exotic) families of
examples.

Acknowledgements. I thank Pierre de la Harpe for helpful comments and two anony-
mous referees for their careful work and useful remarks.
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