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Abstract

A packing of subsets S1, . . . ,Sn in a group G is an element (g1, . . . , gn) of Gn

such that g1S1, . . . , gnSn are disjoint subsets of G. We give a formula for the number
of packings if the group G is finite and if the subsets S1, . . . ,Sn satisfy a genericity
condition. This formula can be seen as a generalization of the falling factorials which
encode the number of packings in the case where all the sets Si are singletons.

Keywords: Enumerative combinatorics; packings in groups; additive combina-
torics; additive number theory; Stirling number

1 Introduction

A (left-)packing of n non-empty subsets S1, . . . ,Sn in a group G is an element (g1, . . . , gn)
of Gn such that the left-translates g1S1, . . . , gnSn of the sets Si are disjoint. The sets
S1, . . . ,Sn are labelled by their indices. In particular, permuting the elements g1, . . . , gn

of a packing (g1, . . . , gn) ∈ Gn of S1 = · · · = Sn yields a different packing. Moreover, in
the case where S1 for example is of the form S1 = HS1 for some subgroup H of G, a
packing (g1, . . . , gn) gives rise to ](H) distinct packings (g1h, g2, . . . , gn), h ∈ H.

There is an obvious one-to-one map between packings of S1, . . . ,Sn ⊂ G and packings
of a1S1, . . . , anSn ⊂ G for every (a1, . . . , an) ∈ Gn.

This paper deals with enumerative properties of left-packings in the case where G is
a finite group. Using the involutive antiautomorphism g 7−→ g−1, its content can easily
be modified in order to deal with right-packings S1g1, . . . ,Sngn.

In the sequel, we denote by α(G;S1, . . . ,Sn) 6 Nn the number of packings of n non-
empty subsets S1, . . . ,Sn in a finite group G with N elements. Computing α(G;S1, . . . ,Sn)

the electronic journal of combinatorics 19(3) (2012), #P7 1



for arbitrary subsets S1, . . . ,Sn in a finite group G is probably difficult. There are however
easy lower and upper bounds:

Proposition 1. We set a = α(G;S1, . . . ,Sn) and b = α(G;S1, . . . ,Sn,Sn+1) where
S1, . . . ,Sn+1 are (n + 1) non-empty subsets in a finite group G. We have the inequal-
ities (

N − ](Sn+1)
n∑

i=1

](Si)

)
a 6 b 6

(
N −

n∑
i=1

](Si)

)
a .

In particular, we have

b =

(
N −

n∑
i=1

](Si)

)
a (1)

if Sn+1 is a singleton.

Proposition 1 will be proven in Section 3.
A family S1, . . . ,Sn of n non-empty subsets in a group G with identity element e is

generic if for every sequence i1, . . . , ik of k distinct elements in {1, . . . , n} and for every
choice of elements gij ∈ S−1

ij
Sij \ {e}, we have

gi1gi2 · · · gik 6= e .

Otherwise stated, a family S1, . . . ,Sn of subsets in a group G is generic if the only
solution of the equations gi1 · · · gin = e with gij ∈ S−1

ij
Sij for {i1, . . . , in} = {1, . . . , n} is

given by gij = e for all j.
Genericity excludes “accidental intersections”among translates g1S1, . . . , gnSn in the

following sense: Given a collection of translates g1S1, . . . , gnSn, we consider the associated
intersection graph with vertices Si and edges joining Si,Sj if giSi∩gjSj 6= ∅. Genericity of
a family S1, . . . ,Sj in a group G is equivalent to the statement that all intersection graphs
are primal graphs of hyperforests. Intuitively speaking, intersections among translates of
a generic family are always “as small as possible”.

Example 2. Genericity in an additive abelian group G boils down to the fact that the
subset (S1−S1)×· · ·× (Sn−Sn) of the group Gn intersects the subgroup {(x1, . . . , xn) ∈
Gn |

∑n
i=1 xi = 0} of Gn only in the identity element (0, . . . , 0).

A generic family S1, . . . ,Sn of subsets in the additive group Z with prescribed cardinal-
ities si = ](Si) can be constructed by starting with S1 = {0, . . . , s1−1} and by defining Si

recursively as Si = {0, ki, 2ki, . . . , (si−1)ki} where ki is an arbitrary natural integer strictly
larger than

∑i−1
j=1 (max(Sj)−min(Sj)) =

∑i−1
j=1(sj − 1)kj. A generic family is thus for ex-

ample given by the sets S1 = {0, 1},S2 = {0, 2}, . . . ,Si = {0, 2i−1}, . . . ,Sn = {0, 2n−1}.
Reduction of a generic family S1, . . . ,Sn ⊂ Z modulo a natural integer N yields a

generic family of Z/NZ except if N is a divisor of a non-zero integer in the finite set
{
∑n

i=1 (Si − Si)}.
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Remark 3. The terminology “generic family” can be motivated as follows: Given n strictly
positive natural numbers s1, . . . , sn, most uniform random choices of n subsets S1, . . . ,Sn

with ](Si) = si (among all
(

N
si

)
possible subsets) in a finite group G of order N should

yield a generic family if N is large compared to
∑n

k=2 k!τk with τ2, . . . , τn defined by∑n
k=0 τkt

k =
∏n

j=1 (1 + sj(sj − 1)t). Indeed, the number k!τk is an upper bound on the
number of elements in the set Ek containing all products of the form gi1 · · · gik with
gij ∈ S−1

ij
Sij \ {e} and i1, . . . , ik given by k > 2 distinct elements of {1, . . . , n}. Under the

(naive but hopefully correct) assumption that the elements of Ek are uniformly distributed
in G, the probability for non-genericity of S1, . . . ,Sn is at most 1

N

∑n
k=2 k!κk. Observe also

the trivial inequalities
∑n

k=2 k!κk < n!
∑n

k=0 κk = n!
∏n

j=1(1 + sj(sj − 1)) 6 n!
∏n

j=1 s2
j .

The aim of this paper is to describe a universal formula for the number of packings
for a generic family of subsets S1, . . . ,Sn in a finite group G. The number of associated
packings depends then only on the cardinalities of G and S1, . . . ,Sn. Moreover for fixed
cardinalities of S1, . . . ,Sn, the dependency on the cardinality of G is polynomial of degree
n. A trivial example is the generic family given by n subsets reduced to singletons. The
associated number of packings in a finite group with N elements is then easily seen to be
given by the polynomial n!

(
N
n

)
= N(N − 1) · · · (N − n + 1) ∈ Z[N ] with coefficients given

by Stirling numbers of the first kind. This polynomial is also called a falling factorial and
denoted by Nn. Using the formulae of our paper, it is possible to define the falling factorial
Nλ associated to a partition λ = λ1, λ2, . . . by counting packings of generic families with
λ1 subsets having ν1, ν2, . . . , νλ1 elements where νi = {j |λj > i} is the i−th part of the
transposed partition ν = λt of λ. The map λ 7−→ Nλ is however perhaps not exceedingly
interesting. On one hand, it is not into since Nλ = N for every partition λ of the form
1, 1, 1, . . . . On the other hand, fixing the content

∑
j λj of the partition λ, our formulae

show that the coefficients of Nλ depend linearly on the elementary symmetric functions
σ2 =

∑
i<j νiνj, σ3 =

∑
i<j<k νiνjνk, . . . , σλ1 = ν1ν2 · · · νλ1 of the partition ν = λt.

The study of generic packings in groups is, as far as I am aware, a new addition
to the already large set of classical notions of packings. Well-known and well-studied
examples are lattice-packings in Euclidean spaces or more generally sphere-packings in
metric spaces. Error-correcting codes corresponding to packings of spheres (with respect
to the Hamming distance given by the number of distinct coordinates) into Fd

q are discrete
analogues. The associated theories have however a different flavour since one tries to pack
a huge (perhaps infinite) number of identical copies of spheres as tightly as possible.

Subsets in generic families are in general all distinct: Repetition destroys genericity
except in the case of singletons. Moreover, packings of generic sets have typically very
small densities. Generic families are mainly interesting for enumerative properties of the
corresponding packings.

This paper is organized as follows: Section 2 contains the main result, Theorem 4.
It expresses the number of packings of a generic family S1, . . . ,Sn in a finite group in
terms of a formal power series U = U(x, σ1, σ2, . . . ) ∈ A[[x]] with coefficients in the ring
A = Z[σ1, σ2, . . . ] of polynomials in elementary symmetric functions σ1 =

∑n
i=1 ](Si), σ2 =∑

i<j ](Si)](Sj), . . . of ](S1), . . . , ](Sn). The series U is given explicitly by Formula 4 and
involves combinatorial integers ti,j(n) (defined recursively by Formula 2) which extend
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Stirling numbers of the first kind. The first few coefficients of U are given by

1− σ2x− ((1− σ1)σ3 + σ4)x
2

−((2− 3σ1 + σ2
1)σ4 + (5− 3σ1)σ5 + 3σ6)x

3

−((6− 11σ1 + 6σ2
1 − σ3

1)σ5 + (26− 26σ1 + 6σ2
2)σ6

+(35− 15σ1)σ7 + 15σ8)x
4 + . . .

with omitted terms divisible by x5.
Section 3 discusses the combinatorics of packings associated to an arbitrary (not nec-

essarily generic) family S1, . . . ,Sn of subsets in a group.
In Section 4, we specialize the results of Section 3 by applying them to generic packings.

The underlying combinatorics are then simpler and yield a proof of Proposition 5, a crucial
ingredient for establishing the main result.

Sections 5 and 6 contain the proof of Propositions 7 and 8 thus completing the proof
of Theorem 4.

Section 7 uses Theorem 4 and its proof for computing the Möbius function of the poset
of finite labelled hyperforests. An anonymous referee pointed out that this computation,
a byproduct arising in the proof of our main result, might be of independent interest.
Remark 22 states already known formulae for the enumeration of (weighted) labelled
hypertrees.

Section 8 deals with computational aspects and examples.
Section 9 contains a conjectural asymptotic formula for the coefficients of the series

U(x, 0,−1,−1,−1, . . . ).
Section 10 describes a few experimental observations concerning arithmetical proper-

ties of the coefficients of U(x, 0,−1,−1,−1, . . . ).
Section 11 is also experimental and describes a few integer sequences related to the

numbers ti,j(n) appearing, up to signs, as coefficients of the series U .
The paper ends with Section 12 discussing a few aspects of coverings which can be

seen as dual objects of packings.

2 Main result

For n = 1, 2, . . . , we consider the following set ti,j(n) of strictly positive integers indexed
by i ∈ {n + 1, . . . , 2n} and j ∈ {0, 1, . . . , 2n − i}: We set t2,0(1) = 1 and define ti,j(n)
recursively by the formula

ti,j(n) = (i− 2)ti−1,j(n− 1) + ti−1,j−1(n− 1) + (i− 3)ti−2,j(n− 1) (2)

for n > 2. We set ti,j(n) = 0 in all other cases, i.e. if i 6 n or j < 0 or i + j > 2n.
Given a natural integer n > 1, the set of all

(
n+1

2

)
non-zero integers ti,j(n) can be

organized into a triangular array T (n) with rows indexed by {n+1, . . . , 2n} and columns
indexed by {0, . . . , n − 1} such that T (n) determines T (n + 1) recursively by Formula 2
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reminiscent of the recurrence relation
(

n
k

)
=
(

n−1
k−1

)
+
(

n−1
k

)
for binomial coefficients. The

first six triangular arrays T (1), . . . , T (6) are

1
1 1
1

2 3 1
5 3
3

6 11 6 1
26 26 6
35 15
15

24 50 35 10 1
154 200 80 10
340 255 45
315 105
105

120 274 225 85 15 1
1044 1604 855 190 15
3304 3325 1050 105
4900 2940 420
3465 945
945

Observe that the first row of T (1), T (2), . . . coincides, up to signs, with Stirling numbers
of the first kind. More precisely, we have

n−1∑
k=0

tn+1,k(n)xk+1 =
n−1∏
j=0

(x + j) = (−1)n

n∑
j=1

S1(n, j)(−x)j . (3)

This is of course an easy consequence of the recurrence relation 2. The integers ti,j(n)
seem to be related to a few interesting integer-sequences, see Section 11 for examples.

We consider the formal power series U ∈ A[[x]] with coefficients in the ring A =
Z[σ1, σ2, σ3, . . . ] of integral polynomials in σ1, σ2, . . . defined by

U(x, σ1, σ2, . . . ) = 1−
∞∑

n=1

xn

2n∑
i=n+1

σi

2n−i∑
j=0

ti,j(n)(−σ1)
j . (4)

Theorem 4. The number of packings of a generic family S1, . . . ,Sn of n non-empty
subsets in a finite group G with N elements equals

NnU(N−1, σ1, σ2, . . . ) (5)

for U given by Formula 4 and for σ1, σ2, . . . defined by

∞∑
j=0

σjt
j =

n∏
k=1

(1 + ](Sk)t) .

Remark that Formula 5 of Theorem 4 is polynomial of degree n in N for fixed complex
numbers σ1, σ2, . . . such that σn+1 = σn+2 = · · · = 0. Indeed, the coefficient of xm in
U(x, σ1, σ2, . . . ) belongs to the ideal generated by σm+1, σm+2, . . . , σ2m of Z[σ1, σ2, . . . ]
and is thus zero for m > n if σn+1 = σn+2 = · · · = 0.

The ingredients for proving Theorem 4 are the following four results:
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Proposition 5. There exists a series U ∈ Z[[x, σ1, σ2, . . . ]] such that Formula 5 with
σ1, σ2, . . . defined as in Theorem 4 gives the number of packings for every generic family
of n non-empty subsets in a finite group with N elements.

Moreover, the coefficient of a non-constant monomial xm in this series U is of degree
at most 2m with respect to the grading deg σi = i and belongs to the ideal of Z[σ1, σ2, . . . ]
generated by σm+1, σm+2, . . . , σ2m.

The proof of Proposition 5 relies on combinatorial properties of intersection graphs
encoding non-trivial intersections among subsets g1S1, . . . , gnSn of a group G. These
properties are encoded by the poset HF(n) of hyperforests with n labelled vertices and
order relation given by F ′ 6 F if every hyperedge of F ′ is contained in some hyperedge
of F . The poset HF(n) is a lattice with minimal element the trivial graph defined by n
isolated labelled vertices and with maximal element the hypertree consisting of a unique
hyperedge containing all n labelled vertices. Our proof of Proposition 5 uses Möbius
inversion in HF (n). It needs only the existence (which is obvious) of a Möbius function
on the poset HF(n). The explicit description of U given by Theorem 4 allows however a
posteriori the computation (given by Proposition 19) of the Möbius function of HF(n).
Remark that the poset HT n of hypertrees with n labelled vertices appearing for example
in [3] is a subposet of the order dual of HF(n) obtained by restricting the inverse order
of HF(n) to the subset of all hypertrees in HF(n).

Proposition 6. A series U as in Proposition 5 satisfies the functional equation

(1− σ1x)U(x, σ1, σ2, σ3, . . . ) = U(x, σ̃1, σ̃2, σ̃3, . . . ) (6)

where σ̃i = σi−1 + σi, using the convention σ0 = 1.

Proof. Equation 6 corresponds to equation 1 if σ1, σ2, . . . are elementary symmetric func-
tions of a finite set of natural integers. The general case follows by remarking that the
algebra of symmetric polynomials is a free polynomial algebra on the set of elementary
symmetric polynomials.

Proposition 7. The series U defined by Formula 4 satisfies the functional equation 6.

Proposition 8. The functional equation 6 has at most one solution of the form U =
1+. . . such that the coefficient of a nonconstant monomial xn is of degree at most 2n (with
respect to the grading deg σi = i) and belongs to the ideal generated by σn+1, σn+2, . . . , σ2n

in Z[σ1, σ2, . . . ].

Proof of Theorem 4. Proposition 5 ensures the existence of a series enumerating packings
of generic families in finite groups. This series coincides with the series given by Formula 4
by Propositions 6, 7 and 8.

Remark 9. Iterating identity 6 n times we have

U(x, σ1, σ2, . . . )
n−1∏
j=0

(1− (σ1 + j)x) = U(x, σ̃1, σ̃2, σ̃3, . . . )
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where

σ̃k =

min(k,n)∑
j=0

(
n

j

)
σk−j .

A particular case is the specialization

U

(
x,

(
n

1

)
,

(
n

2

)
,

(
n

3

)
, . . .

)
=

n−1∏
j=1

(1− jx)

associated to generic families S1, . . . ,Sn given by n singletons.

Remark 10. It is widespread lore that interesting combinatorial identities have q−ana-
logues generally encoding an additional feature of the involved combinatorial objects. I
do not know if the integers ti,j(n) or the series U have such a q−analogue with interesting
properties.

3 Combinatorics of packings for arbitrary families

S1, . . . ,Sn of subsets in a group G

3.1 Proof of Proposition 1

Proof of Proposition 1. A packing of S1, . . . ,Sn given by (g1, . . . , gn) ∈ Gn extends to a
packing (g1, . . . , gn, gn+1) ∈ Gn+1 of S1, . . . ,Sn+1 if and only if gn+1 ∈ G\(∪n

i=1giSi(Sn+1)
−1)

where S−1 = {g−1 | g ∈ S}. Since giSi(Sn+1)
−1 contains at most ](Sn+1)](Si) elements,

we have the first inequality.
Considering a fixed element h ∈ Sn+1 we have the inequality

]
(
∪n

i=1giSi(Sn+1)
−1
)

> ]
(
∪n

i=1giSih
−1
)

= ] (∪n
i=1giSi) .

For a packing (g1, . . . , gn), we have

] (∪n
i=1giSi) =

n∑
i=1

](Si)

showing the second inequality.
Both inequalities are sharp if ](Sn+1) = 1. This proves equality 1.

3.2 Intersection graphs

We fix a group G and a family S1, . . . ,Sn of n non-empty subsets in G. Given an element
g = (g1, . . . , gn) of Gn, we consider the corresponding intersection graph I(g) with vertices
1, . . . , n and edges {i, j} between distinct vertices i, j if giSi ∩ gjSj 6= ∅ in G. Observe
that g = (g1, . . . , gn) in Gn defines a packing if and only if I(g) is the trivial graph with
n isolated vertices.
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Given a finite simple graph Γ with vertices 1, . . . , n and edges E(Γ), we consider the
set

RΓ = {(g1, . . . , gn) ∈ Gn | giSi ∩ gjSj 6= ∅ for every {i, j} ∈ E(Γ)} .

An element g in Gn belongs thus to RΓ if and only if Γ is a subgraph of the intersection
graph I(g).

We denote by EΓ the set of equivalence classes of RΓ defined by (g1, . . . , gn) ∼
(h1, . . . , hn) if gih

−1
i = gjh

−1
j for every edge {i, j} of Γ. Two elements g = (g1, . . . , gn)

and h = (h1, . . . , hn) of RΓ represent thus the same equivalence class of EΓ if and only if
the map i 7−→ gih

−1
i is constant on (vertices of) connected components.

Proposition 11. Suppose that G is a finite group with N elements. We have then

](RΓ) = ](EΓ)N c(Γ)

where c(Γ) denotes the number of connected components of Γ.

Proof. We set c = c(Γ) and we denote the connected components of Γ by Γ1, . . . , Γc. We
get a free action of Gc on RΓ by considering

(a1, . . . , ac) · (g1, . . . , gn) 7−→ (a−1
γ(1)g1, . . . , a

−1
γ(n)gn)

where γ(i) ∈ {1, . . . , c} is defined by the inclusion of the vertex i in the γ(i)−th connected
component Γγ(i) of Γ. Orbits in RΓ of this action are thus in one-to-one correspondence
with equivalence classes of EΓ.

Remark 12. The set EΓ associated to a graph Γ with c connected components contains
at most (maxi ](Si))

2n−2c distinct equivalence classes. Indeed, we have R(Γ′) ⊂ R(Γ) if
Γ is a subgraph of Γ′. Replacing Γ by a spanning forest, we can thus assume that Γ is a
forest. The equivalence class of an element g ∈ R(Γ) is now determined by the relative
positions of giSi and gjSj for all n − c edges {i, j} of the forest Γ and the number of
different relative positions of giSi and gjSj is at most ](Si)](Sj) 6 (maxi ](Si))

2.

3.3 Möbius inversion

Proposition 13. The number α = α(G;S1, . . . ,Sn) of packings of a family S1, . . . ,Sn in
a finite group G with N elements is given by

α =
∑
Γ∈B

(−1)e(Γ)](EΓ)N c(Γ)

where the sum is over the Boolean poset B of all 2(n
2) simple graphs with vertices 1, . . . , n

and where e(Γ) = ](E(Γ)), respectively c(Γ), denotes the number of edges, respectively
connected components, of a graph Γ ∈ B.
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Proof. Proposition 11 shows that it is enough to prove the equality

α =
∑
Γ∈B

(−1)e(Γ)](RΓ) .

An element g = (g1, . . . , gn) ∈ Gn defines a packing if and only if its intersection graph
I(g) is trivial. It provides thus a contribution of 1 to α in this case since it is only involved
as an element of RΓ if Γ is the trivial graph with isolated vertices 1, . . . , n and no edges.

An element g = (g1, . . . , gn) ∈ Gn with non-trivial intersection graph I(g) containing
e > 1 edges yields a contribution of 0 to α since contributions coming from the 2e−1

subgraphs of I(g) containing an even number of edges cancel out with contributions
associated to the 2e−1 subgraphs having an odd number of edges.

Remark 14. Introducing
αΓ = {g ∈ Gn | I(g) = Γ} ,

we have α = αT where T denotes the trivial graph with n isolated vertices 1, . . . , n. Our
proof of Proposition 13 computes α by applying Möbius inversion (more precisely, its dual
form, see Proposition 3.7.2 of [5])

α =
∑
Γ∈B

µ(Γ)](RΓ) (7)

(with µ(Γ) = (−1)e(Γ) denoting the Möbius function of the Boolean lattice B of all simple
graphs on 1, . . . , n) to the numbers

](RΓ) =
∑
Γ′⊃Γ

αΓ′

given by Proposition 11.

4 Proof of Proposition 5: Combinatorics of generic

packings

A hypergraph consists of a set V of vertices and of a set of hyperedges where a hyperedge
is a subset of V containing at least 2 vertices. Two vertices are adjacent if they belong
to a common hyperedge. A path is a sequence of consecutively adjacent vertices. A
hypergraph is connected if any pair of vertices can be joined by a path. A cycle is a
closed path involving only distinct vertices. A hyperforest is a hypergraph with distinct
hyperedges intersecting in at most a common vertex and with every cycle contained in a
hyperedge. A hypertree is a connected hyperforest.

The primal graph of a hypergraph with vertices V is the ordinary graph with vertices
V and ordinary edges encoding adjacency in the hypergraph. An ordinary graph Γ is the
primal graph of a hyperforest if and only if every cycle and every edge of Γ is contained
in a unique maximal complete subgraph. Maximal complete subgraphs of such a graph Γ
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are in one-to-one correspondence with hyperedges of the associated hyperforest. Primal
graphs of hyperforests are often called block-graphs or chordal and diamond-free graphs.
In the sequel, we identify generally hyperforests with their primal graphs.

Lemma 15. The intersection giSi ∩ gjSj associated to an edge {i, j} in an intersection
graph I(g) is reduced to a unique element if S1, . . . ,Sn is a generic family of G.

Proof. Otherwise there exist two distinct elements ai, bi ∈ Sj and two distinct elements
aj, bj ∈ Sj such that giai = gjbj and gjaj = gibi. This shows

giaib
−1
j g−1

j gjajb
−1
i g−1

i = e

and implies the relation b−1
i aib

−1
j aj = e with b−1

i ai ∈ S−1
i Si \ {e} and b−1

j aj ∈ S−1
j Sj \ {e}

in contradiction with genericity of the family S1, . . . ,Sn.

Proposition 16. Intersection graphs of generic families are (primal graphs of) hyper-
forests.

Proof. Consider k cyclically consecutive vertices i1, i2, . . . , ik−1, ik, ik+1 = i1 in an inter-
section graph I(g) of a generic family S1, . . . ,Sn ⊂ G. Lemma 15 implies the existence
of unique elements aij ∈ Sij and bij+1

∈ Sij+1
such that gijaij = gij+1

bij+1
for every edge

{ij, ij+1} of C. We get thus the relation

gi1ai1(gi2bi2)
−1gi2ai2(gi3bi3)

−1 · · · gikaik(gi1bi1)
−1 = e

which is conjugate to the relation(
b−1
i1

ai1

) (
b−1
i2

ai2

)
· · ·
(
b−1
ik

aik

)
= e .

Genericity of the family S1, . . . ,Sn implies aij = bij for all j. The sets gijSij intersect
thus in the common element gi1ai1 = · · · = gikaik (which is the unique common element of
pairwise distinct sets in {gi1Si1 , . . . , gikSik} by Lemma 15). All elements i1, . . . , ik of I(g)
are thus adjacent vertices contained in a common maximal complete subgraph of I(g).

Suppose now that an edge {i, j} belongs to two distinct maximal complete subgraphs
K and K ′ of I(g). Maximality of K and K ′ implies the existence of vertices k ∈ K \K ′

and k′ ∈ K ′ \ K. Thus we get triplets of mutually adjacent vertices i, j, k ⊂ K and
i, j, k′ ⊂ K ′. Lemma 15 shows that giSi∩ gjSj is reduced to a unique element a. We have
thus giSi ∩ gjSj ∩ gkSk = {a} ⊂ K. Similarly, we get a ∈ gk′Sk′ . This implies k′ ∈ K in
contradiction with k′ ∈ K ′ \K.

Distinct maximal complete subgraphs of I(g) intersect thus at most in a common
vertex and every cycle of I(g) is contained in a unique maximal complete subgraph of
I(g). This implies that I(g) is (the primal graph of) a hyperforest.

For the sake of concision, we identify in the sequel such an intersection graph I(g)
with the corresponding hyperforest.

Applying the proof of Proposition 16 to a Hamiltonian cycle visiting all vertices of a
hyperedge {i1, . . . , ik} in an intersection graph I(g) associated to a generic family we get
the following result:
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Proposition 17. Given a hyperedge {i1, . . . , ik} in the intersection graph I(g) of a generic
family S1, . . . ,Sn, there exists a unique element a ∈ G such that gilSil ∩ gimSim = {a} for
every pair of distinct vertices il, im in {i1, . . . , ik}.

Proposition 18. Let Γ be a hyperforest with vertices 1, . . . , n indexing the subsets Sj of
a generic family in a group G. Defining the equivalence relation EF of a hyperforest F as
in Section 3.2, we have

](EF ) =
n∏

j=1

(](Sj))
degF (j)

with degF (j) denoting the degree of j defined as the number of distinct hyperedges con-
taining the vertex j.

Proof. Let e = {i1, . . . , ik} be a hyperedge of an intersection graph I(g). Since
⋂k

j=1 gijSij

is reduced to a unique element ae ∈ G, we get a map µe : {i1, . . . , ik} −→ G such that
µe(ij) ∈ Sij by setting µe(ij) = g−1

ij
ae. This map depends only on the equivalence class in

EI(g) of I(g) and the set of all such maps determines the equivalence class of I(g) in EF

for any hyperforest F contained in I(g). Since all cycles of a hyperforest are contained in
hyperedges, all possible choices of the maps µe associated to hyperedges of F correspond
to equivalence classes of EF . Different choices yield inequivalent classes. The set EF of all

equivalence classes is thus in one-to-one correspondence with the set
∏n

j=1 S
degF (j)
j .

Proof of Proposition 5. Setting si = ](Si), Proposition 18 can be rewritten as the identity

](EF ) =
∏
j=1

s
degF (j)
j

for every hyperforest F with vertices {1, . . . , n}. We denote by HF(n) the set of all
hyperforests with vertices {1, . . . , n}. The set HF(n) is partially ordered by inclusion by
setting F ′ 6 F for F ′, F ∈ HF(n) if every hyperedge of F ′ is contained in some hyperedge
of F . Equivalently, F ′ 6 F if adjacent vertices of F ′ are also always adjacent in F . The
primal graph underlying F ′ is thus a subgraph of the primal graph underlying F if F ′ 6 F .
Denoting by µ the Möbius function of the poset HF(n), the number α = α(G;S1, . . . ,Sn)
of packings of a generic family S1, . . . ,Sn in a group G of order N is given by

α =
∑

F∈HF(n)

µ(F )N c(F )

n∏
j=1

s
degF (j)
j (8)

(with c(F ) denoting the number of connected components of a hyperforest F ). Since the
Möbius function of HF(n+1) restricts to the Möbius function of HF(n), the summation
over HF(n) in Formula 8 can be extended (after setting si = 0 for i > n and using the
convention 00 = 1) over the poset HF of all hyperforests with vertices N \ {0} such that
almost all vertices are isolated (only finitely many vertices have strictly positive degree).

Summing over all possible labellings of an unlabelled hyperforest and remarking that
the Möbius function is invariant under permutations of labels shows that α is a symmetric
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function of s1, . . . , sn. This expresses α as a polynomial in σ1 =
∑

si, σ2 =
∑

i<j sisj, . . .
with contributions coming from finite unlabelled hyperforests.

More precisely, contributions to the coefficient Nn−m of α given by Formula 8 come
from hyperforests with vertices {1, . . . , n} consisting of c > 0 non-trivial hypertrees in-
volving m + c 6 n vertices of strictly positive degrees and n − m − c isolated vertices.
The equalities sn+1 = sn+2 = · · · = 0 imply that the summation over HF(n) in 8 can be
extended to a summation over all hyperforests in HF(l) for an arbitrary integer l > n
since the vertices n + 1, n + 2, . . . have to be isolated vertices of a hyperforest yielding
a non-zero contribution to α. Observe now that we have c 6 m since every non-trivial
hypertree contains at least two vertices. For a fixed value of m, a labelled hyperforest
with non-zero contribution to α has thus at most 2m non-isolated vertices (with equal-
ity achieved by a hyperforest consisting of m isolated edges joining 2m distinct vertices).
Summing over unlabelled hyperforests and considering the associated symmetric functions
σ1, σ2, . . . in s1, s2, . . . (obtained by a summation over all possible distinct labellings of
the underlying unlabelled hypertrees) we see that the contribution associated to an unla-
belled hyperforest with m + c 6 2m non-isolated vertices is in the ideal of Z[x, σ1, σ2, . . . ]
generated by σm+c, σm+c+1, σm+c+2, . . . . The degree in σ1, σ2, . . . (with respect to the
grading deg(σi) = i) of such a contribution is maximal and equals 2m for ordinary unla-
belled forests having m ordinary edges. Indeed, let F be a hyperforest with c connected
components and m+ c vertices of strictly positive degrees. Replacing a hyperedge E of F
involving k > 3 vertices by a tree consisting of k−1 ordinary edges connecting all vertices
of E increases the degree-sum of all vertices by k − 2 > 0 and yields a contribution of
higher degree. Contributions of maximal degree correspond thus to ordinary forests on
m + c vertices with c connected components. Such a forest has m edges and yields a
contribution of degree 2m with respect to the grading deg(σi) = i. This ends the proof
of Proposition 5.

5 Proof of Proposition 7

Proof of Proposition 7. We have to show that

U = 1−
∞∑

n=1

xn

2n∑
i=n+1

σi

2n−i∑
j=0

ti,j(n)(−σ1)
j

defined by Formula 4 satisfies the functional equation

(1− σ1x)U(x, σ1, σ2, σ3, . . . ) = U(x, 1 + σ1, σ1 + σ2, σ2 + σ3, . . . ) ,

see 6. Both sides of 6 have the same constant term 1 and involve only non-constant
monomials of the form σiσ

j
1x

n. It is thus enough to check that coefficients of both sides
of 6 agree for such monomials. This is easily checked for the coefficient of x. For a general
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monomial of the form σiσ
j
1x

n, equation 6 amounts to the identity

−
(
(−1)jti,j(n)− (−1)j−1ti,j−1(n− 1)

)
= −

(
2n−i∑
k=j

ti,k(n)(−1)k

(
k

j

)
+

2n−i−1∑
k=j

ti+1,k(n)(−1)k

(
k

j

))

or equivalently to

ti,j(n) + ti,j−1(n− 1) =
∑

k

(−1)k+j

(
k

j

)
(ti,k(n) + ti+1,k(n)) (9)

where
∑

k f(k) =
∑

k∈Z f(k) since
(

k
j

)
(ti,k(n) + ti+1,k(n)) = 0 for k < j or k > 2n − i.

We prove 9 by induction on n. A straightforward computation shows that it holds n = 2.
Applying the recursion relation 2 which holds for all i, j ∈ Z if n > 2 to the right side

R =
∑

k

(−1)k+j

(
k

j

)
(ti,k(n) + ti+1,k(n))

of 9 we get

R =
∑

k

(−1)k+j

(
k

j

)(
(i− 2)ti−1,k(n− 1) + ti−1,k−1(n− 1) + (i− 3)ti−2,k(n− 1)

+(i− 1)ti,k(n− 1) + ti,k−1(n− 1) + (i− 2)ti−1,k(n− 1)
)

= L + C

where

L = (i− 2)
∑

k

(−1)k+j

(
k

j

)
(ti−1,k(n− 1) + ti,k(n− 1))

+
∑

k

(−1)k+j−1

(
k

j − 1

)
(ti−1,k(n− 1) + ti,k(n− 1))

+(i− 3)
∑

k

(−1)k+j

(
k

j

)
(ti−2,k(n− 1) + ti−1,k(n− 1))
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and

C = −
∑

k

(−1)k+j−1

(
k

j − 1

)
(ti−1,k(n− 1) + ti,k(n− 1))

+
∑

k

(−1)k+j

(
k

j

)
(ti−1,k−1(n− 1) + ti,k−1(n− 1))

+
∑

k

(−1)k+j

(
k

j

)
(ti,k(n− 1) + ti−1,k(n− 1))

=
∑

k

(−1)k+j

(
k

j − 1

)
(ti−1,k(n− 1) + ti,k(n− 1))

−
∑

k

(−1)k+j

(
k + 1

j

)
(ti−1,k(n− 1) + ti,k(n− 1))

+
∑

k

(−1)k+j

(
k

j

)
(ti−1,k(n− 1) + ti,k(n− 1))

=
∑

k

(−1)k+j

((
k

j − 1

)
−
(

k + 1

j

)
+

(
k

j

))
(ti−1,k(n− 1) + ti,k(n− 1))

which shows C = 0 since
(

k+1
j

)
=
(

k
j−1

)
+
(

k
j

)
.

Using induction on n and applying 9 we get

L = (i− 2)(ti−1,j(n− 1) + ti−1,j−1(n− 2))

+(ti−1,j−1(n− 1) + ti−1,j−2(n− 2))

+(i− 3)(ti−2,j(n− 1) + ti−2,j−1(n− 2))

We have thus

L = (i− 2)ti−1,j(n− 1) + ti−1,j−1(n− 1) + (i− 3)ti−2,j(n− 1)

+(i− 2)ti−1,j−1(n− 2) + ti−1,j−2(n− 2) + (i− 3)ti−2,j−1(n− 2)

and applying 2 we get
L = ti,j(n) + ti,j−1(n− 1)

which is the left side of 9.

6 Proof of Proposition 8

Proof of Proposition 8. Assuming the existence of two distinct series U1, U2 fulfilling the
requirements of Proposition 8, the difference D = U1 − U2 =

∑∞
n=1 Dnx

n satisfies all
hypotheses except for the value of its constant term. Since U1 and U2 are different,
there exists a minimal natural integer n > 1 such that Dn 6= 0. Let m > n + 1 be the
smallest integer such that Dn =

∑2n
k=m σkCn,k with Cn,k ∈ C[σ1, σ2, . . . ] and Cn,m 6= 0.
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Since Dn is of degree 6 2n with respect to the grading given by deg(σi) = i, we have
Cn,m ∈ C[σ1, . . . , σ2n−m] ⊂ C[σ1, . . . , σn−1].

Equation 6 and minimality of n imply

Dn(1 + σ1, σ1 + σ2, σ2 + σ3, . . . ) = Dn(σ1, σ2, σ3, . . . )

or equivalently

2n∑
k=m

(σk−1 + σk)Cn,k(1 + σ1, σ1 + σ2, σ2 + σ3, . . . ) =
2n∑

k=m

σkCn,k(σ1, σ2, σ3, . . . ) .

Comparison of both sides modulo the ideal I generated by σm, σm+1, σm+2, . . . gives

Cn,m(1 + σ1, σ1 + σ2, σ2 + σ3, . . . ) = 0 .

Algebraic independency of the symmetric functions σ1, σ2, . . . shows thus Cn,m = 0 in
contradiction with our assumption.

7 The Möbius function for the poset of finite labelled

hyperforests

Let P be a poset (partially ordered set) such that P has a unique minimal element m and
{y ∈ P | y < x} is finite for all x ∈ P . This allows the recursive definition of a Möbius
function µ by setting µ(m) = 1 and µ(x) = −

∑
y<x µ(y) for all x > m. Given a function

f : P −→ C with finite support, the value f(m) can then be recovered from the function
g(x) =

∑
y>x f(y) using Möbius inversion

f(m) =
∑
x∈P

µ(x)g(x) ,

see Proposition 3.7.2 of [5] (we use only the values µ(m, x) of the Möbius function and
write µ(x) = µ(m, x) in analogy with the usual, well-known number-theoretic Möbius
function of natural integers). Möbius inversion was the main ingredient in the proof of
Proposition 5. The poset HF of hyperforests consisting of all hyperforests (ordered by
inclusion) with finitely many hyperedges and vertices 1, 2, 3, 4, . . . has a minimal element
given by the trivial graph having only isolated vertices. The number

]{F ′ ∈ HF | F ′ ⊂ F}

of all hyperforests contained in a given hyperforest F ∈ HF with n hyperedges of degrees

d1, . . . , dn is bounded by the number 2(d1
2 )+···+(dn

2 ) of (ordinary) subgraphs of the primal
graph underlying F . The poset HF has thus a Möbius function.
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Proposition 19. The Möbius function µ(F ) of a hyperforest F in the poset HF of all
vertex-labelled hyperforests with finitely many hyperedges is given by

µ(F ) =
∏
j>2

(−(j − 2)!)κj (10)

where κj denotes the number of hyperedges involving exactly j vertices of F .

Remark 20. The poset HF is in fact a lattice with wedge F1∧F2 given by the intersection
and join F1 ∨ F2 given by the smallest hyperforest containing F1 and F2.

Proof of Proposition 19. Remark first that the order relation induced on subforests of a
given hyperforest F ∈ HF is the product order of all order-relations on hyperedges of F .
An easy argument (or Proposition 3.8.2 of [5]) shows thus that we have

µ(F ) =
∏

e∈E(F )

µ(e)

where E(F ) denotes the set of hyperedges of F and where µ(e) is the Möbius function
restricted to a hyperedge e ∈ E(F ). This can of course be rewritten as

µ(F ) =
∏
j>2

µ(Kj)
κj

where Kj is an abitrary hyperedge on j labelled vertices and where κj is the number of
hyperedges having j vertices of F .

The proof of Proposition 5 shows that µ(Kj) coincides with the coefficient of σj+1x
j in

U . By Theorem 4 (whose proof needs only the existence but not the exact determination
of the Möbius function), this coefficient equals −tj+1,0(j) = −(j − 2)! where the last
identity follows easily from Formula 2 defining the integers ti,j(n) recursively.

Remark 21. It would be interesting to have a simple direct proof that µ(Kn) = −(n− 2)!
for a hypergraph Kn ∈ HF reduced to a unique hyperedge involving n > 2 vertices.

Remark 22. Let HT k(n) be the finite set of all hypertrees with k hyperedges and n
labelled vertices. Denoting by ](e) the number of vertices involved in a hyperedge e, we
have ∑

T∈HT k(n)

∏
e∈E(T )

(](e)− 2)!
n∏

j=1

s
deg(j)
j = (−1)n+k+1σnσ

k−1
1 S1(n− 1, k) (11)

where σ1 =
∑n

j=1 sj and σn =
∏n

j=1 sj and where S1(n, k) denotes the Stirling number of
the first kind defined by

n∑
k=0

S1(n, k)xk = x(x− 1)(x− 2) · · · (x− n + 1) =
n−1∏
j=0

(x− j) .
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Indeed, the proof of Proposition 5 shows that a hyperforest with n non-isolated vertices,
k hyperedges and c connected components yields only contributions to the coefficients of
xn−cσn+sσ

k−1−s
1 for s = 0, . . . , k − 1. The coefficient of xn−1σnσ

k−1
1 in U is thus obtained

from contributions from all elements in the set HT k(n) of hypertrees with n non-isolated
vertices {1, . . . , n} and k hyperedges. This coefficient equals (−1)n+1σnσ

k−1
1 S1(n − 1, k)

by Formulae 4 and 3. Formulae 8 and 10 show that a hypertree T ∈ HT k(n) contributes

a summand given by (−1)k
∏

e∈E(T )(](e)− 2)!
∏n

j=1 s
deg(j)
j to the coefficient of xn−1σnσ

k−1
1

in U .
Setting s1 = · · · = sn = 1, Formula 11 specializes to the identity∑

T∈HT k(n)

∏
e∈E(T )

(](e)− 2)! = nk−1S1(n− 1, k)(−1)n+k+1

which is analogous to a Theorem of Husimi (see [2] or [1]) expressing the total number

nk−1S2(n− 1, k)

of elements in the set HT k(n) of labelled hypertrees with k hyperedges and n vertices in
terms of Stirling numbers of the second kind.

All these results are of course generalizations and variations of Cayley’s theorem cor-
responding to the case k = n − 1 and showing that there are nn−2 labelled trees on n
vertices.

Observe that all these identities can also be deduced for example from Exercice 5.30
in [5] using a well-known map between hypergraphs and ordinary bipartite graphs.

8 Computational aspects and examples

The computation of U(x, σ1, σ2, . . . ) up to o(xn) is straightforward using the recurrence
relation 2. For a given fixed numerical value of σ1, the following trick reduces memory
requirement and speeds the computation up: Setting

cn(σ1) = (γn+1(σ1, n), γn+2(σ1, n), . . . , γ2n(σ1, n))

with γi(σ1, n) =
∑2n−i

j=0 ti,j(n)(−σ1)
j we have

U(x, σ1, σ2, . . . ) = 1−
∞∑

n=1

〈cn(σ1), (σn+1, . . . , σ2n)〉xn

where 〈a, b〉 =
∑

i∈I aibi for two finite-dimensional vectors a, b with coefficients indexed
by a common finite set I. The coefficients γi(σ1, n) of cn(σ1) can be computed from the
coefficients of cn−1(σ1) by the formula

γi(σ1, n) = (i− 2− σ1)γi−1(σ1, n− 1) + (i− 3)γi−2(σ1, n− 1) (12)

with missing coefficients omitted in the case of i = n + 1 or i = 2n.
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The coefficients of the first vectors c1(0), c2(0), c3(0), . . . are given by the rows of

1
1 1
2 5 3
6 26 35 15

24 154 340 315 105 ,

see A112486 of [4].

8.1 The examples U(x,−1,−1,−1, . . . ) and U(x, 0,−1,−1,−1, . . . )

The series
U(x,−1,−1,−1,−1, . . . )− 1

is the generating series of the sequence

S(n) =
∑
i,j

ti,j(n)

enumerating the sums of the triangles T (n) defined by the integers ti,j(n). We have

(1 + x)U(x,−1,−1,−1,−1, . . . )

= U(x, 0,−2,−2,−2,−2, . . . )

= 2U(x, 0,−1,−1,−1,−1, . . . )− 1

where U(x, 0,−1,−1,−1, . . . )− 1 corresponds to the generating series of the sequence

s(n) =
2n∑

i=n+1

ti,0(n)

starting as

1, 2, 10, 82, 938, 13778, 247210, 5240338, 128149802, 3551246162, . . . ,

cf. A112487 of [4], and obtained by summing the integers of the first column of the
triangles T (1), T (2), . . . . In particular, we have 2s(n) = S(n− 1) + S(n) or equivalently

2
2n∑

i=n+1

ti,0(n) =
2n∑

i=n+1

2n−i∑
j=0

ti,j(n) +
2n−2∑
i=n

2n−2−i∑
j=0

ti,j(n− 1)

for all n > 2.
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8.2 Examples satisfying differential equations

The recursive definition of the integers ti,j(n) implies easily that specializations of the
form

σn = c

∏A
k=1(n + ak)!∏B
l=1(n + bl)!

zλn+r, n > 2,

or

σn = c

∏A
k=1(n + ak)!∏B
l=1(n + bl)!

e(λn+r)z, n > 2,

(with λ 6= 0 and bi 6∈ {−2,−3,−4,−5, . . . }) lead to differential equations with respect to
z for rational expressions of U(x,−y, σ2, σ3, σ4, . . . ). Such a series U is analytic if B > A.
We illustrate this with the following examples.

8.2.1 U(x,−y,−z2+r,−z3+r,−z4+r, . . . )

Setting σn = −zn+r for n = 2, 3, . . . the series f(z) = U(x,−y, σ2, σ3, . . . ) − 1 satisfies
formally the differential equation

f = xz

(
zr+1 + (y − (1 + z)(1 + r))f + z(1 + z)

df

dz

)
.

8.2.2 U
(
x,−y,− z2+r

(2+b)!
,− z3+r

(3+b)!
,− z4+r

(4+b)!
, . . .

)
Setting σn = − zn+r

(n+b)!
for n = 2, 3, . . . the series f(z) = U(x,−y, σ2, σ3, . . . ) − 1 satisfies

the differential equation

(b− r)(b− 1− r)f + 2(b− r)zf ′ + z2f ′′

=
xz2+r

b!
+ xz(r − b− z(r + 1) + (r − b)(r − y))f

+xz2(b + y + z − 2r)f ′ + xz3f ′′

8.2.3 U
(
x,−y,−e(2λ+r)z,−e(3λ+r)z,−e(4λ+r)z, . . .

)
Setting σn = −e(nλ+r)z for n = 2, 3, . . . , the series

f(z) = U (x,−y, σ2, σ3, σ4, . . . )− 1

satisfies formally the differential equation

f = xeλz

(
e(λ+r)z +

(
y −

(
1 +

r

λ

) (
1 + eλz

))
f +

1 + eλz

λ

df

dz

)
.
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8.2.4 U
(
x,−y,−(2 + a)!e(2λ+r)z,−(3 + a)!e(3λ+r)z,−(4 + a!)e(4λ+r)z, . . .

)
Setting σn = −(n + a)!e(nλ+r)z for n = 2, 3, . . . , the series f(z) = U (x,−y, σ2, σ3, . . . )− 1
satisfies formally the differential equation

f =
xeλz

λ3
(λ(1 + a)− r)

(
λ(λ(y − 1)− r) + (λ + r)(r − λ(2 + a))eλz

)
f

+
xeλz

λ3

(
λ(λ(y + a)− 2r) + (3r2 − 4λr(a + 1) + λ2(a2 + a− 1))eλz

)
f ′

+
xeλz

λ3

(
λ + (2λ(1 + a)− 3r)eλz

)
f ′′ +

xe2λz

λ3
f ′′′ + (2 + a)!xe(2λ+r)z

8.2.5 U
(
x,−y,− e(2λ+r)z

(2+b)!
,− e(3λ+r)z

(3+b)!
,− e(4λ+r)z

(4+b)!
. . .
)

Setting σn = − e(nλ+r)z

(n+b)!
for n = 2, 3, . . . the series f(z) = U (x,−y, σ2, σ3, . . . )− 1 satisfies

the differential equation

(λb− r)(λ(b− 1)− r)f + (λ(2b− 1)− 2r)f ′ + f ′′

= x
λ2

b!
e(2λ+r)z + xeλz

(
(λb− r)(λ(y − 1)− r)− λ(λ + r)eλz

)
f

+xeλz
(
λ(b− 1 + y)− 2r + λeλz

)
f ′ + xeλzf ′′

Remark 23. The recursion relation 2 gives rise to partial differential equations for gener-
ating series of ti,j(n) which are exponential with respect to j and/or n.

8.3 A family of rational examples

Proposition 24. Let σ1, σ2, . . . be a sequence of complex numbers of the form σn =
(−1)nP (n) for all n > A where A is some natural integer and where P (s) ∈ C[s] is a
polynomial. Then U(x, σ1, σ2, . . . ) is a rational series.

Proof. Let d denote the degree of P . Applying identity 6 of Proposition 6 iteratively
d + 1 times we get a series of the form U(x, σ̃1, σ̃2, . . . , σ̃A+d+2, 0, 0, 0, . . . ) which is a
polynomial.

As an illustration we consider the series U(x, y, 1,−1, 1, . . . ). Proposition 6 shows

(1− xy)U(x, y, 1,−1, 1,−1, . . . ) = U(x, 1 + y, 1 + y, 0, 0, . . . ) = 1− (1 + y)x .

We have thus U(x, y, 1,−1, 1, . . . ) = 1− x
1−xy

.
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8.4 Coefficients of U(x, σ1, P (2), P (3), P (4), . . . )

Proposition 25. Let P (s) ∈ C[s] be a polynomial of degree d. There exist constants
α0, . . . , αd ∈ C such that

[xn]U(x, σ1, P (2), P (3), P (4), . . . ) =
d∑

h=0

αh[x
n+h]U(x, σ1, 1, 1, 1, 1, 1, . . . )

for all n > 1 with [xn]U denoting the coefficient of xn in the series U .

Proof. The proof is by induction on d and holds certainly for d = 0. Setting γi(n) =∑2n
j=n+1 ti,j(n)(−σ1)

j, formula (12) implies

0 = −idγi(n + 1) + id(i− 2− σ1)γi−1(n) + id(i− 3)γi−2(n)

= −idγi(n + 1) + (i− 1)d+1γi−1(n) + (i− 2)d+1γi−2(n) +

+Q1(i− 1)γi−1(n) + Q2(i− 2)γi−2(n)

where Q1 and Q2 are polynomials of degree 6 d. Fixing n and summing over i we get

2
2n∑

i=n+1

id+1γi(n) =
2n+2∑
i=n+2

idγi(n + 1)−
2n∑

i=n+1

(Q1 + Q2)(i)γi(n) . (13)

The right side of 13 equals now

[xn+1]U(x, σ1, 2
d, 3d, 4d, . . . )− [xn]U(x, σ1, (Q1 + Q2)(2), (Q1 + Q2)(3), . . . ) .

It is thus by induction on d a linear combination of the coefficients of xn, . . . , xn+d+1

in U(x, σ1, 1, 1, 1, . . . ). This proves the result for U(x, σ1, 2
d+1, 3d+1, . . . ). The general

induction step follows by remarking that all coefficients of strictly positive degree in x of
U(x, σ1, σ2, . . . ) are linear in σ2, σ3, . . . .

9 Conjectural asymptotics for s(1), s(2), . . .

Computations with a few thousand values of s(n) suggest the following asymptotic formula
for the integral sequence s(n) =

∑2n
i=n+1 ti,0(n):

Conjecture 26. There exists a sequence A0, A1, . . . of rational polynomials Ai(x) ∈ Q[x]
with Ai of degree i such that

s(n) =
nn−1

(1− log 2)n−1/2en

(
m∑

k=0

Ak(1− log 2)

nk
+ o(n−m)

)

for all m ∈ N.
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The first few polynomials A0, A1, . . . are

A0 = 1

A1 =
11

24
− x

12

A2 =
265

1152
− 47x

288
+

x2

288

A3 =
48703

414720
− 3649x

13824
+

107x2

6912
+

139x3

51840

A4 =
2333717

39813120
− 2019163x

4976640
+

16489x2

331776
+

26549x3

1244160
− 571x4

2488320

A5 =
38180761

1337720832
− 293093189x

477757440
+

16859263x2

119439360
+

+
6752203x3

59719680
− 170729x4

59719680
− 163879x5

209018880

The coefficients Bk of the formal power series
∑∞

k=1 Bk(x)tk = log
(∑∞

k=0 Ak(x)tk
)

seem
to be simpler and start as

B1 =
11

24
− x

12

B2 =
1

8
− x

8

B3 =
127

2880
− 3x

16
+

x2

288
+

x3

360

B4 =
1

64
− 9x

32
+

11x2

576
+

x3

48

B5 =
221

40320
− 27x

64
+

41x2

576
+

1381x3

12960
− x4

1440
− x5

1260

Remark 27. The constant 1− log 2 = .30685281944 . . . appearing in Conjecture 26 seems
also to be related to the index mn such that tmn,0(n) = maxi(ti,0(n)) with mn given

asymptotically by n
2(1−log 2)

. Moreover, we have seemingly limn→∞
tmn,0(n)

√
n

s(n)
∼ .87 (and

the numbers ti,0(n), suitably rescaled, should satisfy a central limit Theorem).

10 Modular properties of the sequence s(1), s(2), . . .

Proposition 28. The series U(x, σ1, σ2, . . . ) ∈ Fp[[x]] is rational if σ1, σ2, . . . is an ulti-
mately periodic sequence of elements in Fp.

Proof. Up to addition of a polynomial to U = U(x, σ1, σ2, . . . ) we can suppose that
σ2, σ3, σ4, . . . is periodic with period k. We set σ̃i = σi for i > 2 and extend σ̃2, σ̃3, . . . , to
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a k−periodic sequence indexed by Z. We suppose first σ1 6= 0 in Fp. Using the identity
(−σ1)

p−1 = 1 and periodicity of the sequence (σ̃i)i∈Z, we have

U = 1−
∞∑

n=1

xn

pk−1∑
i=0

∑
α∈Z

σ̃i+αkp

p−2∑
j=0

∑
β∈Z

ti+αkp,j+β(p−1)(n)(−σ1)
j+β(p−1)

= 1−
∞∑

n=1

xn

pk−1∑
i=0

σ̃i

p−2∑
j=0

(−σ1)
j

(∑
α∈Z

∑
β∈Z

ti+αkp,j+β(p−1)(n)

)
.

Since the recurrence relations 2 define the elements ti,j(2), ti,j(3), . . . correctly for arbitrary
indices i, j ∈ Z we have ∑

α∈Z

∑
β∈Z

ti+αkp,j+β(p−1)(n)

= (i− 2)
∑
α∈Z

∑
β∈Z

ti−1+αkp,j+β(p−1)(n− 1)

+
∑
α∈Z

∑
β∈Z

ti−1+αkp,j−1+β(p−1)(n− 1)

+(i− 3)
∑
α∈Z

∑
β∈Z

ti−2+αkp,j+β(p−1)(n− 1)

for n > 2. Setting

t̃i,j(n) ≡
∑
α∈Z

∑
β∈Z

ti+αkp,j+β(p−1)(n− 1)

for 0 6 i < kp and 0 6 j < p−1, the elements t̃i,j(n) of Fp satisfy the recursion relation 2
with indices considered modulo kp for i and modulo p − 1 for j. Since the kp(p − 1)
elements t̃i,j(n) of the finite field Fp depend affinely on the kp(p− 1) elements t̃i,j(n− 1)
for n > 2, finiteness of the set (i, j) of indices implies the existence of an integer l such
that t̃i,j(n + l) = ti,j(n) for all sufficiently large n and for all possible indices i and j.
This implies easily that the coefficients of U are ultimately periodic and ends the proof
for σ1 6= 0.

The case σ1 = 0 involves only the integers ti,0(n) and their analogues t̃i,0(n) with
indices in the finite set {0, . . . , pk − 1}. Details are similar to the previous case and left
to the reader.

The first non-trivial case of Proposition 28 is perhaps given by the generating series
U(x, 0,−1,−1,−1, . . . ) with coefficients of U(x, 0,−1,−1, . . . )− 1 given by the sequence

s(n) =
2n∑

i=n+1

ti,0(n)

obtained by summing all coefficients in the first column of the triangular arrays
T (1), T (2), . . . .
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Conjecture 29. There exists a sequence

α0 = −1, α1 = 2, α2 = 0, α3 =
1

3
, α4 =

5

18
, α5 =

149

540
, α6 =

553

2025
,

α7 =
1849741

6804000
, α8 =

775167119

2857680000
, α9 =

325214957371

1200225600000
, . . .

of rational numbers such that(
1 + xp−1

) ∞∑
n=1

s(n)xn ≡ x +

p−2∑
n=0

αnx
p−n (mod p)

for every prime number p.

Conjecture 30. The rational sequence α0, α1, . . . has an asymptotic expansion given by

αn ∼
∞∑

k=1

kk−n

k!

(
2

e2

)k

and converges with limit given by 2e−2 = .27067056647322538378799 . . . .
The error term

εn = αn −
∞∑

k=1

kk−n

k!

(
2

e2

)k

is given by

εn =
(−1)n+1

(1− log 2)s(n + 1)

(
m∑

k=0

γ2k(1− log 2)

n2k
+ o

(
n−2m−1

))
where γ2k(x) ∈ Q[x] is a polynomial of degree at most 2k. The first few polynomials are
given by

γ0 = 1

γ2 = − x

12

γ4 = − x

48
+

x2

48
+

x3

40

γ6 = − x

192
+

5x2

96
+

193x3

864
− x4

72
− 5x5

252

11 Integer sequences obtained as weighted sums of

the numbers ti,j(n)

The sequence qi(x, y) defined by

qi(x, y) =
∑
n,j>0

ti,j(n)xnyj =
i−1∑

n=di/2e

xn

n−1∑
j=0

ti,j(n)yj
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is given by q1(x, y) = 0, q2(x, y) = x and by the recursion relation

qi(x, y) = x ((i− 2 + y)qi−1(x, y) + (i− 3)qi−2(x, y))

for i > 3. The following table lists the first few non-zero coefficients q2(x, y), q3(x, y), . . .
(up to normalizations) and the seemingly corresponding sequences of [4] (which have often
interesting combinatorial interpretations) for a few specializations:

qi(−3,−2/3)(−1)i+1/3 1, 1, 1, 1, 1, 1, . . . A12
qi(−3, 1/3)(−1)i+1/3 1, 4, 25, 226, 2713, 40696, . . . A10845
qi(−2,−3/2)(−1)i+1/2 1,−1,−3,−5,−7,−9,−11, . . .
qi(−2,−1/2)(−1)i+1/2 1, 1, 1, 1, 1, 1, . . . A12
qi(−2, 1/2)(−1)i+1/2 1, 3, 13, 79, 633, 6331, . . . A10844
qi(−1,−1)(−1)i+1 1, 0,−1,−2,−3,−4,−5, . . .
qi(−1, 0)(−1)i+1 1, 1, 1, 1, 1, 1, . . . A12
qi(−1, 1)(−1)i+1 1, 2, 5, 16, 65, 326, 1957, . . . A522
qi(−1, 2)(−1)i+1 1, 3, 11, 49, 261, 1631, . . . A1339
qi(−1, 3)(−1)i+1 1, 4, 19, 106, 685, 5056, . . . A82030
qi(1,−2)(−1)i 1, 1, 1, 1, 1, 1, . . . A12
qi(1,−1) 1, 0, 1, 2, 9, 44, 265, 1854, . . . A166
qi(1, 0) 1, 1, 3, 11, 53, 309, 2119, . . . A255
qi(1, 1) 1, 2, 7, 32, 181, 1214, . . . A153
qi(1, 2) 1, 3, 13, 71, 465, 3539, . . . A261
qi(1, 3) 1, 4, 21, 134, 1001, 8544, . . . A1909
qi(2,−7/2)(−1)i/2 1, 5, 17, 37, 65, 101, 145, 197, . . . A53755
qi(2,−5/2)(−1)i/2 1, 3, 5, 7, 9, 11, . . . A5408
qi(2,−3/2)(−1)i/2 1, 1, 1, 1, 1, 1, . . . A12
qi(2,−1)/2 1, 0, 2, 8, 60, 544, 6040, . . . A53871
qi(2,−1/2)/2 1, 1, 5, 29, 233, 2329, . . . A354
qi(3,−4/3)(−1)i/3 1, 1, 1, 1, 1, 1, . . . A12
qi(3,−1)/3 1, 0, 3, 18, 189, 2484, . . . A33030

The sequences A255, A153, A261 and A1909 corresponding to qi(1, 0), qi(1, 1), qi(1, 2)
and qi(1, 3) can seemingly also be obtained by considering the weighted sums

si =
∑
j,n>0

(
n− j + k − 1

k

)
ti,j(n)(−1)j

for k = 1, 2, 3 and 4.
The above table contains a few instances of the identities

1 = qi

(
κ,−κ + 1

κ

)
(−1)i

κ

and

1 + (i− 2)κ = qi

(
κ,−2κ + 1

κ

)
(−1)i

κ
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which hold for κ 6= 0 and for i = 2, 3, 4, . . . and which can easily be proven by induc-

tion. (These two examples generalize probably to qi

(
κ,−λκ+1

κ

)
(−1)i

κ
= Pλ(i, κ), λ =

1, 2, 3, . . . , κ 6= 0, i = 2, 3, 4, . . . for Pλ a suitable polynomial function of κ and i.)
Another identity is given by the family of weighted examples

1 = (−1)ik!(i− 1 + k)
∑
j,n>0

ti,j(n)
(−1)j

(n + k − j)!

for all k ∈ N and for all i > 2.
A few other interesting weighted examples (there are probably many more) are given

by the following formulae

ai =
∑
j,n>0

(n− j)ti,j(n)(−2)j ,

bi =
1

4

∑
j,n>0

(n− 1− j)ti,j(n)2n

(
−3

2

)j

,

ci =
∑
j,n>0

ti,j(n)(n− 1− j)!(−1)j ,

di = (−1)i+1
∑
j,n>0

ti,j(n)(n− 1− j)!(−1)n ,

ei =
∑
j,n>0

ti,j(n)
(−1)j

(n− 1− j)!
,

fi = (i− 1)!
∑
n>1

ti,0(n)

(n− 1)!
.

Their initial coefficients (with leading zeros omitted) and the seemingly corresponding
sequences of [4] are as follows:

ai 1, 0, 0, 1, 1, 8, 36, 229, 1625, . . . A757
bi 1, 0, 5, 24, 209, 2120, . . . A120765
ci 1, 0, 3, 26, 453, 11844, . . . A89041
di 1, 2, 7, 52, 749, 17686, . . . A46662
ei 1, 0, 0, 0, 0, 0, 0, . . . A7
fi 1, 2, 12, 84, 820, 9540, . . . A179495

Most of the proofs are probably easy: The corresponding sections of [4] give information
concerning generating functions which can be applied to differential equations analogous
to those of Section 8.2.

12 Coverings

Coverings and packings are dual notions. We discuss here a few aspects of the theory of
coverings in relation with packings by generic families.
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A (left-)covering with parts S1, . . . ,Sn of a group G is a vector (g1, . . . , gn) such that
G = ∪n

j=1gjSj.
A covering of a finite group G with N elements by non-empty subsets S1, . . . ,Sn exists

of course always if n > N .
We are interested in large collections of subsets S1, . . . ,Sn in a finite group G of order

N such that the sets S1, . . . ,Sn (or more precisely, suitable translates) cover G and the
number of all coverings depends only on the cardinalities of S1, . . . ,Sn (and of N) for
every family S1, . . . ,Sn in the collection.

Three such collections can be described as follows:
Start with a family S1, . . . , Sn which is generic for packings and add N −

∑n
j=1 ](Sj)

singletons. Coverings of G by such families are “tight”and essentially in one-to-one corre-

spondence (except for a factor
(
N −

∑n
j=1 ](Sj)

)
! accounting for all permutations of the

added singletons) with packings by S1, . . . ,Sn.
The second family is obtained by adding N +n−1−

∑n
j=1 ](Sj) singletons to a family

S1, . . . , Sn which is generic for packings. The fact that the number of associated coverings
depends only on all involved cardinalities is similar to the proof of Proposition 5 given in
Section 4. The proof needs probably computations with the full Möbius function. I do
not know if there is an efficient way for computing the number of associated coverings or
if there is a nice formula similar to the one assciated to enumerations of packings.

There is a further variation on this theme: Given an arbitrary natural integer a one
can consider adding N + a−

∑n
j=1 ](Sj) singletons to a family S1, . . . , Sn which is generic

for packings. For every natural integer a, such a family has the property that the number
of associated coverings depends only on all involved cardinalities. The choices a = 0
corresponding to the first family and a = n − 1 corresponding to the second family
are however natural in this context. Indeed, since the intersection graph of the sets
g1S1, . . . , gnSn is a hyperforest, the union ∪n

j=1gjSj contains at least
∑n

j=1 ](Sj)− (n− 1)
elements. This leaves at most N + n − 1 −

∑n
j=1 ](Sj) missing elements which can be

covered using the additional singletons.
A third rather trivial family is given by considering complements G \ S1, . . . , G \ Sn

where S1, . . . ,Sn is a generic family for packings in G having at least two parts. The
number of coverings of such a family is easy to compute and given by Nn−N

∏n
j=1 ](Sj).

It would perhaps be interesting to have other (and hopefully more exotic) families of
examples.
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