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Abstract

We prove that for every k > 0 there is an integer n0(k) such that, for every
n > n0, there exists a hypohamiltonian graph which has order n and crossing
number k.
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1 Introduction

Throughout this paper all graphs will be undirected, finite, connected, and without loops
or multiple edges. For a graph G, we denote by V (G) its vertex set and by E(G) its
edge set. The path P with {uv} = E(P ) will also be denoted by uv. A graph G
is hypohamiltonian if G is not hamiltonian but for any v ∈ V (G) the graph G − v is
hamiltonian. Denote the set of all hypohamiltonian graphs by P. For an overview, see
the survey of Holton and Sheehan [8]. Not included therein are recent results concerning
the planar case, due to the author and Zamfirescu [17], Araya and Wiener [3, 15], the
author [16], and Jooyandeh, McKay, Österg̊ard, Pettersson, and the author [9].

A drawing of a graph G is an injective mapping f that assigns to each vertex a point
in the plane and to each edge uv a Jordan arc (i.e. a homeomorphic image of a closed
interval) connecting f(u) and f(v), not passing through the image of any other vertex.
For simplicity, the arc assigned to uv is called an edge of the drawing, and if this leads to
no confusion, it is also denoted by uv. We assume that no three edges have an interior
point in common, and if two edges share an interior point p, then they cross at p. We
also assume that any two edges of a drawing have only a finite number of crossings (i.e.
common interior points). A common endpoint of two edges does not count as a crossing.
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The crossing number of G, denoted by cr(G), is the minimum number of edge crossings
for all possible drawings of G. An overview of results concerning the crossing number
can be found in Székely’s paper [11] and the unpublished manuscript [10] by Richter and
Salazar.

It is our aim in this note to study the crossing number of certain hypohamilto-
nian graphs. Little seems to be known. We shall use the family of generalized Pe-

tersen graphs GP(n, k) introduced by Coxeter [5]. A graph in GP(n, k) has vertex set
{u1, ..., un, v1, ..., vn} and edge set

⋃n

i=1
{uiui+1, uivi, vivi+k}, the indices being taken mod-

ulo n, and 1 6 k 6 ⌊(n − 1)/2⌋. Alspach [2] showed that GP(n, k) is non-hamiltonian if
and only if n ≡ 5 (mod 6) and k = 2. We call this particular subfamily F . Bondy [4]
showed that F ⊂ P.

The Petersen graph P = GP(5, 2) ∈ F has crossing number 2. The proof this well-
known fact is short. Firstly, draw P with two crossings (see Fig. 1). Secondly, prove that
it is impossible to draw the Petersen graph with less than two crossings. One can do this
with the following argument based on Euler’s formula (see for instance [11]). Denote the
girth, size, order of a graph G by g, m, n, respectively. Then we have

cr(G) >

⌈

m −
g(n − 2)

g − 2

⌉

. (†)

For P , g = 5, m = 15, n = 10; thus (†) yields cr(P ) > 2.

Figure 1: Petersen’s graph drawn with two edge crossings.

Exoo, Harary, and Kabell [6] showed that cr(GP(n, 2)) = 3 when n is odd and at
least 7. Therefore, all other members of F have crossing number 3.

In 2011, it was shown by Araya and Wiener [15] that there exist planar hypohamil-
tonian graphs of order n for every n > 76. This bound was recently improved to 42
by Jooyandeh, McKay, Österg̊ard, Pettersson, and the author [9]. The smallest hypo-
hamiltonian graph is the Petersen graph, which has crossing number 2. All non-planar
hypohamiltonian graphs constructed (explicitly) in the literature seem to have crossing
number at least 2, and in fact for few of them the crossing number has been computed
explicitly.
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For a vertex x, we denote by N(x) the set of vertices which are joined by an edge to
x. We will call a 4-cycle or a quadrilateral face cubic, if all of its vertices are cubic. For
a set A ⊂ V (G) we denote by G[A] the graph spanned by A in G.

2 Result

We require a construction method introduced by Thomassen [14]. Let G ∈ P contain a
4-cycle abcda = C. We delete the edges ab and cd, add two new vertices a′ and d′, and
add the edges a′d′, aa′, dd′, a′c, d′b. Denote the resulting graph by G⋆

C . Whenever the
choice of C is clear, we simply write G⋆. For an illustration of a case where G is planar,
see Fig. 2.

Lemma 1. If G ∈ P contains a cubic 4-cycle C, then G⋆
C ∈ P. If G is planar, then

cr(G⋆
C) = 1.

Thomassen mentions in [14] the first part of the above statement, but gives no proof.
Therefore, we choose to show here both parts.

Proof. Notice that the 4-cycle abcda = C is chordless, as it is cubic and G is 3-connected.
Assume G⋆ contains a hamiltonian cycle H . There are four essentially different possibili-
ties for H to visit a′ and d′.

(i) ca′d′b ⊂ H . Replacing ca′d′b with cb we obtain a hamiltonian cycle in G, a contra-
diction.

(ii) ca′a ⊂ H . Then bd′d ⊂ H . Replace either ca′a with cb and bd′d with ad or ca′a
with cd and bd′d with ab. One of these replacements yields a hamiltonian cycle, which
leads to contradiction.

(iii) aa′d′d ⊂ H . Then bc ⊂ H . Replacing aa′d′d with ad we obtain a hamiltonian
cycle in G, a contradiction.

(iv) ca′d′d ⊂ H . Then bca′d′da ⊂ H and replacing ca′d′d by cd yields a hamiltonian
cycle in G, a contradiction.

Hence, G⋆ is non-hamiltonian.
Put n = |V (G)| and n⋆ = |V (G⋆)|. We now show that for each v ∈ V (G⋆) there exists

an (n⋆ − 1)-cycle H⋆
v in G⋆ − v. Consider v ∈ V (G) \ {a, b, c, d} and the (n− 1)-cycle Hv

in G − v. Observe that Hv must contain two opposing edges of C. There are two cases
to consider.

(i) If ab ⊂ H and cd ⊂ H , then either replace ab with aa′c and cd with bd′d or replace
ab with aa′d′d and cd with cb. As above, one of these replacements yields a hamiltonian
cycle.

(ii) If ad ⊂ H and bc ⊂ H , then in case cd 6⊂ H replace ad with aa′d′d, and in case
cd ⊂ H replace cd by ca′d′d.

We obtain H⋆
b from Hb and H⋆

a from Ha by replacing dc with dd′a′c. Analogously we
get H⋆

c and H⋆
d . For H⋆

a′ consider Hd and replace ab with add′b. Analogously we get H⋆
d′ .

This shows that G⋆ ∈ P.
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Now suppose G is planar. G⋆ contains a graph K homeomorphic to K3,3, where
V (K) = {a, c, d′, a′, b, d}. Thus, by Kuratowski’s Theorem, G⋆ is non-planar. It is easy
to draw G⋆ in the plane with exactly one crossing (for an example, see Fig. 2).

Lemma 2. There exists a hypohamiltonian graph with crossing number 1.

Proof. Apply Lemma 1 to a planar cubic hypohamiltonian graph containing a quadrilat-
eral face. For instance we can take the 76-vertex graph Q of Fig. 2 constructed by the
author [16]. The resulting graph Q⋆ is shown in Fig. 2. Using the second part of Lemma 1,
we obtain the statement.

aa′

b

cd
d′

a b

cd

Figure 2: On the left, a planar cubic hypohamiltonian graph Q is shown; on the right, Q⋆

is shown. Q⋆ has crossing number 1. The grey edges in Q⋆ show a subgraph homeomorphic
to K3,3.

Consider graphs G and G′ containing cubic vertices x and x′, respectively. Denote by
GxG

′

x′ one of the graphs obtained from G − x and G′ − x′ by identifying the vertices in
N(x) with those in N(x′) using a bijection (see Fig. 3). The next lemma (Lemma 3) is
due to Thomassen [12], while Lemma 4 is easy to show and its proof is left to the reader.
For an illustration of Lemma 4, see Fig. 3.

Lemma 3. Let G, G′ ∈ P each contain a cubic vertex, say x and x′, respectively. Then

GxG
′

x′ ∈ P.

Lemma 4. Assume that G and G′ contain cubic vertices x ∈ V (G) and x′ ∈ V (G′),
respectively, such that x /∈ U , where U is the set of vertices of all crossing edges in a

drawing of G with cr(G) crossings, and G′ is planar. Then cr(GxG
′

x′) = cr(G).
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x′

(a)

(c)

(b)

Figure 3: (a) shows a non-planar graph G. The vertices of U are marked with a grey
boundary. (b) depicts a planar graph G′. (c) illustrates Lemma 4: cr(GxG

′

x′) = cr(G) = 1.

Lemma 5. For any k > 0 there exists a hypohamiltonian graph which has crossing num-

ber k.

Proof. For k = 0, consider a planar cubic hypohamiltonian graph such as the graph Q of
Fig. 2. Put Q1 = Q⋆ (see Fig. 2). In Q minus the edges ab and cd, denote the shortest
path between a and b by S and the shortest path between c and d by T . Consider

J = Q⋆[{a, a′, b, c, d, d′}] ∪ S ∪ T,

marked with grey edges in Fig. 2. Consider a cubic vertex v ∈ V (Q⋆) with N(v)∩ J = ∅.
Take two copies Q′, Q′′ of Q⋆, the corresponding subgraphs J ′, J ′′, and the corresponding
vertices v′, v′′. Consider Q2 = Q′

v′Q
′′

v′′ .
This graph contains two graphs homeomorphic to K3,3, namely J ′ and J ′′, and J ′ ∩

J ′′ = ∅. Since cr(K3,3) = 1, we have cr(Q2) = 2. Now construct in the same manner
Qk = Qk−1

w Q1
v (where w ∈ V (Qk−1) is a cubic vertex such that N(w) does not meet any

subgraph isomorphic to J), yielding cr(Qk) = k. We may iterate this ad infinitum, as in
every step many cubic vertices are introduced.

Theorem 6. For every k > 0 there is an integer n0(k) such that, for every n > n0, there

exists a hypohamiltonian graph which has order n and crossing number k.

Proof. Let Qk be the hypohamiltonian graph with crossing number k constructed in the
proof of Lemma 5. It has plenty of cubic vertices. Now choose a cubic vertex v ∈ V (Qk)
no neighbour of which belongs to any of the used subgraphs isomorphic to J . For every
n > 42 there exists a planar hypohamiltonian graph Hn of order n [9]. By a result of
Thomassen [13], every planar hypohamiltonian graph contains a cubic vertex. Thus, for
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every n the graph Hn contains a cubic vertex w. We apply Lemmas 3 and 4 to Qk and Hn,
obtaining the graph Qk

vH
n
w. Providing the family {Qk

vH
n
w}

∞

n=42 yields the statement.

3 Remarks on ck, hk, and the cubic case

Let ck be the order of the smallest hypohamiltonian graph with crossing number k, and
let hk denote the minimum number such that there exists a hypohamiltonian graph of
order n and crossing number k for every n > hk.

An upper bound for c0 is a direct consequence of a result from [9], where it is shown that
there exists a planar hypohamiltonian graph of order 40. We now prove that c1 6 46.
By applying a method of Thomassen [14], called in [15] “Thomassen operation” and
denoted by Th, in [9] it is shown that there exists a planar hypohamiltonian graph W of
order 44 containing a quadrilateral cubic face. By Lemma 1, W ⋆ is a hypohamiltonian
graph of order 46 and crossing number 1. We recall that the Petersen graph P has crossing
number 2, so c2 = 10 (as P is the smallest hypohamiltonian graph, see e.g. [7]). Moreover,
cr(GP(11, 2)) = 3, see [6]. In summary, we have

18 6 c0 6 40, 18 6 c1 6 46, c2 = 10, and 13 6 c3 6 22,

where the lower bounds on c0 and c1 can be computed by using the list of small hypo-
hamiltonian graphs provided by Aldred, McKay and Wormald [1] and applying (†): all
seven hypohamiltonian graphs on fewer than 18 vertices have crossing number at least 2.

By [9], we have h0 6 42. For k = 1 denote by Hn the hypohamiltonian graph of
order n used to show the aforementioned result from [9]. By applying the Thomassen
operation to Hn we obtain a planar hypohamiltonian graph Th(Hn) of order n + 4 with
a cubic quadrilateral face. Via Lemma 1 we obtain the family {(Th(Hn))⋆}∞n=42 with
|V ((Th(Hn))⋆)| = n + 6. As mentioned before, we have cr(P ) = 2 and cr(GP(11, 2)) = 3,
so by applying Lemma 3 we obtain the families {PxH

n
y }

∞

n=42 and {GP(11, 2)xH
n
y }

∞

n=42. All
of the above shows that

h0 6 42, h1 6 48, h2 6 47, and h3 6 59.

The author [16] showed that there exists a planar cubic hypohamiltonian graph Hn

of order n for every n > 76. Each Hn contains a (unique) quadrilateral face, and each
member of the family {(Hn)⋆}∞n=76 has crossing number 1. Therefore, for every even n > 78
there exists a cubic hypohamiltonian graph which has order n and crossing number 1.
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