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Abstract

A signed graph is a graph where each edge is labeled as either positive or negative.
A circle is positive if the product of edge labels is positive. The frustration index
is the least number of edges that need to be removed so that every remaining
circle is positive. The maximum frustration of a graph is the maximum frustration
index over all possible sign labellings. We prove two results about the maximum
frustration of a complete bipartite graph Kl,r, with l left vertices and r right vertices.
First, it is bounded above by

lr

2

(
1− 1

2l−1

(
l − 1

b l−1
2 c

))
.

Second, there is a unique family of signed Kl,r that reach this bound. Using this
fact, exact formulas for the maximum frustration of Kl,r are found for l 6 7.

1 Introduction

In 1954, Harary published “On the notion of balance of a signed graph”, introducing the
notion of a signed graph [6]. In his paper, Harary defined a signed graph as a graph whose
edge set has been partitioned into positive and negative edges. He called a circle positive
if it had an even number of negative edges, and he called a signed graph balanced if every
circle was positive. He then gave both necessary and sufficient conditions for balance.

Four years after Harary’s paper, Abelson and Rosenberg, [1], proposed a measure
of imbalance, called frustration index (which they called “complexity” and which Harary
called the “line index of balance”). They also gave an upper bound on the frustration index
for simple graphs on n vertices, which Petersdorf proved in [8]. In addition, Petersdorf
proved that for each n, the signed graph that obtain this bound is unique (up to switching).

In [10], Solé and Zaslavsky discovered that the covering radius of the cutset code
of a graph is equal its maximum frustration index. In particular, they showed that the
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covering radius of the Gale–Berlekamp codes were equal to the maximum frustration index
of complete bipartite graphs.

In [5], Graham and Sloane show that the covering radius of the l × r rectangular
Gale–Berlekamp code is bounded above by
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but, they do not prove that the bound is sharp. The goal of this paper is to provide a new
proof of this result, showing that the bound is indeed sharp and that the signed graphs
that meet this bound are unique (up to switching).

2 Preliminaries

A signed graph, Σ, is a pair (G, σ) where G is a graph, and σ : E(G)→ {+,−}. We call
σ the sign function of Σ. The graph G is called the underlying graph of Σ, and is written
|Σ|. A signed graph (G, σ) is called bipartite if its underlying graph is bipartite. In this
paper the bipartition of the vertices is chosen in advance and will be denoted by the pair
(L,R). An edge is positive if σ(e) = +, and negative otherwise. The set of negative edges
of Σ is denoted E−(Σ), and the set of positive edges is E+(Σ). The set E−v is the set
of negative edges incident to vertex v, and E+

v is the set of positive edges incident to v.
Similarly, we partition the neighbors of v, Nv, into N+

v and N−v . If Nv = N+
v , v is called

all positive. If every vertex of (G, σ) is all positive, then the signed graph is the all positive
signed graph +G. A circle in Σ is positive if the product of its edge labels is positive. A
signed graph Σ is said to be balanced if every circle in Σ is positive.

If U ⊆ V (Σ), the graph obtained by negating the edges in the cut [U,U c] is a switching
of Σ and is denoted ΣU . A signed graph Σ′ is switching equivalent to Σ if Σ′ = ΣU for
some U ⊆ V . The set of signed graphs switching equivalent to Σ is called the switching
class of Σ, written [Σ]. It is well known that the switching class [Σ] contains +G if and
only if Σ = (G, σ) is balanced.

The frustration index of a signed graph Σ, f(Σ), is the minimum number of edges
whose deletion yields a balanced signed graph. If Σ is balanced then f(Σ) = 0. It is easy
to show that

f(Σ) = min
Σ′∈[Σ]

|E−(Σ′)|. (1)

For more information on signed graphs, one can refer to [11].

3 Graph Cuts and Frustration Index

Let us consider an arbitrary signed graph Σ and a cut [U,U c] of the underlying graph
of Σ. The weight of [U,U c], written ω[U,U c], is equal to the number of positive edges
in [U,U c] minus the number of negative edges in [U,U c]. A cut is said to be negative if
ω[U,U c] is negative.
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Lemma 1. Let U ⊆ V . The number of negative edges in ΣU is |E−(Σ)|+ ω[U,U c].

Proof. The edges of [U,U c] are the only edges of Σ that change signs when switching U .
Therefore the number of negative edges of ΣU is equal to the number of negative edges
of Σ not in [U,U c] plus the number of positive edges of Σ in [U,U c]. This is the same
as the number of negative edges of Σ minus the number of negative edges in [U,U c] plus
the number of positive edges in [U,U c]. Therefore the number of negative edges of ΣU is
equal to the number of negative edges of Σ plus ω[U,U c].

Theorem 2. The frustration index of Σ is |E−(Σ)|+ min
U⊆V

ω[U,U c].

By equation (1), the frustration index of Σ is the minimum over U ⊆ V of the number
of negative edges of ΣU . By Lemma 1, we know that the number of negative edges in ΣU

is equal to the number of negative edges in Σ plus ω[U,U c]. Thus to minimize the number
of negative edges in ΣU we must minimize ω[U,U c].

It is important to note that computing the minimum weight of a cut is NP-hard when
you allow negative weights, so using this theorem to find frustration index is not much of
an improvement over checking all 2|V | switchings.

Definition 3. A signed graph Σ is said to be reduced if no switching of Σ has fewer
negative edges.

Note that when Σ is reduced, its frustration index is equal to the number of negative
edges of Σ.

Lemma 4. A signed graph Σ is reduced if and only if ω[U,U c] is non-negative for each
U ⊆ V (Σ).

Proof. If there is a U ⊆ V such that ω[U,U c] is negative, then ΣU has fewer negative
edges, and Σ is not reduced. Alternatively if ω[U,U c] is always non-negative, then every
switching of Σ has at least as many negative edges, and Σ is reduced.

Definition 5. For a graph G, the maximum frustration of G, denoted Fmax(G), is the
maximum value of f(G, σ) over all signings σ of G.

In order to determine the value of Fmax(G) for a graph G, we need only look at those
signings of G that are reduced.

From here on we consider an arbitrary signed bipartite graph Σ.

Definition 6. Let G = (L,R,E) be a bipartite graph and let S ⊆ L. An S-cut is a cut
of G of the form [S ∪ T, (S ∪ T )c] where T ⊆ R.

Lemma 7. Let Σ = (L,R,E, σ) be a signed bipartite graph. For each S ⊆ L, the set

T := {v ∈ R | |S ∩N+
v | − |S ∩N−v | 6 |Sc ∩N+

v | − |Sc ∩N−v |}

minimizes the weight of an S-cut. The weight of this minimum S-cut is given by

w(S) =
∑
v∈R

min
(
|S ∩N+

v | − |S ∩N−v |, |Sc ∩N+
v | − |Sc ∩N−v |

)
. (2)
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Proof. Let v ∈ R be a vertex with type (N+
v , N

−
v ). For any T ⊆ R, if v ∈ T , then

Ev contributes |S ∩ N+
v | − |S ∩ N−v | to the weight of the cut. Otherwise Ev contributes

|Sc∩N+
v |−|Sc∩N−v | to the weight of the cut. To minimize the weight of the S-cut, T must

be a set of vertices v such that for each v ∈ T , |S∩N+
v |−|S∩N−v | 6 |Sc∩N+

v |−|Sc∩N−v |.

Since replacing S by Sc in equation (2) does not change the sum, w(S) is equal to
w(Sc).

Let (P,N) be a pair of disjoint subsets of L and let T(L) be the collection of all such
pairs. If we define

wS(P,N) := min
(
|S ∩ P | − |S ∩N |, |Sc ∩ P | − |Sc ∩N |

)
, (3)

then we only need to count the number of right vertices such that (P,N) = (N+
v , N

−
v ) in

order to compute w(S). If xΣ(P,N) is the number of such vertices, then we can rewrite
w(S) as follows:

w(S) =
∑

(P,N)

xΣ(P,N)wS(P,N) = xΣ ·wS.

Observe that if S ⊆ L, then wS(P,N) = wS∩(P∪N)(P,N) because the formula for
wS(P,N) depends only on the intersection of S ∩ P and S ∩N .

Remark 8. If we are given a positive integer vector x ∈ RT(L), we can construct a signed
graph so that xΣ = x. Start with Σ = ((L,∅,∅), σ). For each (P,M) such that x(P,M)
is non-zero, add x(P,M) new vertices to R and new edges signed so that N+

v = P and
N−v = M . Now we have a signed Kl,r and xΣ = x. Such a signed bipartite graph is called
the corresponding signed graph of x.

Theorem 9. Let Σ be a signed bipartite graph with underlying bipartite graph (L,R,E).
Then Σ is reduced if and only if wS · xΣ is non-negative for all S ⊆ L.

Proof. The value of w(S) is the minimum over all T ⊆ R of ω[S ∪ T, (S ∪ T )c]. Let T be
any set that minimizes the value of w(S) . If we switch the cut [S ∪ T, (S ∪ T )c], the size
of E− will increase by w(S). Therefore |E−(ΣS∪T )| = |E−(Σ)| + w(S). If Σ is reduced,
every switching of Σ will have more negative edges. Thus w(S) > 0 for all S. Since
wS · xΣ = w(S), Σ is reduced if and only if wS · xΣ is non-negative for all S ⊆ L.

Lemma 10. Let S ⊆ P ∪N for some type (P,N). Then

wS(P,N) =

{
|S∆N | − |N | if |S∆N | 6 1

2
|P ∪N |,

|Sc∆N | − |N | if |S∆N | > 1
2
|P ∪N |.

(4)

Proof. This is just separating the two possibilities from equation (3) and replacing |S| −
2|S ∩N | by |S∆N | − |N |.

Lemma 11. Let S ⊆ P ∪N for some type (P,N) such that |N | 6 |P |. Then

wS(P,N) =

{
−wS(P∆S,N∆S) if |S∆N | 6 1

2
|P ∪N |,

−wS(N∆S, P∆S) if |S∆N | > 1
2
|P ∪N |.

(5)
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Proof. If |N | 6 |P | then |N | 6 1
2
|P ∪N |. By equation 4,

wS(P∆S,N∆S) = |N | − |S∆N | = −wS(P,N). (6)

If |N | > |P |, then |P | > 1
2
|P ∪N |. By equation 4,

wS(N∆S, P∆S) = |P | − |S∆P | = |P | − |Sc∆N | = −wS(P,N). (7)

Let L be a finite set. The set B(L) := {{S, Sc} | S ⊆ L} is the set of bipartitions
of L. If {S, Sc} and {T, T c} are two elements of B(L), then the symmetric difference
{S, Sc}∆{T, T c} is defined to be {S∆T, Sc∆T}. Note that the symmetric difference of
two bipartitions is commutative so B(L) is an abelian group.

Theorem 12. For each bipartition {P,N} ∈ B(L), let (P,N) be ordered so that |P | >
|N |. Then for any S ⊆ L the following holds:∑

{P,N}∈B(L)

wS(P,N) = 0. (8)

Proof. By equation (5), if |S∆N | 6 1
2
|P ∪N |, then wS(P,N) and wS(P∆S,N∆S) cancel.

Otherwise, |S∆N | > 1
2
|P ∪N | and wS(P,N) will cancel with wS(N∆S, P∆S). Since only

one of the latter two can appear in the sum, the sum is zero.

4 A Cone of Reduced Configurations

For a complete bipartite graph Kl,r = (L,R,E) and signing σ, each vertex v ∈ R satisfies
N+
v ∪N−v = L, so we need only consider the pairs in B(L). Since wS(P,N) = wSc(P,N),

we only need to check one cut for each bipartition {S, Sc} of L to determine if a signed
complete bipartite graph is reduced. Let Kl be the B(L)×B(L) matrix whose entry in
the ({S, Sc}, {P,N}) position is the weight contributed by a vertex of type (P,N) to a
minimum S-cut. That is (KL){S,Sc},{P,N} = wS(P,N).

Theorem 13. Let Σ be a signed complete bipartite graph with left vertex set L. Then
KL · xΣ > 0 if and only if Σ is reduced.

Proof. By Theorem 9, Σ is reduced if and only if wS · xΣ > 0 for all S ⊆ L.
Let l = |L|, define Pl to be the set of vectors in the first orthant of RB(L) satisfying

KL · x > 0. Also, define f ∈ RB(L) as the vector such that

f(P,N) := min(|P |, |N |). (9)

In order translate frustration index of a bipartite graph to a geometric setting, we
need the following definition.

Definition 14. The frustration of a vector x ∈Pl is f · x.
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For an integer vector x in Pl, the frustration of x is the frustration index of the
corresponding signed graph. Let Pl,r be the set of vectors of x ∈ Pl such that x · 1 =
r. Here the integer vectors correspond to reduced signings of Kl,r. We are looking to
maximize f ·x subject to KL ·x > 0 and x ·1 = r where x is a non-negative integer vector.
That is, we have the integer linear program:

max{f · x | x > 0,KL · x > 0,x ∈ ZB(L)}. (10)

Let K̃L be the matrix obtained from KL by replacing the zero row with the all ones
vector. Since the only row of KL that is all zero is the row corresponding to ∅, this is
well defined.

Lemma 15. If the matrix K̃L is invertible, then r
2l−1 1 is the unique vertex that maximizes

f · x in Pl,r.

Proof. If K̃L is invertible, then r
2l−1 1 is the only vertex of Pl,r that satisfies K̃Lx = re∅.

The columns of K̃−1
L give the directions in which we can travel in Pl,r by violating a single

hyperplane equality. This means K̃−1
l · f gives the change in frustration from traveling in

each of these directions away from v. Define b ∈ RB(L) by letting b(∅, L) = 2l−1− 1 and
b(S, Sc) = −1 otherwise. Using equation (5) we can see that K̃l · b = 2l−1f , and thus
K̃−1
l · f = 1

2l−1 b. This means that traveling along any edge of Pl,r incident to the point
r

2l−1 1 will reduce the frustration of the resulting vector. Since r
2l−1 1 is the only vertex

satisfying

K̃Lx =

{
r if {S, Sc} = {∅, L}
0 otherwise,

(11)

it must maximize f · x in Pl,r.
Let SL be the B(L)×B(L) matrix such that

(SL){S,Sc},{P,M} = min(|S∆M |, |Sc∆M |).

Note that SL = KL + 1T f . This is because the ({S, Sc}, {P,M}) entry of KL is

min(|S∆M | − |M |, |Sc∆M | − |M |), (12)

where |P | 6 |M |. Thus the first row of SL is f .

Lemma 16. If SL is invertible, then the null space of KL is spanned by 1.

Proof. Let y be a non-zero element in the null space of SL. By equation (4), we know
that SL − 1T f = KL. We also know that f is the first row of SL, which means f · y = 0.
Therefore, y is in the null space of KL. If SL is invertible, then the only way to be in the
null space of KL is to be a solution of SL = c1 for some constant c. If SL is invertible,
then there can only be one solution to this equation. This proves that KL has nullity 1.

Definition 17. Let G be a group, and let M be a G × G matrix. M is said to be
G-invariant if there is a class function f : G→ C such that Mg,h = f(hg−1).
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Since (SL){S,Sc},{P,N} = f({S, Sc}∆{P,N}), SL is B(L)-invariant.
Let χ be a character of G. Define λχ by

λχ :=
∑
g∈G

χ(g)f(g). (13)

Theorem 18 (Eigenvalues of Invariant Matrices [2]). IfM is a G-invariant matrix, then
the eigenvectors of M are the characters of G. Furthermore, if χ is a character of G,
then λχ is the eigenvalue of χ.

Definition 19. Let 0 6 i 6 l. Define

λi(l) :=
∑

T⊆[l−1]

(−1)|T∩[i]|min(|T |, l − |T |). (14)

Theorem 20. Let 0 6 i 6 l. Then λi(l) is an eigenvalue of SL. Furthermore, the
multiplicity of λi(l) is

(
l−1
i

)
.

Proof. Since B(L) is isomorphic to the power set of [l − 1], χS(T ) = (−1)|T∩S| is a
character of B(L) for each S ⊆ [l − 1]. By equation (13),

λS(l) =
∑

T⊆[l−1]

(−1)|T∩S|min(|T |, l − |t|).

Furthermore, the value of λS(l) depends only on the size of S. Therefore,

λS(l) =
∑

T⊆[l−1]

(−1)|T∩{1,2,...,|S|}|min(|T |, l − |t|).

Since λS(l) = λi(l), λi(l) is an eigenvalue of SL. To prove that the multiplicity of λi(l) is(
l−1
i

)
, note that there are

(
l−1
i

)
subsets of [l − 1] of size i.

Lemma 21. If l is odd and 0 < i < l, then λi(l) = 1
2
λi(l + 1).

Proof. Let us compute the value of λi(l + 1) by breaking the summation into two parts.
The first part is over those subsets such that l 6∈ T , and the second part is over subsets
such that l ∈ T .

λi(l + 1) =
∑

T⊆[l−1]

(−1)|T∩[i]|min(|T |, l + 1− |T |)

+
∑

T⊆[l−1]

(−1)|(T∪{l})∩[i]|min(|T ∪ {l}|, l + 1− |T ∪ {l}|).

Since i < l, (−1)|(T∪{l})∩[i]| = (−1)|T∩[i]|. So except for the +1 that appears on different
sides to the two minimums, each term looks like the corresponding term in λi(l). We will
move the +1 from the minimum in the first term into a new sum when l+ 1− |T | < |T |.
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Similarly, we will move the +1 from the minimum in the first term into a new sum when
l + 1− |T | > |T |. Thus

λi(l + 1) = 2λi(l) +
∑

T⊆[l−1]
l<2|T |

(−1)|T∩[i]| +
∑

T⊆[l−1]
l>2|T |

(−1)|T∩[i]|.

Since l is odd, the two remaining pieces cancel, and we are done.

Lemma 22. If i is even and 0 < i 6 l, then λi(l) = λi−1(l).

Proof. We will show that λi(l)− λi−1(l) = 0 when i is even. Note that

λi(l)− λi−1(l) =
∑

T⊆[l−1]

min(|T |, l − |T |)
(
(−1)|T∩[i]| − (−1)|T∩[i−1]|) .

If i 6∈ T , then
(
(−1)|T∩[i]| − (−1)|T∩[i−1]|) is zero. If i ∈ T , then this difference is equal to

−2(−1)|T∩[i−1]|. Thus the only non-zero terms left in the sum are when i ∈ T . Therefore,

λi(l)− λi−1(l) = −2
∑

T⊆[l−1]
i∈T

min(|T |, l − |T |)(−1)|T∩[i−1]|.

Because i − 1 is odd, the parities of T ∩ [i] and ([l − 1]\T ) ∩ [i − 1] are different. Also,
min(|T |, l − |T |) = min(|([l − 1]\T ) ∪ {i}|, l − |([l − 1]\T ) ∪ {i}|). Thus the remaining
terms in the sum pair up and cancel.

Lemma 23. If 0 < i 6 l is odd and l = 2k, then

λi(l) = (−1)k
2k−1

(k − 1)!

k∏
t=1

(2(k + t)− i). (15)

In particular, λi(l) 6= 0.

Theorem 24. Let 0 < i 6 l, if i is even, then

λi(l) = (−1)dl/2e
2bl/2c−1

(dl/2e − 1)!

dl/2e∏
t=1

(2(dl/2e+ t) + (i− 1)). (16)

If i is odd, then

λi(l) = (−1)dl/2e
2bl/2c−1

(dl/2e − 1)!

dl/2e∏
t=1

(2(dl/2e+ t) + i). (17)

Proof. By Lemma 23, the formula is correct when l is even and 0 < i 6 l is odd. By
Lemma 21, if l is odd then λi(l) = 1

2
λi(l + 1). By Lemma 22, λi(l) = λi−1(l) when i is

even (except for when i = 0). Thus formula (17) is correct.
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Lemma 25. The matrix SL is invertible.

Proof. By Theorem 24, the eigenvalues are given by equations (16) and (17). Because
each factor in each of the products is odd, the eigenvalues are never zero. The only value
not accounted for by Theorem 24 is when i = 0, but equation (14) shows λ0(l) is positive.
Therefore SL is invertible.

Theorem 26. The matrix K̃L is invertible.

Proof. By lemma 16, the null space of KL is spanned by 1 and the rank of K̃L is one
greater than the rank of KL. Therefore K̃L is invertible.

Theorem 27. Given l, r > 0,

Fmax(Kl,r) 6
lr

2

(
1− 1

2l−1

(
l − 1

b l−1
2
c

))
, (18)

with equality if and only if r is a positive integer multiple of 2l−1.

Proof. Combining Lemma 15 and Theorem 26, r
2l−1 1 is the unique vertex that maximizes

f · x in Pl,r. Therefore, f · r
2l−1 1 is the maximum value of f · x over Pl,r. Whenever r

2l−1

is an integer, we have an integral solution to the linear program max{f · x | x ∈ Pl,r}.
Because non-negative integral vectors in Pl,r correspond to signed complete bipartite
graphs, we have a signed Kl,r with maximum frustration. If r

2l−1 is not an integer, the
optimal solution to the linear program is not integer, so the solution to the integer program
is strictly smaller than the solution to the linear program.

It remains to be shown that the maximum frustration index of Kl,r is bounded by the
expression in inequality (18). To do this, we need only compute the value of f · r

2l−1 1.
Note that

f · 1 =
∑

{P,N}∈B(L)

min(|P |, |N |).

By convention, |N | 6 |P | so we can use binomial coefficients to write the sum over the
size of N . If l is even, we add up the sizes of each set of size less than l/2 and half the
sets of size l/2.

f · 1 =

1
2
l∑

i=0

(
l

i

)
i− 1

2

(
l
1
2
l

)
(19)

=

b l−1
2
c∑

i=0

(
l

i+ 1

)
(i+ 1)− 1

2

(
l
1
2
l

)
1
2
l. (20)
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Now replace
(
l

i+1

)
(i+ 1) by l

(
l−1
i

)
and

(
l
l/2

)
(l/2) by l

(
l−1
b l−1

2
c

)
:

f · 1 = l

b l−1
2
c∑

i=0

(
l − 1

i

)
− 1

2

(
l − 1

b l−1
2
c

) (21)

= l

(
2l−2 − 1

2

(
l − 1

b l−1
2
c

))
. (22)

If l − 1 is odd, we have no sets of size 1
2
l so instead

f · 1 =

b1
2
lc∑

i=0

(
l

i

)
i =

l−1
2∑
i=0

(
l

i

)
i. (23)

Now replace
(
l
i

)
i by l

(
l−1
i−1

)
, so

f · 1 = l

l−1
2
−1∑

i=0

(
l − 1

i

)
= l

(
2l−2 − 1

2

(
l − 1

b l−1
2
c

))
. (24)

Multiplying equations (22) and (24) by r
2l−1 gives the desired bound.

Perhaps the most interesting thing about this theorem is that the bound is a linear
function of r. Since the bound is achieved periodically (with period 2l−1), it is also the
best linear upper bound.

Using Stirling’s formula, you can show that the maximum frustration of a signed Kl,r

is bounded above by

lr

2

(
1−

√
2

πl

)
. (25)

Corollary 28. The maximum frustration of Kn,n is bounded above by

n2

2

(
1− 1

2n−1

(
n− 1

bn−1
2
c

))
. (26)

Proof. Let l = r = n in Theorem 27.
Note that this bound is a strict upper bound, even if (26) is an integer. This is because

the only way the bound of Theorem 27 can be obtained is when r = 2l−1.

5 Maximum Frustration of Complete Bipartite Graphs

Let CK̃L
be the set of points in RB(L) that satisfy K̃Lx > 0.

Theorem 29. Let r be a positive integer, and let x0 ∈ CK̃L
be an integer point that

maximizes the value of f · x over all x ∈ CK̃L
such that x · 1 = r. Then x0 + n1 is an

integer point that maximizes f · x over all x ∈ CK̃L
such that x · 1 = r + n2l−1.
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Proof. Since K̃L is invertible, the cone CK̃L
must be simple (and simplicial). This is

because the only way to get a generating ray is by taking the intersection of all but
one of the defining hyperplanes. Because CK̃L

is simple, every integer point in the cone is
equal to an integer linear combination of generating vectors plus some integer point in the
fundamental parallelepiped. Thus the columns of K̃−1

L are the generating vectors of the
cone CK̃L

. By Lemma 15, each generating vector except the first has negative frustration.
Thus, maximum integer solutions must be integer multiples of 1 plus an integer point
from inside the fundamental domain.

Definition 30. Let εl,r be the difference between the bound in Theorem 27 and Fmax(Kl,r).

By Theorem 27, for any positive integer k there is a signed graphs that attain the
bound with equality when r = k2l−1. Therefore, εl,k2l−1 is zero for every positive integer
k.

Theorem 31. The maximum frustration of K5,r is equal to b25
16
rc − εr, where

εr =

{
1 if r ≡ 2, 4, 9, 13 (mod 16),

0 otherwise,
. (27)

except for r = 1, 3, where ε5,1 = ε5,3 = 1.

Proof. By Theorem 29, if we have a set of solutions to

max{f · x | x ∈ CK̃[5]
∩ ZB([5]),x · 1 = r} (28)

for 0 6 r 6 16, adding k1 to any of these solutions will give a solution to

max{f · x | x ∈ CK̃[5]
∩ ZB([5]),x · 1 = 16k + r}. (29)

So long as one of the solutions xmax is positive, we have a signed graph with frustration
index f · xmax. Using GLPK, [7], we can construct a list of integer solutions to (28) when
0 6 r 6 16. Since the least entry of any of these solutions is −1, adding k1 with k > 1
will give a non-negative integer optimum solution. The only r for which there are no
non-negative optima to the integer program of (28) are 1 and 3.

In [10], Solé and Zaslavsky computed Fmax(Kl,r) when l 6 5. My method provides
another proof of their results. It also corrects their formula for Fmax(K5,r) when r = 15.
In [10], they say Fmax(K5,15) = 22, when in fact there is a signed K5,15 which achieves the
bound of 23 from Theorem 27.

Example 32. By finding a solution to the integer programming problem

max{f · x | x ∈ CK̃[5]
,x · 1 = 15}, (30)
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one can construct a reduced signed K5,15 whose frustration index is 23. Its bipartite
adjacency matrix is

1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 1
1 1 -1 1 1 1 -1 1 1 1 -1 -1 -1 1 1
1 1 1 -1 1 1 1 -1 1 1 -1 1 1 -1 -1
1 1 1 1 -1 1 1 1 -1 1 1 -1 1 -1 1
1 1 1 1 1 -1 1 1 1 -1 1 1 -1 1 -1

 .

The frustration index is the number of negative entries since the graph is reduced. One
can check that the corresponding signed graph is reduced by checking that the weights of
the 16 minimum S-cuts are all non-negative. The weights of these cuts are all either 0, 1,
or 2.

Theorem 33. The maximum frustration of K6,r is equal to b66
32
rc − ε6,r, where

ε6,r =



0 if r ≡ 6, 12, 14 (mod 16),

0 if r ≡ 0, 8, 26, 31 (mod 32),

1 if r ≡ 5 (mod 8),

1 if r ≡ 2, 4, 7, 9, 11 (mod 16),

1 if r ≡ 10, 15, 16, 24 (mod 32),

2 if r ≡ 1, 3, 17, 19 (mod 32).

(31)

The only exception is when r = 6, where ε6,6 = 1.

Theorem 34. The maximum frustration of K7,r is equal to b154
64
rc − εr, where

εr =



0 if r ≡ 7, 12, 14, 16, 17, 22,

24, 26, 27 (mod 32),

0 if r ≡ 3, 8, 18, 34, 36, 38,

43, 51, 63 (mod 64),

1 otherwise.

(32)

With exceptions when r ∈ {3, 14, 17, 18, 36, 49} or r ∈ {1, 2, 5, 10, 26}, where εr is 1 in the
first case, and 2 in the second.

While the methods of integer programming are capable of producing results for l 6 7
quickly, computational time increases exponentially, so in general this is not a great
method for arriving at new formulas. Hopefully further examination of the cone CK̃L

will
yield better results. In particular, it would be nice to show that εl,r is bounded above by
a linear term in l.
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