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Abstract

We pose the question of determining the lowest-degree polynomial with non-
negative coefficients divisible by the n-th cyclotomic polynomial Φn(x). We show
this polynomial is 1 + xn/p + · · · + x(p−1)n/p where p is the smallest prime divid-
ing n whenever 2/p > 1/q1 + · · · + 1/qk, where q1, . . . , qk are the other (distinct)
primes besides p dividing n. Determining the lowest-degree polynomial with non-
negative coefficients divisible by Φn(x) remains open in the general case, though we
conjecture the existence of values of n for which this degree is, in fact, less than
(p − 1)n/p.

1 Introduction

The n-th cyclotomic polynomial Φn(x) is Π(x − ζ) where the product is taken over the
distinct primitive n-th roots of unity ζ . It is well-known that Φn(x) has integer coefficients
and that Φn(x) is irreducible over Q.

In this paper we consider the problem of determining the polynomial of lowest degree
with nonnegative coefficients divisible by Φn(x). The problem doesn’t make sense for
n = 1 since Φ1(x) = x − 1 and x = 1 cannot be the root of any polynomial with
nonnegative coefficients (by “polynomial” we always mean “nonzero polynomial”). But
when n > 1 then ζn = e2πi/n is a root of

1 + x + x2 + · · · + xn−1
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so Φn(x) divides a polynomial with nonnegative coefficients. The question is to determine
the lowest degree such polynomial. It does not matter whether we consider only polyno-
mials in R[x], Q[x] or even Z[x] since the problem can be reduced to the feasibility of a
rational system of linear inequalities, and since rational systems have solutions over Q if
and only if they have solutions over R (and there is obviously no difference between Q

and Z). In fact every solution in R[x] is a convex combination of solutions in Q[x], by the
same considerations. A priori, the solution may not be unique up to scalar multiplication.

Working over Z[x] suggests a physical analogy. Assume n equally spaced holes are
drilled around the circumference of a circular plate and that stackable pegs are made to
fit the holes. Then putting a stack of ai pegs in the i-th hole, i = 0 . . . n − 1, yields a
plate that is perfectly balanced around the center if and only if

a0 + a1ζn + · · ·+ an−1ζ
n−1
n = 0 (1)

which happens if and only if Φn(x)|a0+a1x+· · ·+an−1x
n−1. Therefore balanced configura-

tions of pegs are in one-to-one correspondence with polynomials with nonnegative integer
coefficients divisible by Φn(x). The degree of a polynomial associated with a balanced
configuration of pegs is equal to the largest index of a nonempty hole. Since the balance
of the plate is not affected by rotation it is clearly advantageous to rotate the plate until
the longest sequence of consecutive empty holes occurs between hole 0 (that contains a
peg) and the peg with largest index. Thus finding the lowest degree polynomial with
nonnegative coefficients divisible by Φn(x) is equivalent to finding a (nonempty) balanced
configuration of pegs with the longest possible consecutive sequence of empty holes, for a
plate with n equally spaced holes.

(We note that for the above analogy to apply integral numbers of pegs must be used;
otherwise if we are allowed to saw off our pegs such as to place some arbitrary height of
pegs in a given hole we can always balance the plate with just 3 nonempty holes, say hole
0, ⌊n/2⌋ and ⌈n/2⌉. The polynomial corresponding to this configuration will indeed have
ζn as a root but will not be divisible by Φn(x), due to the fact that Φn(x) is irreducible
over Q[x] but not over R[x].)

Balanced configurations can be quite intricate [10] but some are simple. In particular
for every prime p dividing n one can make a regular p-gon, which is balanced. To maximize
the gaps between consecutive pegs one should take p to be the smallest prime dividing
n. In this case gaps have n/p − 1 holes, and the associated polynomial (after rotation to
place a peg in hole 0) is 1 + xn/p + · · ·+ x(p−1)n/p. This polynomial seems like a “natural
enough” candidate for the lowest degree polynomial with nonnegative coefficients divisible
by Φn(x), which leads to the following conjecture.

Conjecture 1. The lowest degree monic polynomial with nonnegative coefficients divisible
by Φn(x), n > 1, is 1 + xn/p + · · · + x(p−1)n/p where p is the smallest prime dividing n.

In particular, Conjecture 1 would imply that the solution is unique of up to scalar multi-
plication.

In fact, we do not believe Conjecture 1 is true, even if we have not disproved it. Our
skepticism stems from the fact that Conjecture 1 implies the feasibility of a certain system
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of rational linear inequalities that, when n is a product of large number of distinct large
primes, seems very unlikely to be feasible. Nonetheless, due to the size of the systems
involved, finding a counterexample is quite challenging from a computational standpoint,
and our only “hard” results are positive results in favor the conjecture.

Since the polynomial 1 + xn/p + · · · + x(p−1)n/p has smaller degree when p is small, it
seems, intuitively, that it should be easier to prove Conjecture 1 when p is small. This is
reflected in our main result.

Theorem 1. Conjecture 1 holds when n is even or when n is a prime power or when
2/p > 1/q1 + · · ·+ 1/qk where q1, . . . , qk are the other primes besides p dividing n.

The smallest value of n not covered by Theorem 1 is n = 11 · 13 · 17 · 19 = 46189 and
the next few values are n = 96577, 215441, 392863, 508079, . . .. Checking Conjecture 1 for
these (specific) values of n is, in theory, a finite problem each time (expressible as a linear
program), but we found the computational scale of these problems too large to handle
conveniently (our measure of convenience being a few days computation on a laptop).

The case of Theorem 1 when n = pα is a prime power follows from the fact that

Φpα(x) = 1 + xpα−1

+ x2pα−1

+ · · · + x(p−1)pα−1

= 1 + xn/p + · · ·+ x(p−1)n/p

and Φn(x) cannot divide a polynomial of lower degree than itself or divide a non-scalar-
multiple of same degree (when n is divisible by two or more primes Φn(x) no longer
contains only nonnegative terms). The case when n is even follows from elementary
geometrical considerations: if p = 2 then (p−1)n/p is half way around the plate, and one
cannot balance the plate using pegs strictly contained in half of the plate; moreover if a
balanced configuration uses holes 0 . . . n/2 it must not place any pegs in holes 1 . . . n/2−1,
and it must place the same number of pegs in holes 0 and n/2, hence uniqueness.

Theorem 1 implies Conjecture 1 for all cases when n has three or fewer primes in its
factorization since 2/p > 1/q1 and 2/p > 1/q1 + 1/q2 by virtue of the fact that p is the
smallest prime dividing n. The case when n is divisible by exactly two primes p, q already
follows from a result of deBruijn [1], who showed that any polynomial with nonnegative
coefficients divisible Φn(x) can then be written as f(x)(1+xn/p+· · ·+x(p−1)n/p)+g(x)(1+
xn/q + · · ·+ x(q−1)n/q) for some polynomials f(x), g(x) with nonnegative coefficients.

Because Φnp(x) = Φn(xp) when p is a prime dividing n, determining the lowest degree
polynomial with nonnegative coefficients divisible by Φn(x) is equivalent to determining
the lowest degree polynomial with nonnegative coefficients divisible by Φn′(x) where n′ is
the squarefree part of n (indeed the above identity implies that if f(x) is any polynomial
divisible by Φn′(x) then f(xn/n′

) is divisible by Φn(x), and that any polynomial divisible
by Φn(x) remains divisible by Φn(x) after removing all terms whose exponents are not 0
mod n/n′ (or not z mod n/n′ for any z)). This is why neither Conjecture 1 nor Theorem
1 take into account the multiplicity with which primes divide n.

We note that Conjecture 1 would have the following type of non-intuitive consequence:
if n, say, is the product of all primes between 106 and 10100, then a nonempty balanced
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configuration of pegs could still not leave empty any section of size 1/106-th the length
of the total circumference of the plate. One can extend this idea to plates with infinitely
many holes: fix a prime p, and assume that we can place pegs at any position along the
circumference of the plate whose polar angle is rational multiple of 2π where the denomi-
nator of the rational coefficient is not divisible by any prime smaller than p (this amounts
to considering vanishing sums using roots of unity whose orders are not divisible by any
prime smaller than p); then if Conjecture 1 is true, no nonempty balanced configuration
can leave empty a section of length 1/p of the total circumference. This follows because
any balanced configuration is finite, and one can take n to be the lcm of the orders of the
roots of unity used.

While the question of “debunking” Conjecture 1 is of great interest, the remainder
of the paper mostly focuses on our actual result, Theorem 1 and its proof (we do briefly
re-explain our pessimism at the end of Section 3). The methods used for the proof of
Theorem 1 are quite geometric and of potential independent interest.

2 Methods

For the rest of the paper n denotes a squarefree integer > 1. It will be convenient to write
the prime factorization of n as pq1 · · · qk where p is the smallest prime dividing n and q1,
. . ., qk are the remaining primes dividing n. We may assume k > 1 since Conjecture 1 is
true for n = p. We put P = n/p, Q1 = n/q1, . . . , Qk = n/qk.

Let Vn ⊆ Rn be the vector space consisting of all n-tuples (a0, . . . , an−1) such that
Φn(x)|a0+a1x+ · · ·+an−1x

n−1. We index vectors starting at 0 rather than at 1 (i.e., write
(x0, . . . , xn−1) rather than (x1, . . . , xn)). For convenience we partition the set of indices
{0, 1, . . . , n − 1} into the following sets F0, . . . ,Fp−1:

H = {0, P, 2P, . . . , n − P}

F0 = {1, 2, . . . , P − 1}

F1 = {P + 1, P + 2, . . . , 2P − 1}
...

Fp−1 = {(p − 1)P + 1, (p − 1)P + 2, . . . , n − 1}.

We also let F+ = F0∪· · ·∪Fp−2 and F− = Fp−1. For a set of indices A ⊆ {0, 1, . . . , n−1}
and a vector v = (v0, . . . , vn−1) ∈ Rn, we say v is 0 on A (resp. is positive on A, etc) if
vi = 0 for i ∈ A (resp. vi > 0 for i ∈ A, etc).

Let 1H ∈ Rn be the incidence vector of H; this is also the coefficient vector the
polynomial

1 + xn/p + · · ·+ x(p−1)n/p = 1 + xP + · · · + x(p−1)P .

Thus 1H ∈ Vn. Conjecture 1 is equivalent to the statement that the only nonnegative
vectors in Vn that are 0 on F− = Fp−1 are scalar multiples of 1H.
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Let 〈u, v〉 denote the usual dot product of vectors in Rn and let V ⊥
n = {u ∈ Rn :

〈u, v〉 = 0 for all v ∈ Vn} be the orthogonal complement of Vn in Rn. Our results are
based on the following lemma.

Lemma 1. Conjecture 1 holds for (a squarefree) n if and only if there exists a vector
w ∈ V ⊥

n such that w is positive on F+ and zero on H.

The proof of Lemma 1 requires the following elementary proposition, which is a conse-
quence of the Farkas lemma for systems of linear inequalities. We recall that the Farkas
lemma (in one of its many incarnations) states that a linear system Ax = b, x > 0 has no
solution if and only if there exists a y such that yTA > 0 and yT b < 0. (For background,
see e.g. [9]; by writing x > 0 we mean that each coordinate of x is nonnegative.)

Proposition 1. Let A ∈ Rm×n be a real matrix and let J ⊆ {0, . . . , n − 1}. Then there
is no x = (x0, . . . , xn−1) ∈ Rn such that x > 0, Ax = 0 and such that xj > 0 for at least
one j ∈ J if and only if there exists a vector y ∈ Rm such that yTA > 0 and such that
(yTA)j > 0 for all j ∈ J .

Proof. If y exists then x cannot exist, since otherwise 0 > (yTA)x = yT (Ax) = 0.
For the other direction, assume x does not exist. Then for each j ∈ J the system

Ax = 0, xj = 1, x > 0 has no solution; by the Farkas lemma, this implies that for each
j ∈ J there is a vector (yj, zj) ∈ Rm×R = Rm+1 such that (yj)T A+zjej > 0 (where ej is
the j-th unit vector) and such that zj < 0. In particular, (yj)T A > 0 and ((yj)T A)j > 0,
so adding the vectors yj, j ∈ J gives the desired y.

Proof of Lemma 1. Assume first that w exists. Let v ∈ Vn be a nonnegative vector that
is 0 on F−. Then 〈v, w〉 = 0 implies that v is 0 on F+. So v’s support is contained in H,
and v must be a scalar multiple 1H by the irreducibility1 of Φp(x) = 1 + x + · · · + xp−1,
as desired.

For the other direction, assume that Conjecture 1 holds for n. Let B be a matrix
whose rows span V ⊥

n , and let A be obtained by truncating the last P − 1 columns of B.
We note the rows of A are vectors in Rn−P+1 = RH∪F+

. There is no vector x ∈ RH∪F+

,
x > 0, such that Ax = 0 and such that xj > 0 for some j ∈ F+ (otherwise extending x
to Rn with 0’s would produce a vector x > 0 nonzero on F+ such that Bx = 0 and x is
zero on F−, contradicting Conjecture 1). By Proposition 1 this implies there is a vector y
such that yTA > 0 and such that yTA is positive on F+. Moreover, yTA must be 0 on H
because (yTA)1H = yT (A1H) = 0 (where we view 1H as a vector in RH∪F+

). Thus yTB
is a vector in V ⊥

n that is positive on F+ and zero on H, as desired.

We call the vector w satisfying the conditions of Lemma 1 a certificate. We point out the
obvious fact that Lemma 1 gives a means of disproving Conjecture 1 without actually ex-
hibiting a counterexample polynomial divisible by Φn(x) (namely, it sufficies to show that
the constraints on w determine an empty polytope in Rn). However, from a computational

1More precisely, if the polynomial associated to v is a0 + a1x
P + · · ·+ an−1x

(p−1)P , then we note that
e2πi/p is a root of a0 + a1x + · · ·+ an−1x

p−1, from which it follows that Φ(x) | a0 + a1x + · · ·+ an−1x
p−1.
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standpoint, this method is not necessarily faster than directly seeking a counterexample
polynomial (which reduces to showing non-emptiness of a certain polytope in Rn, or in
RH∪F+

).
We note that if one is only interested in showing that the smallest degree of a poly-

nomial with nonnegative coefficients divisible by Φn(x) is at least (p − 1)n/p = n − P
(without proving uniqueness), then a weaker type of certificate suffices, as given by the
following lemma.

Lemma 2. Vn (n squarefree) contains no nonzero, nonnegative vector that is zero on
F− ∪ {n − P} if and only if there exists a w ∈ V ⊥

n such that w is positive outside
F− ∪ {n − P}.

The proof of Lemma 2 is similar to the proof of Lemma 1. We omit it because we will
not use Lemma 2.

To apply Lemma 1 (by finding a certificate) we need some understanding of V ⊥
n .

Thankfully V ⊥
n has a relatively simple structure (first investigated by Rédei [8] and de-

Bruijn [1] and also later by Conway and Jones [2]), outlined below.
Let G0(x) = 1 + xP + · · · + x(p−1)P and let Gi(x) = 1 + xQi + · · ·+ x(qi−1)Qi for i > 1

(recall that Qi = n/qi). It is easy to check by examining the roots of G0(x), . . . , Gk(x)
that Φn(x) = gcd(G0(x), . . . , Gk(x)). Therefore Vn is spanned by the coefficient vectors
of all the translates2 of degree at most n − 1 of the polynomials G0(x), . . . , Gk(x). (As
a sidenote, since the vanishing sums of roots of unity corresponding to G0(x), . . . , Gk(x)
are regular q-gons with q = p, q1, . . . , qk it follows from the above observation that every
vanishing sum of n-th roots of unity can be obtained as a linear combination of regular
q-gons with q|n. If any vanishing sum of n-th roots of unity with nonnegative coefficients
could be obtained as a nonnegative linear combination of regular q-gons then Conjecture
1 would follow immediately, since the q-gon with the lowest highest power of ζn is the
p-gon. This is true when n has only 2 prime factors by deBruijn’s Theorem [1] but is not
the case in general. Schoenberg [11] pointed out the first counterexample (for n = 30)
and others have followed suit [6, 2, 7, 5, 10].)

We now identify vectors in Vn with (k + 1)-dimensional arrays of real numbers of size
p × q1 × · · · × qk using the Chinese Remainder Theorem (CRT). Under this mapping,
the array entry with coordinate (t0, . . . , tk)—where array coordinates are indexed from
0, like vector indices—is mapped to the vector entry with index t0P + t1Q1 + . . . + tkQk

mod n (Figs. 1 and 4 show such maps for n = 5 · 7 and n = 3 · 5 · 7), and we say that
t0P + t1Q1 + . . . + tkQk mod n is the index of the entry (t0, . . . , tk). This mapping is
a bijection, so there is a one-to-one correspondence between vectors in Rn and arrays of
size p × q1 × · · · × qk.

Our reason for representing vectors in Vn as arrays is that the generators for Vn de-
scribed above—the coefficient vectors of the translates of G0(x), . . ., Gk(x)—correspond
to particularly simple arrays. The coefficient vector of G0(x) = 1 + xP + · · · + x(p−1)P

maps to the 0-1 array whose nonzero entries are {(h, 0, . . . , 0) : 0 6 h 6 p − 1}. Thus
the array corresponding to G0(x) consists of a “line of 1’s” in the direction of the first

2By translate of a polynomial p(x) we mean a polynomial of the form xkp(x).
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Figure 1: A partition of the 5 × 7 array based on the indices of the entries; entries of
index 0 mod P = 7 are in H, entries of index > iP and < (i + 1)P are in Fi.

coordinate axis. The translates of G0(x) of degree 6 n − 1 map to all the parrallel lines
of 1’s in that direction. Similarly the translates of G1(x), . . ., Gk(x) map to all lines of
1’s in the remaining coordinate directions, so that Vn is precisely the set of arrays that
are generated as linear combinations of lines of 1’s in all the coordinate directions.

We will refer to the lines of 1’s as fibers (to be perfectly clear: for an array of size
a1 × · · · × ak, a fiber is a 0-1 array whose support is {(x1, . . . , h, . . . , xk) : 0 6 h 6 ai − 1}
where h is in the i-th coordinate place and where x1, . . ., xi−1, xi+1, . . ., xk are constant,
for some i). In other papers [10, 3] we have dubbed arrays (of any size) which, like
Vn, are linear combinations of fibers, as cyclotomic arrays. Cyclotomic arrays have a
number of interesting combinatorial properties. For example, the sum of the entries of
any nonnegative, integer-valued cyclotomic array is always a nonnegative integer linear
combination of its sidelengths [3], generalizing a property of vanishing sums of roots of
unity [5].

Knowing that Vn is spanned by fibers makes clear the structure of V ⊥
n : points in V ⊥

n

are exactly those arrays of size p × q1 × · · · × pk whose column sums are zero for all
columns in every direction, since the column sums of an array are zero if and only if
the dot product of that array with all fibers is zero. We call an array with zero column
sums in every direction a zero-sum array. Our blueprint for proving Theorem 1 is thus to
exhibit a zero-sum array w (the “certificate”) that is positive on entries whose index is in
F+ and zero on entries whose index is in H. In other words, w is positive on entries of
index less than n − P except for entries whose index is 0 mod P , on which w is zero.

3 Low-Dimensional Examples

In this section we use the strategy outlined above to prove Conjecture 1 for the two-prime
case n = 35 and the three-prime case n = 105. We start with n = 35. Since 35 is a
product of two primes this case already follows from deBruijn’s theorem [1], but the point
is to illustrate our method.

The left of Fig. 1 shows the mapping from arrays of size 5 × 7 to R35 given by our
application of the CRT. A “layer” of the array refers to a horizontal row of 7 cells. On
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F1

w1

F2

w2

F3

w3

F4

w4

Figure 2: The positive and negative supports of w1, w2, w3, w4; entries with +’s are
positive, entries with −’s are negative, blank entries are 0.

the right of Fig. 1 the array cells have been partitioned into H, F0, . . ., F4 according to
their index, using the same definitions for H, F0, . . . ,Fp−1 as in Section 2. We also define
F+ = F0 ∪ · · · ∪ Fp−2 = F0 ∪ F1 ∪ F2 ∪ F3 and F− = F4.

We wish, thus, to find a 5× 7 zero-sum array w that is zero on H and positive on F+.
Note that since every column besides the first contains exactly one entry from F− = F4,
w must be negative on F− in order for column sums to be zero. The Fi’s are translates
of each other because going up a layer adds P mod n to the index of an entry. As a
consequence the Fi’s induce an identical partition of each layer.

We construct our array w as a linear combination of 5×7 zero-sum arrays w1, w2, w3, w4

such that wi is negative on Fi, positive on Fi−1 ∪ Fi+1 and 0 elsewhere (indices referring
to elements in the set {0, 1, . . . , 4} are taken mod 5). The signs of w1, . . . , w4 are sketched
in Fig. 2. Then if α2, α3, α4 are taken sufficiently quickly increasing the array w =
w1 + α2w2 + α3w3 + α4w4 will be zero-sum, positive on F0 ∪ · · · ∪ F3 and 0 on H, as
desired. Note w2, w3, w4 can be obtained from w1 by shifting w1 up by respectively 1, 2
or 3 layers cyclically, so it suffices to construct w1.

We build w1 as the sum of 5 zero-sum arrays a0, . . . , a4 where ai is negative on the
intersection of layers i, i+1 with F1 and positive on the intersection of layers i, i+1 with
respectively F0 and F2, and 0 elsewhere. The sign patterns for a0, . . . , a4 are sketched
in Fig. 3. Such arrays a0, . . . , a4 obviously exist. Setting w1 = a0 + · · · + a4 we obtain a
zero-sum array that is negative on F1, positive on F0 ∪ F2 and 0 elsewhere, as desired.
This completes the construction.

Now let n = 105 = 3 · 5 · 7. In this case p = 3, q1 = 5, q2 = 7 and P = n/p = 35, Q1 =
n/q1 = 21, Q2 = n/q2 = 15. Fig. 4 shows the CRT mapping from the 3 × 5 × 7 array to
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Figure 3: The positive and negative supports of a0, . . . , a4.
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Figure 4: The mapping from the 3 × 5 × 7 array to Z105 given by the CRT.
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Figure 5: Partitioning the 3 × 5 × 7 array.
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Figure 6: The positive and negative supports of w1.

Figure 7: The positive and negative supports of a0. The leftmost layer gives the positive
and negative supports of the 5 × 7 array u0.

Z105. A “layer” of the array again means a layer perpendicular to the smallest coordinate
direction, so there are 3 layers each consisting of an array of size 5×7. Subscripts referring
to values in the sets Z3 = {0, 1, 2}, Z5 = {0, 1, . . . , 4} or Z7 = {0, 1, . . . , 6} are taken mod
3, 5 and 7 respectively.

The partition of the array cells into the sets H,F0, . . . ,Fp−1 is shown in Fig. 5. Note
that the Fi’s again induce an identical partitioning of each layer, for the same reason that
going up one layer increases the index of an entry by P mod n. Again, we wish to construct
a zero-sum array w which is 0 on H and positive on F+ = F0 ∪ . . .∪Fp−1 = F0 ∪F1. We
can note that if w exists it will be negative on F− = F2 for the column sums of length 3
to be zero.

We construct w as a linear combination of p − 1 = 2 zero-sum arrays w1, w2 where
wi is negative on Fi and positive on Fi−1 ∪ Fi+1 and zero elsewhere. The sign pattern of
w1 is sketched in Fig. 6. Then if we take α > 0 sufficiently large w = w1 + αw2 will be
a zero-sum array positive on F0 ∪ F1, negative on F2 and 0 on H, as desired. Note that
w2 can be obtained by shifting w1 up by one layer cyclically so it suffices to construct w1.
(This example with p = 3 is a little unfortunate since one could directly take w = w2; a
better example would have had p = 5, but would have been harder to draw.)

We build w1 as the sum of p = 3 zero-sum arrays a0, a1, a2 where ai is negative on
the intersection of layers i, i + 1 with F1, positive on the intersection of layers i, i + 1
with respectively F0 and F2, and 0 elsewhere. The sign pattern for a0 is sketched in Fig.
7. The sum a0 + a1 + a2 is negative on F1, positive on F0 ∪ F2 and 0 elsewhere (namely
on H), as desired. The reader can compare Figs. 3 and 7. In particular, note that the
support of ai is each time contained in two layers of opposite sign.
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Because ai is a zero-sum array the layers i and i + 1 of ai must be negative of one
another (other layers being 0). Thus to determine ai we only need to determine the i-th
layer of ai, which must be positive on F0, negative on F1, zero elsewhere and have zero
column sums in the two coordinate directions. We illustrate how to do this for a0, in
which case the problem is to construct a 5× 7 zero-sum array u0 having the positive and
negative supports of the leftmost 5 × 7 array in Fig. 7.

We now describe the construction of u0, sketched in Fig. 8. We found it useful to
“unroll” the torus Z5 × Z7 onto Z × Z. Let G0 = {(j1, j2) ∈ Z5 × Z7 : (0, j1, j2) ∈ F0},
G1 = {(j1, j2) ∈ Z5 × Z7 : (0, j1, j2) ∈ F1}. (Thus G0 and G1 are respectively the positive
and negative supports of u0.) Let z = (Q1, Q2) = (21, 15) ∈ Z2 and let G′

0 = {x ∈ Z2 : 0 <
〈x, z〉 < P}, G′

1 = {x ∈ Z2 : P < 〈x, z〉 < 2P}. Let ρ : Z2 → Z5 × Z7 be the projection
map ρ(j1, j2) = (j1 mod 5, j2 mod 7). It is easy to see that ρ(G′

0) = G0, ρ(G′
1) = G1 from

the definition of F0, F1.
Note that ρ(x) = ρ(y) =⇒ 〈x, z〉 − 〈y, z〉 ≡ 0 mod n, but if x, y ∈ G′

0 ∪ G′
1 then

|〈x, y〉 − 〈y, z〉| < 2P 6 n so ρ(x) = ρ(y) =⇒ 〈x, z〉 = 〈y, z〉 for x, y ∈ G′
0 ∪ G′

1. Thus if
f : Z2 → R is a function with support G′

0 ∪ G′
1 such that 〈x, z〉 = 〈y, z〉 =⇒ f(x) = f(y)

there is a well-defined 5× 7 array uf with support G0 ∪ G1 whose ρ(x)-th entry has value
f(x) for any x ∈ G′

0 ∪ G′
1. A function f such that 〈x, z〉 = 〈y, z〉 =⇒ f(x) = f(y) will be

called periodic.
A line of integers is a subset of Z2 of the form {(x, y) : x ∈ Z} for some y ∈ Z or

{(x, y) : y ∈ Z} for some x ∈ Z. We say that f is zero-sum if its support is finite on every
line of integers and sums to zero on every line of integers. It is clear that if f is periodic
and has support G′

0 ∪G′
1 then uf is zero-sum if f is zero-sum. Thus the construction of u0

reduces to exhibiting a periodic zero-sum function f on Z2 that is positive on G′
0, negative

on G′
1 and zero elsewhere.

Fig. 8 shows our method for constructing such a function f . First we consider Z2 as a
subset of R2 the natural way. The square [i− 1

2
, i + 1

2
]× [j − 1

2
, j + 1

2
] centered at a point

(i, j) ∈ Z2 is called the cell around (i, j) or cell centered at (i, j), and if A is any subset
of Z2 we write A for the union of all cells centered at points in A. Let L2 be the line
{(x, y) : 〈(x, y), z〉 = P} ⊆ R2 and let L1, L3 be two translates of L2 equidistant from L2

such that (i) L1 and L3 are contained in G′
0 ∪ G′

1, and (ii) the region between L1 and L2

(resp. L3 and L2) intersects every cell in G′
0 (resp. G′

1) in a nonzero area. The existence
of L1, L2, L3 is clear from Fig. 8 and is formally proved in the next section.

Let R+ be the region between L1 and L2 and R− the region between L2 and L3. We
define

f(x) = vol(x ∩ R+) − vol(x ∩ R−)

where x = {x} is the cell around x ∈ Z2 and vol(·) is two-dimensional area. Then the
support of f is contained in G′

0 ∪G′
1 because cells not in G′

0 ∪ G′
1 have no area in R+ ∪R−,

and f is zero-sum because if L is any line of integers,
∑

x∈L

f(x) = vol(L ∩ R+) − vol(L ∩ R−) = 0

as R+, R− have equal thickness. Moreover f(x) is positive on G′
0 and negative on G′

1,
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Figure 8: Construction of a zero-sum function f on Z2 with positive support G′
0 and

negative support G′
1. The points in Z2 (not shown) have unit squares centered around

them (shown). The x and y axes are flipped to match the orientation of Fig. 5. The point
(i, j) ∈ Z2 is labeled with the number 〈(i, j), (Q1, Q2)〉 = 21i + 15j, shown in its square;
G′

0 is the set of points whose label is between 0 and P = 35 and G′
1 is the set of points

whose label is between P and 2P . The area G′
0, in light grey, is the set of cells around

points in G′
0, and the area G′

1, in dark grey, is the set of cells around points in G′
1. Three

parrallel equidistant lines L1, L2, L3 contained in G′
0 ∪ G′

1 are drawn, with the property
that each cell in G′

0 has a larger area of intersection with the region R+ between L1 and
L2 than with the region R− between L2 and L3, and each cell in G′

0 has a larger area
of intersection with R− than with R+. The value of f at x ∈ Z2 is then defined to be
f(x) = vol(x∩R+)− vol(x ∩R−), where x is the square (cell) centered at x and vol(·) is
area.
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Figure 9: Construction of a zero-sum function f on Z2 with positive support G′
2 = {(i, j) :

2P < iQ1 + jQ2 < 3P} (cells G′
2 in light grey) and negative support G′

3 = {(i, j) :
3P < iQ1 + jQ2 < 4P} (cells G′

3 in dark grey). The construction is similar to that of
Fig. 8 except for the presence of blank cells intersecting R+, R− (corresponding to points
(i, j) with iQ1 + jQ2 = 3P = 105). Because L2 passes through the center of these cells,
f(x) = vol(x ∩ R+) − vol(x ∩ R−) still has support G′

2 ∪ G′
3.

since points in G′
0 are below L2 and points in G′

1 and since every cell in G′
0 ∪ G′

1 intersects
R+ ∪ R− in a nonzero area (point (ii) above). Finally f is periodic since L1, L2, L3 are
perpendicular to z.

This concludes the construction of u0, and hence of a0. (One can also construct u0 by
other, non-geometric approaches, but the geometric method is the only one we found to
generalize to higher dimensions (higher numbers of primes).)

The remainder of the construction rests on making 5 × 7 zero sum arrays u1 and u2

whose positive and negative supports are respectively G1 and G2 (for u1) and G2 and G0

(for u2), where G2 = {(j1, j2) ∈ Z5 ×Z7 : (0, j1, j2) ∈ F2}. The arrays u1, u2 can be found
with the same method as u0, though the construction of u2 presents a difference which
is worth mentioning. Fig. 9 shows the analog of Fig. 8 for the construction of u2; here
G′

2 = {x ∈ Z2 : 2P < 〈x, z〉 < 3P}, so ρ(G′
2) = G2, and G′

3 = {x ∈ Z2 : 3P < 〈x, z〉 < 4P}
is a translate of G′

0 by (q1, 0) (or (0, q2)), so ρ(G′
3) = ρ(G′

0) = G0 (we cannot use G′
0 and

G′
2 because G′

0 and G′
2 are non-contiguous regions). In this case the region G′

2 ∪ G′
3 is
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not simply connected. The “embedded” blank cells correspond to integer points on the
line L2 = {x : 〈x, z〉 = 3P = n}, which are preimages of (0, 0) ∈ Z5 × Z7 under ρ (by
contrast, the lines 〈x, z〉 = P and 〈x, z〉 = 2P contain no integer points, as the gcd of
the coordinates in z does not divide P or 2P ) (also note that (0, 0) ∈ Z5 × Z7 is the set
{(j1, j2) ∈ Z5 × Z7 : (0, j1, j2) ∈ H}). However f remains zero on the integer points in L2

since the cells centered at these points have equal areas in R+ and R−, thus maintaining
the correctness of the support.

This concludes the discussion of the cases n = 35 and n = 105. In higher dimensions
(i.e. for n with more prime factors) an obstacle which arises is that the shaded region is
too “thin” to contain a hyperplane; then L1, L2 and L3 (which are hyperplanes in the
general case) cannot be embedded in the shaded region, and the whole approach breaks
down. In fact, the condition 2/p > 1/q1 + · · ·+ 1/qk from Theorem 1 guarantees that the
shaded region is “thick enough” to accomodate the sandwich of hyperplanes L1, L2, L3.
Moreover, in the general case and when n is a product of many large distinct primes, the
region Fp−1 itself becomes a precariously thin slice of the whole array, and the union of
the cells in Fp−1 becomes very far from containing a hyperplane. This causes us to be
pessimistic that the certificate w always exists, and hence that Conjecture 1 holds. This
pessimism is reinforced by the fact that the constraints on w for the case n = pq1 · · · qk are
a strict subset of those for the case n = pq1 · · · qkqk+1, where qk+1 > p can be any prime
distinct from q1, . . . , qk. (The latter fact is not surprising considering that Conjecture 1 for
n = pq1 · · · qk is implied by Conjecture 1 for n = pq1 · · · qk+1.) See also the comments after
Problem 1 below. Appending primes ad infinitum also leads us to consider the existence
of an “infinite certificate” for a given prime p. Such an infinite certificate would be, more
precisely, an infinite array wp of size p× q1 × q2 × q3 × · · · where q1, q2, q3, . . . enumerate
the primes greater than p, where for each k the restriction of wp to entries that have ℓ-th
coordinate 0 for ℓ > k+1 constitutes a certificate for the case n = pq1 · · · qk. For example,
we know finite certificates3 of all sizes exist for p = 2 by Theorem 1, but it is not obvious
whether these finite certificates can be extended to an infinite array w2 as just described.
We leave this as another interesting open problem.

4 The General Case

Take n = pq1 · · · qk with p < q1, . . . , qk. As before we work with arrays of size p×q1×· · ·×pk

where the index of entry (j0, j1, . . . , jk) is j0P + j1Q1 + · · ·+ jkQk mod n, where P = n/p
and Qi = n/qi. As before, H is the set of entries of index 0 mod P and Fi is the set of
entries whose index is greater than iP but less than (i + 1)P , 0 6 i 6 p − 1. By Lemma
1 it is sufficient to construct a zero-sum array w of size p × q1 × · · · × qk which is zero
on H and positive on F+ = F0 ∪ · · · ∪ Fp−2. A “layer” of the array is an array of size
q1 × · · ·× qk obtained by fixing a value for the first coordinate (so there are p layers). We

3We know these finite certificates exist because Theorem 1 is true for even n by physical considerations;
it would indeed be interesting to find combinatorial and/or algebraic constructions (or merely proofs of
existence) for these certificates.
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note that the sets Fi induce identical partitions of every layer because the index of an
entry increases by P mod n as we go up one layer, i.e. if an entry is in Fi then the entry
whose first coordinate is one greater is in Fi+1 (as usual indices refering to numbers in
{0, . . . , p − 1} are taken mod p).

We construct w as a linear combination of zero-sum arrays w1, . . . , wp−1 such that each
wi is negative on Fi, positive on Fi+1 ∪Fi−1 and zero elsewhere. Then if α2, . . . , αp−1 > 0
are taken sufficiently quickly increasing w = w1 + α2w2 + · · ·+ αp−1wp−1 is negative only
on Fp−1 and positive everywhere else except on H, where it is 0. Because (j0, j1, . . . , jk) ∈
Fi =⇒ (j0 +1, j1, . . . , jk) ∈ Fi+1 it is sufficient to construct the array w1, as w2, . . . , wp−1

can be obtained from w1 by translation.
We construct w1 as a sum of zero-sum arrays a0, . . . , ap−1 where ai is negative on

the intersection of layers i, i + 1 with F1 and positive on the intersection of layers i,
i + 1 with respectively F0 and F2. Let Gi = {(j1, . . . , jk) : (0, j1, . . . , jk) ∈ Fi}. Con-
sidering layer i as a standalone q1 × · · · × qk array, the positive support of ai in layer
i is {(j1, . . . , jk) : (i, j1, . . . , jk) ∈ F0} = {(j1, . . . , jk) : (0, j1, . . . , jk) ∈ F−i = Fp−i} =
Gp−i and the negative support of ai in layer i is {(j1, . . . , jk) : (i, j1, . . . , jk) ∈ F1} =
{(j1, . . . , jk) : (0, j1, . . . , jk) ∈ F1−i = Fp−i+1} = Gp−i+1. Therefore in order to construct
ai it is sufficient to construct a zero-sum q1 ×· · ·× qk array up−i which is positive on Gp−i,
negative on Gp−i+1 and zero elsewhere. Then ai can be obtained by placing up−i at layer
i and −up−i at layer i + 1. Thus the construction of w1 reduces to the construction of
zero-sum arrays u0, . . . , up−1 of size q1 × · · · × qk such that ui is positive on Gi, negative
on Gi+1 and zero elsewhere.

The problem of constructing the ui’s can be rephrased in Zk. Let z = (Q1, . . . , Qk) ∈
Zk and let G′

i = {x ∈ Zk : iP < 〈x, z〉 < (i+1)P} for 0 6 i 6 p. Let ρ : Zk → Zq1
×· · ·×Zqk

be the projection defined by ρ(x1, . . . , xk) = (x1 mod q1, . . . , xk mod qk). As before,
ρ(G′

i) = Gi (and ρ(G′
p) = G0). Moreover ρ(x) = ρ(y) =⇒ 〈x, z〉 − 〈y, z〉 ≡ 0 mod n, but

if x, y ∈ G′
i ∪ G′

i+1 then |〈x, y〉 − 〈y, z〉| < 2P 6 n so ρ(x) = ρ(y) =⇒ 〈x, z〉 = 〈y, z〉
for x, y ∈ G′

i ∪ G′
i+1. Thus if f : Zk → R is a function with support G′

i ∪ G′
i+1 such that

〈x, z〉 = 〈y, z〉 =⇒ f(x) = f(y) there is a well-defined q1 × · · · × qk array uf whose
(j1, . . . , jk)-th entry has value f(x) for any x ∈ G′

i ∪ G′
i+1 with ρ(x) = (j1, . . . , jk) or has

value 0 if (j1, . . . , jk) /∈ ρ(G′
i ∪ G′

i+1) = Gi ∪ Gi+1, for all 0 6 i 6 p − 1.
A line of integers is a set of the form {(c1, . . . , cj−1, xj , cj+1, . . . , ck) : xj ∈ Z} where

the ci’s are integer constants, for any j ∈ {1, . . . , k}. A function f on Zk is a zero-sum
function if its support is finite on every line of integers and sums to zero on every line of
integers. If fi : Zk → R is a zero-sum function that is positive on G′

i, negative on G′
i+1,

zero elsewhere and such that 〈x, z〉 = 〈y, z〉 =⇒ f(x) = f(y) then it is straightforward
to check that ufi

is a zero-sum array that is positive on Gi, negative on Gi+1 and zero
elsewhere and one may therefore take ui = ufi

. Conjecture 1 thus reduces to an instance
of the following more general problem:

Problem 1. Let P > Q1, . . . , Qk be positive rationals and let z = (Q1, . . . , Qk). Let h ∈ R

and let G+ = {x ∈ Zk : h− P < 〈x, z〉 < h}, G− = {x ∈ Zk : h < 〈x, z〉 < h + P}. Find a
zero-sum function f on Zk such that 〈x, z〉 = 〈y, z〉 =⇒ f(x) = f(y) and that is positive
on G+, negative on G− and zero elsewhere.
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Note that if some line of integers contains a point in G+ but no point in G− or vice-versa
then Problem 1 has no solution. The condition P > Q1, . . . , Qk, however, precludes this,
as translating x by one unit in the i-th coordinate direction increases 〈x, z〉 by Qi < P .
We also note that an argument using averaging and compactness shows that the condition
〈x, z〉 = 〈y, z〉 =⇒ f(x) = f(y) is without loss of generality: if f exists without this
condition, there also exists an f that satisfies this condition. Hence this condition can be
included for free.

Problem 1 is trivial for k = 1 and can be solved by combinatorial methods for k = 2,
but is seemingly very hard for k > 3. Moreover since all the constraints of a k-dimensional
instance of the problem can be strictly contained4 in a (k + 1)-dimensional instance of
the problem, there seems to be no “good reason” why Problem 1 should always have a
solution, and indeed it does not. Small sets of parameters for which Problem 1 doesn’t
have a solution are, for example, obtained by putting k = 3, h = 0, P = n/p, Q1 = n/q1,
Q2 = n/q2, Q3 = n/q3, n = pq1q2q3 with either

(p, q1, q2, q3) = (6, 7, 8, 9)

or
(p, q2, q2, q3) = (11, 13, 17, 19).

The latter setting of parameters is in fact derived from the smallest value of n not cov-
ered by Theorem 1, being n = 46189 = 11 · 13 · 17 · 19. These negative results were
obtained by using an exact rational LP solver, in this case the program CDD written
by Komei Fukuda [4]. (Checking emptiness of the polytope arising from the parameters
(p, q2, q2, q3) = (11, 13, 17, 19) took us 14.5 hours on a laptop; for (p, q1, q2, q3) = (6, 7, 8, 9),
the computation takes around two minutes.) We note the negative result for n = 46189
does not disprove Conjecture 1 for n = 46189 since our reduction from the certificate-
finding problem to Problem 1 is not if-and-only-if.

We will show that Problem 1 has a solution when 2P > Q1 + · · · + Qk, which is
equivalent to the condition 2/p > 1/q1 + · · · + 1/qk when P = n/p and Qj = n/qj .
Theorem 1 follows as a corollary. Our solution is a direct extension of the method Figs.
8, 9 to higher dimensions. However, the existence of the analogues of the lines L1, L2, L3

needs to be carefully proved in the k-dimensional case.

Theorem 2. Problem 1 has a solution when 2P > Q1 + · · ·+ Qk.

Proof. Let x = [x1 − 1
2
, x1 + 1

2
] × · · · × [xk − 1

2
, xk + 1

2
] for any x = (x1, . . . , xk) ∈ Zk

(the “cell around x” or “cell centered at x”) and let S =
⋃

x∈S x for any set S ⊆ Zk.
Let I = {x ∈ Zk : 〈x, z〉 = h}, which may be empty. We will exhibit three parrallel
hyperplanes H1, H2, H3 in Rk with H2 equidistant to H1 and H3 such that, if R+ is the
region between H1 and H2 and R− is the region between H2 and H3,

(i) vol(x ∩ R+) > vol(x ∩ R−) for all x ∈ G+

4This is indeed reminiscent of Conjecture 1 itself. (We are alluding to the fact that the case n = m of
Conjecture 1 is implied by the case n = mq for any prime q larger than the smallest prime dividing m.)
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(ii) vol(x ∩ R+) < vol(x ∩ R−) for all x ∈ G−

(iii) vol(x ∩ R+) = vol(x ∩ R−) for all x ∈ I

(iv) vol(x ∩ R+) = 0, vol(x ∩ R−) = 0 for all x /∈ G+ ∪ G− ∪ I

where ‘vol’ is k-dimensional volume. If (i)–(iv) hold it is clear that the function f(x) =
vol(x ∩ R+) − vol(x ∩ R−) is periodic, zero-sum, and has the required sign and support
(periodicity follows from the fact that H1, H2, H3 are necessarily normal to z).

Let 1 = (1, . . . , 1) ∈ Zk. Let α = sup{〈y + 1
2
1, z〉 : y ∈ Zk, 〈y, z〉 6 h − P}, β =

inf{〈y− 1
2
1, z〉 : y ∈ Zk, 〈y, z〉 > h+P}. Since z is rational there are some yα, yβ ∈ Zk such

that α = 〈yα + 1
2
1, z〉, β = 〈yβ −

1
2
1, z〉. Now 2P = (h+P )− (h−P ) 6 〈yβ, z〉−〈yα, z〉 =

〈yβ − 1
2
1, z〉 − 〈yα + 1

2
1, z〉 + 〈1, z〉 = β − α + Q1 + · · ·+ Qk < β − α + 2P so β − α > 0.

We distinguish between the two cases I = ∅ and I 6= ∅. Assume first that I 6= ∅, so
there exists an integer point y0 such that 〈y0, x〉 = h. Then 〈2y0 − yβ, z〉 = 2h− 〈yβ, z〉 6

h−P and 2y0−yβ ∈ Zk so 〈yα, z〉 > 2h−〈yβ, z〉. Also 〈2y0−yα, z〉 = 2h−〈yα, z〉 > h+P
so 〈yβ, z〉 6 2h − 〈yα, z〉. Therefore h = 1

2
(〈yβ, z〉 + 〈yα, z〉) = 1

2
(β + α).

Let H1 = {x : 〈x, z〉 = α}, H2 = {x : 〈x, z〉 = h}, H3 = {x : 〈x, z〉 = β}. Then
R+ = {x : α 6 〈x, z〉 6 h} and R− = {x : h 6 〈x, z〉 6 β}. The regions R−, R+

are nonempty since β − α > 0 and h = 1
2
(α + β). If x ∈ G+ then vol(x ∩ G+) > 0

since 〈x + 1
2
1, z〉 = 〈yα + 1

2
1, z〉 + 〈x, z〉 − 〈yα, z〉 > α (the last inequality follows because

〈x, z〉 > h − P and 〈yα, z〉 6 h − P ) and since 〈x − 1
2
1, z〉 < 〈x, z〉 < h. Moreover

vol(x ∩ R+) > vol(x ∩ R−) because 〈x, z〉 < h, by convexity and central symmetry of
the k-dimensional cube. Symmetrically, vol(x ∩ R−) > vol(x ∩ R+) for all x ∈ G−, so
conditions (i) and (ii) hold. Condition (iii) is obviously satisfied since I ⊆ H2. Finally if
x /∈ G+ ∪ G− ∪ I then 〈x, z〉 6 h − P or 〈x, z〉 > h − P ; in the former case 〈x + 1

2
1〉 6 α

by definition of α so vol(x ∩ (R+ ∪ R−)) = 0, and in the latter case 〈x − 1
2
1, z〉 > β by

definition of β, so vol(x ∩ (R+ ∪ R−)) = 0, proving (iv).
Assume now that I = ∅. Put h′ = (β + α)/2. Note h′ = (〈yβ, z〉+ 〈yα, z〉)/2. We first

show that if y ∈ G+ then 〈y, z〉 6 h′ and that if y ∈ G− then 〈y, z〉 > h′. Take any y0 ∈ Zk

with 〈y0, z〉 6 h. Let y1 = 2y0−yβ. Then y1 ∈ Zk and 〈y1, z〉 = 2〈y0, z〉−〈yβ, z〉 6 h−P so
〈y1, z〉 6 〈yα, z〉. On the other hand y0 = (yβ + y1)/2 so 〈y0, z〉 = (〈yβ, z〉+ 〈y1, z〉)/2 6 h′

since h′ = (〈yβ, z〉 + 〈yα, z〉)/2. Therefore 〈y, z〉 6 h =⇒ 〈y, z〉 6 h′ for all y ∈ Zk and
symmetrically 〈y, z〉 > h =⇒ 〈y, z〉 > h′ for all y ∈ Zk. In particular, y ∈ G+ =⇒
〈y, z〉 6 h′ and y ∈ G− =⇒ 〈y, z〉 > h′.

If neither G+ or G− have points on the hyperplane 〈x, z〉 = h′ then we may proceed
as in the first case after replacing H2 with the hyperplane {x : 〈x, z〉 = h′}, so we may
assume that either G+ or G−—say G+—has points on the hyperplane 〈x, z〉 = h′. Then
〈x, z〉 > h′ for all x ∈ G− since otherwise we would have 〈ya, z〉 = 〈yb, z〉 for some ya ∈ G+

and yb ∈ G−, a contradiction. Moreover because z is rational there exists some δ > 0 such
that 〈x, z〉 > h′ + δ for all x ∈ G−.

Define R+
ε = {x ∈ Rk : α + 2ε 6 〈x, z〉 6 h′ + ε}, R−

ε = {x ∈ Rk : h′ + ε 6

〈x, z〉 6 β} for any ε > 0. Computing as above, we can see that vol(x ∩ R+
0 ) > 0 for

all x ∈ G+ and vol(x ∩ R−

0 ) > 0 for all x ∈ G−, and that vol(x ∩ (R+
0 ∪ R−

0 )) = 0 for
all x /∈ G+ ∪ G−. Moreover because z is rational there exists some γ > 0 such that
x ∈ G+ =⇒ vol(x ∩ R+

ε ) > 0, x ∈ G− =⇒ vol(x ∩ R−
ε ) > 0 for all ε < γ. Let ε0 > 0
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be smaller than δ and γ. Then x ∈ G+ =⇒ 〈x, z〉 6 h′ =⇒ 〈x, z〉 < h′ + ε0 and
x ∈ G− =⇒ 〈x, z〉 > h + ε0 because ε0 < δ, so vol(x ∩ R+

ε0
) > vol(x ∩ R−

ε0
) for all

x ∈ G+ and vol(x ∩ R+
ε0

) < vol(x ∩ R−
ε0

) for all x ∈ G−, fulfilling conditions (i) and (ii)
with R+ = R+

ε0
, R− = R−

ε0
. Condition (iii) is trivially satisfied since I = ∅ and condition

(iv) is satisfied because R+
ε0
∪ R−

ε0
⊆ R+

0 ∪ R−

0 .

Corollary 1. Theorem 1.
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