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Abstract

We define the notion of asymptotically free for locally restricted compositions,
which means roughly that large parts can often be replaced by any larger parts. Two
well-known examples are Carlitz and alternating compositions. We show that large
parts have asymptotically geometric distributions. This leads to asymptotically
independent Poisson variables for numbers of various large parts. Based on this
we obtain asymptotic formulas for the probability of being gap free and for the
expected values of the largest part, number of distinct parts and number of parts
of multiplicity k, all accurate to o(1).

Dedicated to the memory of Herb Wilf.

1 Introduction

Various authors have considered aspects of unrestricted compositions and Carlitz compo-
sitions (unequal adjacent parts) that require knowledge about the large parts. The results
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include information about largest part, number of distinct parts, gap-freeness and num-
ber of parts of multiplicity k. We extend these results to a broad class of compositions,
drawing on earlier work on locally restricted compositions [3] by defining a subclass of
locally restricted compositions for which we can show that the large parts are asymptoti-
cally independent geometric random variables. This leads to asymptotically independent
Poisson random variables for numbers of various large parts. Our main goal is to prove
Theorem 1. Although a full understanding of the theorem requires some definitions, it
can be read now. Among the compositions included in our definition are unrestricted,
Carlitz and alternating up-down.

Although it was not possible to compute generating functions in [3], various properties
were established, including the following.

(a) The number of compositions of n is Ar−n(1 + O(δn)) for some 0 < δ < 1 because
of a simple pole in the generating function. Since the convergence to Ar−n is expo-
nentially fast, the values of r and A can be estimated fairly easily if one can count
compositions for relatively small values of n. [3, Theorem 3]

(b) If a subcomposition can occur arbitrarily often, the number of times it occurs in
a random composition of n has a distribution that is asymptotically normal with
mean and variance asymptotically proportional to n. The same is true for the total
number of parts in a random composition. [3, Theorem 4]

(c) In many cases, the largest part and number of distinct parts in a random composition
is asymptotic to log1/r n. [3, Section 9]

Various special cases were considered [2, 4], where more could be said about the generating
functions. In none of these papers was the behavior of the large parts addressed beyond
that in (c).

Definition 1 (Composition terminology). N and N0 denote the positive integers and the
non-negative integers, respectively.

A composition is written ~c = c1 · · · ck where ci ∈ N. We use the same notation
to denote concatenation of compositions as in ~a1 · · ·~am. The length of ~c = c1 · · · ck is
denoted by len(~c) = k and the sum of the parts by Σ(~c).

A subcomposition of ~c is a sequence of one or more consecutive parts of ~c. The
ordered k-tuple (L1, . . . , Lk) is a subsequence of ~c if for some increasing sequence of
indices 1 6 j1 < j2 < · · · < jk 6 len(~c) we have cji = Li, 1 6 i 6 k. A subsequence
of a composition is marked if the elements of the subsequence are distinguished in some
manner. For example, in the composition abacb there is no marked subsequence whereas
ȧbaċb and abȧċb each contain the marked subsequence (a, c).

Definition 2 (Local restriction function). Let m, p ∈ N. A local restriction function of
type (m, p) is a function

φ : {0, 1, . . . ,m− 1} × (N0)p+1 → {0, 1}

with φ(i; 0, . . . , 0) = 1 for all i. The integers m and p are called, respectively, the modulus
and span of φ.
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Definition 3 (Class of compositions determined by local restrictions). Let φ be a local
restriction function. The class of compositions determined by φ is

Cφ = {~c : ~c is a composition, and φ(imodm; ci, ci−1, . . . , ci−p) = 1 for i ∈ Z}.

If an index j refers to a part before the first part (j < 1) or after the last part (j greater
than the number of parts), we set cj = 0.

A class C of compositions is locally restricted if C = Cφ for some local restriction
function φ.

If Φ is a set of local restriction functions, we define CΦ = ∪φ∈ΦCφ.

The number m determines a periodicity. The number p determines a “window”—by
looking at parts cj with 0 < |i− j| 6 p, we can determine what values, if any, are allowed
for ci. We could replace m by any multiple of itself, p by any larger value, and redefine φ
to get the same class of compositions.

Example 1 (Alternating compositions). Up-down compositions c1 6 c2 > c3 6 · · · can
be described as follows. Set m = 2, p = 1,

φ(1; a, 0) = 1, φ(1; a, b) = 1, φ(0; 0, a) = 1 and φ(0; b, a) = 1, (1)

whenever 0 < a 6 b. Otherwise set φ = 0, except that φ(i; 0, 0) = 1 as required by
Definition 2.

The function φ describes alternating compositions that start by going up (because
φ(1; a, b) = 1) and have an odd number of parts (because φ(0; 0, a) = 1 permits the first
zero after the composition to be in an even position; but φ(1; 0, a) = 0 forbids it to be in
an odd position). We could have included an even number of parts as well by defining
φ(1; 0, a) = 1.

We cannot extend the definition of φ to include compositions that begin by going
down. These can be defined by switching 0 and 1 in the first argument of φ to give a
new function φ′. With the extension to φ (and hence φ′) noted in the previous paragraph,
C{φ,φ′} consists of all alternating compositions.

Suppose we require that the inequalities be strict. This can be done by simply changing
0 < a 6 b to 0 < a < b in (1). Now, however, we can include all strict alternating
compositions in one φ instead of using C{φ,φ′}. Set m = 1, p = 2,

φ(0; 0, 0, a) = φ(0; a, 0, 0) = 1, φ(0; 0, a, b) = φ(0; a, b, 0) = 1 and φ(0; a, b, c) = 1,

when a, b, c ∈ N and either a < b > c or a > b < c. It may appear at first that
m = 1 causes periodicity to be lost; however, by looking at the two previous parts we
can determine which of ci−1 > ci−2 and ci−1 < ci−2 holds. This will not work with weakly
alternating compositions since they can have arbitrarily long strings of equal parts.

Definition 4 (Recurrent compositions). Let C be a class of locally restricted compositions
with span p and modulus m.
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We say that a subcomposition ~s is recurrent at j modulo m if, for every k and every
~a~x~z ∈ C with len(~a) > p and len(~z) > p, there is a composition ~a · · ·~z ∈ C containing at
least k copies of ~s starting at positions congruent to j modulo m. Furthermore we require
that for at least one such composition ~a · · ·~z ∈ C, if S is the set of indices where ~s starts,
then gcd(i− k | i, k ∈ S) = m.

• If ~s is recurrent for some j, we say ~s is recurrent.

• If a recurrent subcomposition has length 1, we call it a recurrent part.

• A class Cφ (and φ) is recurrent if every subcomposition ci · · · cj of ~c ∈ C with i > p
and j + p 6 len(~c) is recurrent.

• A class CΦ (and Φ) is recurrent if φ is recurrent for every φ ∈ Φ.

It is a consequence of these definitions that if ~r and ~s are recurrent subcompositions,
len(~a) > p, len(~z) > p, and ~a~x~z ∈ C, then there is a composition ~a · · ·~r · · ·~s · · ·~z in Cφ.
(We get ~a · · ·~r~y~z for some ~y. Replace ~a with ~a · · ·~r and ~x with ~y in the definition.)

For the first φ in Example 1, the 2-part subcomposition ab is recurrent at 1 modulo 2
whenever 0 < a < b and is recurrent at 0 modulo 2 whenever 0 < b < a. The part 1
is recurrent at 1 modulo 2 but is not recurrent at 0 modulo 2. The formulation at the
end of Example 1 with m = 1 does not satisfy the gcd condition in Definition 4, precisely
because “up” and “down” alternate. (The gcd condition in the definition is needed to
insure that the transfer matrix in [3] has a required positivity property, which the matrix
arising from m = 1 lacks.)

Remark (Ignoring nonrecurrent parts). Since nonrecurrent parts can only appear in the
first or last p parts, and since almost all compositions of n have Θ(n) parts, we can usually
ignore the nonrecurrent parts in our asymptotic estimates.

Definition 5 (Similar restrictions). Suppose φ and φ′ are local restriction functions with
the same modulus and span. Suppose Cφ and Cφ′ are recurrent and there is a k such that
~s is recurrent at j mod m in Cφ if and only if it is recurrent at (j + k) mod m in C ′φ. We
then say that Cφ and Cφ′ are similar and write Cφ ≈ Cφ′ as well as φ ≈ φ′.

Clearly ≈ is an equivalence relation.

Example 2 (Alternating compositions again). In Example 1, φ ≈ φ′ and so it turns out
that Theorem 1 will apply to all alternating compositions. This remains true if we make
either one or both of the inequalities x < y and x > y weak. However, weak and strong
inequalities give restrictions which are not similar. For example, if the restrictions in φ′

were changed to weak giving φ′′, we would not have φ ≈ φ′′ and so we could not apply
Theorem 1 to {φ, φ′′}.
Remark (Some asymptotics). We refer to (a) and (b) near the start of this section. Since
the radius of convergence r in (a) depends only on the recurrent subcompositions, it will
follow that the form A(r−n(1 + O(δn)) still holds for CΦ when Φ is a finite set of similar
restrictions. For essentially the same reason, the normality in (b) continues to hold. (See
Section 4 for details.)
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Definition 6 (Asymptotically free). Let Cφ be a set of locally restricted compositions of
span p. If Cφ is recurrent and the following hold, we say that φ and the compositions in
Cφ are asymptotically free.

(a) Suppose j and ri are such that ~r(x) = r1 · · · rpxrp+2 · · · r2p+1 is recurrent at j modulo
m for infinitely many values of x. Then there is an M (depending on j and the ri)
such that, if ~r(x) occurs at a position j mod m in a composition, we may replace
that x by any x′ >M .

(b) There is at least one set of values j and ri of the sort described in (a).

Let Φ be a finite set of similar local restriction functions. If φ ≈ φ′ and φ is asymptotically
free, then clearly φ′ is asymptotically free. Hence we say that Φ and the compositions in
CΦ are asymptotically free if Cφ is asymptotically free for some φ ∈ Φ.

It is fairly easy to verify that asymptotically free Cφ are special cases of the regular Cφ
studied in [3]. Note that, since φ has span p, no parts other than the ri impose restrictions
on x. We arrived at the notion of asymptotically free as a concept succinctly stated, fairly
intuitive, and inclusive of a number of known examples, for which the results of Theorem 1
hold. It would be of interest to extend these results to more classes of compositions.

Example 3 (A bad definition). We could have attempted to define asymptotically free
Φ by simply insisting that (a) and (b) hold for CΦ, however this is insufficient. Consider
Φ = {φ, φ′} and φ (resp. φ′) requires that parts in odd (resp. even) positions be odd. Then
large odd parts will tend to be more common than large even parts and so the conclusion
in Theorem 1(a) would be false.

Example 4 (Generalized Carlitz compositions). Carlitz compositions are defined by the
restriction ci 6= ci−1. They were generalized to restricted differences in [2] by requiring
that ci− ci−1 /∈ N where N is a fixed set of integers. (Carlitz compositions correspond to
N = {0}.) These compositions are recurrent with modulus 1 and span 1. If N is finite, we
have asymptotically free compositions. For the generalized Carlitz compositions studied
in [2], N was the same for all ci−1. We can generalize further by letting N depend on
the value of ci−1, say N (ci−1). If all the N (c) are finite, we still have asymptotically free
compositions; however, they cannot be studied by the method in [2]. Instead, [3] must be
used.

Example 5 (Some periodic conditions). Up-down compositions have constraints of mod-
ulus 2. General periodic inequality constraints were studied in [4]. These are all asymp-
totically free provided they allow parts to both increase and decrease. As in the preced-
ing example, we could require that the change between adjacent parts be dependent on
the parts. For example, we could require that the ratio of adjacent parts be at least 2
(ci/ci−1 > 2 for an increase and ci−1/ci > 2 for a decrease).

For fixed k, k-rowed compositions ai,j in which differences of adjacent parts avoid
a finite set are asymptotically free. One interleaves the parts to produce a one-rowed
composition: If ai,j are the parts of a k-rowed composition of n, then ci+k(j−1) = ai,j for
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1 6 i 6 k and j = 1, 2, · · · gives a bijection with one-rowed compositions ~c of n. We can
take the modulus and span to be k.

Definition 7 (Gap free). A composition with largest part M is called gap free if it contains
all recurrent parts less than M .

The restriction of gap-free to recurrent parts is used to rule out classes such as the fol-
lowing. Let C be all compositions subject to the restriction that 2 and 3 can appear only
as the first part of a composition. Since almost all compositions contain 1 and no com-
position in C can contain both 2 and 3, almost no compositions in C would be gap-free if
we required that the support of the parts be an interval in N.

Conventions. We use the following conventions in this paper.

• When we talk about something random, we always mean that it is chosen uniformly
at random from the set in question. We say that a property holds asymptotically
almost surely (a.a.s) if the probability that the property holds tends to 1 as the size
of the set goes to infinity, and we also say that almost all objects in the set have
the property.

• Expectation is denoted by E.

• After a class of compositions has been defined, we usually omit the modifiers (e.g.
asymptotically free) and refer to elements of the class simply as compositions.

• The number of compositions of n in the class C is asymptotically Ar−n. We will
always use A and r for these parameters.

• All logarithms are to the base 1/r except the natural logarithm ln.

Remember that we call CΦ asymptotically free if and only if Φ is a finite set of similar
asymptotically free local restriction functions.

Theorem 1 (Main theorem). Let γ
.
= 0.577216 be Euler’s constant and let

Pk(x) = log e
∑
6̀=0

Γ(k + 2iπ` log e) exp(−2i`π log x). (2)

(This is a periodic function of log x. For 1/2 < r < 1 and k = 0 the amplitude is less
than 10−6.)

Let Φ be asymptotically free and let r be the radius of convergence of the generating
function for CΦ. The following are true for some C > 0, which has the same value in all
parts of the theorem.

(a) Select a composition of n uniformly at random. Let X0(n) be the number of parts
and Xk(n) the number of parts of size k. For recurrent k and ε > 0,

Prob

(∣∣∣∣Xk(n)

X0(n)
− E(Xk(n))

E(X0(n))

∣∣∣∣ > ε

)
→ 0 as n→∞. (3)
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Furthermore, the limit

uk = lim
n→∞

E(Xk(n))

E(X0(n))
(4)

exists, and uk ∼ Brk as k →∞ for some positive constant B.

(b) Let the random variable Mn be the size of the maximum part in a random composi-
tion of n. For any function ωb(n) such that ωb(n)→∞ as n→∞, |Mn − log n| <
ωb(n) a.a.s. Furthermore

E(Mn) = log

(
Cn

1− r

)
+ γ log e− 1

2
+ P0

(
Cn

1− r

)
+ o(1),

where C = B limn→∞ E(X0(n))/n.

(c) Let ν be the number of nonrecurrent parts. (Since the compositions are asymptoti-
cally free, ν is finite.) Let the random variable Dn be the number of distinct recurrent
parts in a random composition of n. For any function ωc(n) such that ωc(n) → ∞
as n→∞, |Dn − log n| < ωc(n) a.a.s. Furthermore

E(Dn) + ν = log(Cn) + γ log e− 1

2
+ P0(Cn) + o(1).

(d) Let qn(k) be the fraction of compositions of n which are gap-free and have largest
part k. There is a function ωd(n)→∞ as n→∞ such that

qn(k) ∼ exp

(
−Cnrk+1

1− r

)∏
j6k

(
1− exp

(
−Cnrj

))
(5)

uniformly for |k − log n| < ωd(n). Furthermore, for any constant D, the minimum
of qn(k) over |k − log n| < D is bounded away from zero.

(e) Let qn be the fraction of compositions of n which are gap-free. Then qn is asymptotic
to the sum of the right side of (5), where the sum may be restricted to |k− log n| <
ωd(n) for any ωd(n)→∞ as n→∞. Furthermore, qn ∼ pm where m =

⌊
Cn
1−r

⌋
and

pm =


1 if m = 0;

m−1∑
k=0

pk

(
m

k

)
rk(1− r)m−k if m > 0.

(6)

(f) Let gn(k) be the fraction of compositions of n that have exactly k parts of maximum
size. Then for each fixed k and as n→∞,

gn(k) ∼ (1− r)k

k!
Pk

(
Cn

1− r

)
+

(1− r)k log e

k
.
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(g) Let Dn(k) be the number of distinct recurrent parts that appear exactly k times in a
random composition of n. For fixed k > 0

E(Dn(k)) =
Pk(Cn)

k!
+

log e

k
+ o(1).

Let mn(k) be the probability that a randomly chosen recurrent part size in a random
composition of n has multiplicity k. For fixed k, mn(k) ∼ E(Dn(k))/ log n.

(h) Let Φ′ be a finite set of local restriction functions similar to those in Φ. The values
of r, B and C are the same for CΦ and CΦ′.

We recall that Γ(a+ iy) goes to zero exponentially fast as y → ±∞. Thus the sum (2) is
dominated by the terms with small `.

Parts (b) and (c) of the theorem can be thought of in terms of the weak law of large
numbers. For example, (b) tells us that, for all ε > 0,

Pr

(∣∣∣∣ Mn

E(Mn)
− 1

∣∣∣∣ > ε

)
→ 0 as n→∞,

and the condition on ωb(n) provides a bound on the rate of convergence.

Since estimating C is generally harder than estimating A, the following theorem is
sometimes useful.

Theorem 2 (Sometimes A = C). Let C be a class of asymptotically free compositions and
let the number of compositions of n be asymptotic to Ar−n. Suppose that there is some
` such that, whenever the number of parts in each of ~a and ~b is at least `, we have that
~c = ~ax~b is in C for infinitely many x if and only if ~a and ~b are in C. Then C = A, where
C is the constant in Theorem 1.

Theorem 3 (Asymptotically Poisson). Let ζj be the number of parts of size j in a random
composition in C of size n. Then there is a function ω(n) → ∞ such that the random
variables {ζj : log n − ω(n) 6 j 6 n} are asymptotically independent Poisson random
variables with means µj = Cnrj.

2 Discussion and Examples

Remark (Some previous results). We review some results that involve the study of parts
of large size.

Most results deal with unrestricted compositions. As far as we know, the first result
is due to Odlyzko and Richmond [22]. For a(n,m), the number of compositions of n with
largest part m, they prove the sequence is unimodal for each n and show that the m which
maximizes a(n,m) is always one of the two integers closest to log2 n. The fact that the
largest part Mn is strongly concentrated is well known. For example, it appears as an
exercise in [7]. Hwang and Yeh [15] studied the distinct parts in a random composition,
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obtaining asymptotics for the expected value of their number and sum as well as other
results. Hitczenko and Stengle [14] also studied the expected number of distinct parts.
The asymptotic probability that a composition is gap-free was obtained by Hitczenko and
Knopfmacher [10]. They based their proof on a gap free result they obtained for samples of
iid geometric random variables, which we also use in our study of gap-freeness. Wilf asked
about mn(k), the probability that a randomly chosen part size in a random composition of
n had multiplicity k. This problem was studied by Hitczenko, Rousseau and Savage [13,
12]. Louchard [20] studied Dn(k), obtaining information about its moments. Archibald
and Knopfmacher [1] studied the largest missing part in compositions that are not gap
free.

Fewer results have been obtained for Carlitz compositions. Using [6], Knopfmacher
and Prodinger [19] obtained asymptotics for the largest part in Carlitz compositions and
observed that there was oscillatory behavior. The expected number of distinct parts,
E(Dn), was studied by Hitczenko and Louchard [11] who required an independence as-
sumption that was eliminated by Goh and Hitczenko [9]. Kheyfets [18] obtains results for
parts of multiplicity k that parallel those mentioned in the previous paragraph for Dn(k)
and mn(k) in the unrestricted case. Louchard and Prodinger [21] study the distribution
of part sizes.

Theorem 1 extends most of these results to asymptotically free compositions. One
exception is [1] which came to our attention when this paper was essentially complete. It
is likely that our methods can generalize their results, although with less accuracy than
they obtain. Most of the known results for unrestricted and Carlitz compositions have
greater accuracy than our results which typically have o(1) error rather than more explicit
estimates. Also, we do not have formulas for the two constants C and r appearing in our
results, whereas they are known for unrestricted and Carlitz compositions. However, since
the number of compositions is Ar−n with an exponentially small relative error the more
important r is easily estimated if one can count compositions for moderate values of n
efficiently.

An earlier version of this paper appeared, without proofs, as the extended abstract [5].
The present paper considers a more general class of compositions and contains some
additional results.

Example 6 (A = C). It is easily seen that Theorem 2 applies to the following classes of
compositions

(a) unrestricted compositions (so C = 1/2);

(b) compositions where the value of ci is restricted only by ci−1 and ci+1 and may be
arbitrarily large;

(c) alternating compositions (c2i−1 < c2i > c2i+1) where the number of parts must be
odd.

We note that (b) includes Carlitz compositions and so C
.
= 0.4563634741 for Carlitz

compositions [21]. The inequality conditions in (c) can be generalized: we may require
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that c2i − c2i−1 and c2i − c2i+1 belong to some subset of Z that contains arbitrarily large
positive values and the subset may depend on i modulo some period.

Although (c) gives A = C for only one type of alternating compositions, it follows
from Theorem 1(h) that the value obtained for r, B and C in this case are the same for
the various types of alternating compositions discussed in Example 1 even though they
have differing values of A.

Example 7 (Gap-free). The numbers pm in (e) were studied by Hitczenko and Knopf-
macher [10] who showed that they oscillated with the same period as (2) when r > 1/2.
They showed that, for r = 1/2, there is no oscillation. Their Figure 7 shows that the
amplitude of oscillation of pm is less than 10−6. Consequently, if r is known, one can
determine the asymptotic value of pm and hence qn to within 10−6. The following are the
values of pm for three families of compositions, correct up to the sixth decimal place.

• For Carlitz compositions, it is known r
.
= .57134979. It follows from (6) that

pm
.
= 0.372000 for m > 25.

• For strictly alternating compositions (c2i−1 < c2i > c2i+1), r
.
= 0.63628175 by [4]. It

follows from (6) that pm
.
= 0.252277 for m > 25.

• For weakly alternating compositions (c2i−1 6 c2i > c2i+1), r
.
= .57614877 by [4]. It

follows from (6) that pm
.
= 0.363144 for m > 25.

Here is an alternative definition of gap-free based on the literature: A composition is
gap-free if, whenever it contains two recurrent parts, say a and b, it contains all recurrent
parts between a and b. This definition does not alter the conclusions of Theorem 1(d,e)
because, by Lemma 1(b) below, the fraction of compositions of n that omit the smallest
recurrent part is exponentially small.

Example 8 (Conjectures of Jaklič, Vitrih and Žagar). Let Maxk(n) (resp. Mink(n))
denote the number of all compositions of n such that there are more than k copies of the
maximal (resp. minimal) part. Jaklič et al. [16] conjectured that, when k = 1

lim
n→∞

Mink(n+ 1)

Mink(n)
= 2 (7)

lim
n→∞

Maxk(n+ 1)

Maxk(n)
= 2. (8)

In fact, the conjectures hold for the compositions studied in this paper and all k > 1
provided 2 is replaced with 1/r and Min is restricted to recurrent parts. The number of
occurrences of any given recurrent part is Θ(n) for almost all recurrent locally restricted
compositions of n by [3]. Thus (7) follows immediately from the fact that the number of
compositions of n is asymptotic to Ar−n. We now prove (8). Note that

Maxk(n) ∼ Ar−n
(

1−
∑
i6k

gn(i)

)
.
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By Theorem 1(f), gn(i) ∼ gn+1(i) and gn(i) is bounded away from zero as n→∞. Thus

Maxk(n+ 1)

Maxk(n)
∼

(
1−

∑
i6k gn+1(i)

)
Ar−n−1(

1−
∑

i6k gn(i)
)
Ar−n

∼
1−

∑
i6k gn+1(i)

1−
∑

i6k gn(i)

1

r
∼ 1

r
.

One can change the definition of Maxk to mean exactly k copies of the maximal part and
a similar proof will hold.

Example 9 (Counterexamples without freeness). It was shown in Theorem 1(f) of [2]
that when differences of adjacent parts are restricted to a finite set, the largest part is
asymptotically almost surely of order

√
log n, so the bound in Theorem 1(a) fails.

3 Statement of Lemmas

The following six lemmas are used in our proofs of Theorems 1, 2 and 3.

Lemma 1 (Normality and tails). Let CΦ be a class of asymptotically free compositions and
let d be arbitrary. Let R be a possibly infinite nonempty set of recurrent subcompositions
each of which contains at most d parts. Assume that if we alter Φ to forbid the elements
of R, the resulting class of compositions is still recurrent. Let the random variable Xn be
either the number of occurrences of elements of R in a random composition of n or the
number of parts in a random composition of n. The following are true.

(a) The distribution of Xn is asymptotically normal with mean and variance asymptot-
ically proportional to n.

(b) There are constants Ci > 0 depending on what Xn counts such that

Pr(Xn<C1n) < C2(1 + C3)−n for all n.

(c) Let ~s be a subcomposition. There is a constant B dependent only on C such that
the probability that a random composition contains at least one copy of ~s is at most
BnrΣ(~s).

Definition 8 (The function ϕ). As in Definition 6 let ~r(x) = r1 · · · rpxrp+2 · · · r2p+1 where
~r = ~r(0) = r1 · · · rp0rp+2 · · · r2p+1. For an asymptotically free class the set

S(~r) = {x : ~r(x) is recurrent }

is either finite or co-finite. So, there is a smallest integer q(~r) such that

either [q(~r),∞) ⊆ S(~r) or [q(~r),∞) ⊆ S(~r).

Define
ϕ(P ) = max{q(~r) : ri 6 P for 1 6 i 6 2p+ 1}.
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It follows from the definition that if max(~r) 6 P and x > ϕ(P ) and ~r(x) is recurrent at
j modulo m, then ~r is asymptotically free at j modulo m.

Definition 9 (P -isolated). Suppose ~c = ci−p · · · ci · · · ci+p is a recurrent subcomposition.
If no cj, except possibly ci, exceeds P , we call ci P -isolated.

A consequence of the definitions is that, whenever x > ϕ(P ) is P -isolated we are free to
replace x by any part that is of size ϕ(P ) or greater.

Lemma 2 (Large part separation). Let CΦ be a class of asymptotically free compositions.
Suppose δ > 0. There is a P = P (δ) and N = N(δ) such that the following holds for
every m > ϕ(P ). Let M(n) be the set of compositions of n in which a part of size m
has been marked. For all n > N +m the subset of M(n) in which the marked part is not
P -isolated has size less than δ|M(n)|.

The following lemma proves most of Theorem 1(a).

Lemma 3 (Geometric probabilities). We use the notation of Theorem 1(a).

(a) Equations (3) and (4) are true.

(b) Recall that uk is the limit (on n) of the ratio E(Xk(n))/E(X0(n)). For all sufficiently
large parts k and ` depending on δ > 0, we have∣∣∣∣uk r−ku` r−`

− 1

∣∣∣∣ < δ.

(c) We have uk ∼ Brk for some positive constant B.

Lemma 4 (Marked compositions). Fix k and a class C of asymptotically free composi-
tions. Let A be such that the number of compositions of n is asymptotic to Ar−n and let
C be as in Theorem 1. If L(n) = (L1(n), . . . , Lk(n)) is a sequence of k-tuples of integers
with

max(Li) = o(n) and min(Li)→∞ as n→∞,

then the number of compositions ~c of n having L = (L1 · · ·Lk) as a marked subsequence
is

(A+ o(1))
(Cn)krs−n

k!
as n→∞, where s = L1 + · · ·+ Lk. (9)

Lemma 5 (Characterization of Poisson). Let (m)k := m(m−1) · · · (m−k+1) denote the
falling factorial. Suppose that ζ1, . . . , ζn = ζ1(n), . . . , ζn(n) is a set of non-negative integer
variables on a probability space Λn, n = 1, 2, . . . , and there is a sequence of positive reals
γ(n) and constants 0 < α < 1 and 0 < c < 1 such that

(i) γ(n)→∞ and n− γ(n)→∞;
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(ii) for any fixed positive integers `, m1, . . . ,m`, and sequences
k1(n) < k2(n) < · · · < k`(n) with |ki(n)− γ(n)| = O(1), 1 6 i 6 `, we have

E
(
(ζk1(n))m1(ζk2(n))m2 · · · (ζk`(n))m`

)
∼
∏̀
j=1

α(kj(n)−γ(n))mj , (10)

(iii) Pr(ζk(n) > 0) = O
(
ck(n)−γ(n)

)
uniformly for all k(n) > γ(n).

Then there exists a function ω(n)→∞ so that for k = bγ(n)−ω(n)c, the total variation
distance between the distribution of (ζk, ζk+1, . . . , ζn), and that of (Zk, Zk+1, . . . , Zn) tends
to 0, where the Zj = Zj(n) are independent Poisson random variables with EZj = αj−γ(n).

Remark. The preceding lemma, Lemma 5, is applied to obtain the Poisson result for
large parts stated as Theorem 3. The latter, in turn, is used with Mellin transforms to
prove Theorem 1(b-d); and, with a result of Hitczenko and Knopfmacher [10] on sequences
of geometric i.i.d. random variables, to prove Theorem 1(e,f).

Lemma 6 (Plentitude of recurrent parts). Let ζj be the number of occurrences of j in a
random composition of n, and let k > 0 be arbitrary and fixed. If ω(n)→∞, then∑

j<logn−ω(n)
j recurrent

Pr(ζj<k) = o(1).

4 The Transfer Matrix and Sets of Functions

Before embarking on the proofs, we summarize some facts from [3] which will be used and
reduce the study of a finite set Φ to a single φ since only single φ’s were considered in [3].

We may replace the span p by any larger value without altering the set of compositions,
provided we adjust the definition of φ. Thus we will assume that the span is a multiple
of the modulus m. (Refer back to Definition 2 for terminology.)

Let C(n) be the number of compositions of n in a regular, locally restricted class Cφ,
and let F (x) =

∑
C(n)xn be the ogf (ordinary generating function). Then, as proven in

Theorem 2 of that paper,
F (x2) = ϕ(x) + FNR(x2), (11)

where

ϕ(x) = s(x)t

( ∞∑
k=0

T (x)k
)

f(x). (12)

We now explain the various parts of (11). Here a “small number of parts” is at most some
small multiple of p.
The transfer matrix T (x) is defined in terms of a certain sequence of words ~ν1, ~ν2, . . .,
where by a word we mean a recurrent subcomposition of length p, the span, (see Defini-
tion 2) whose first part is at j mod p where j is the same for all words indexing T (and
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thus s and f as well). The list contains all such recurrent words and

T (x)ij =

{
xΣ(~νi)+Σ(~νj) if ~νj can follow ~νi,
0 otherwise.

Except for parts near the ends, every composition is a concatenation of such words. A
single application of the transfer matrix corresponds to the adjunction of p additional
parts to the composition.
The infinite vectors s(x), f(x) have analytic entries corresponding to compositions with
a small number of parts. The component si(x) of s(x) deals with the generating function
for the beginning of compositions where the last p parts in the beginning are ~νi. Similarly,
fj(x) deals with the generating function for endings whose first p parts are ~νj.
The function FNR(x) is the ogf for the subclass of compositions not counted in ϕ(x).
These compositions have at most some small number of parts. The ogf FNR(x) has radius
of convergence 1. (This is slightly different from the definition of FNR in [3]; however, all
that matters for the theory is that FNR has radius of convergence 1 and that (11) counts
all compositions exactly once.)

To assure that T (x) satisfies certain useful technical conditions, it is necessary to have
the arguments x2 and x as indicated in (a). See the latter part of this section and [3] for
more details on T (x).

4.1 Reduction to a single φ and Theorem 1(h)

Before discussing the more technical issues related to asymptotics, we explain why it
suffices to consider one φ instead of an entire finite set Φ of similar φ. This discussion
will also prove Theorem 1(h).

Suppose φ ≈ φ′ and let T be the transfer matrix for φ. Since Tij 6= 0 if and only if νiνj
is recurrent, we can use the same transfer matrix for φ′; however, the vectors s and f will
be different. In fact, if k is as in Definition 5, the number of parts in the subcompositions
of the vectors s for φ and φ′ will differ by k mod m. Nearly all results in [3] depend on T
but not on s or f . The exception is the constant A in the asymptotic estimate Ar−n for
the number of compositions of n.

It follows that, if the sets Cφ, φ ∈ Φ, were pairwise disjoint we could simply obtain
results for one φ ∈ Φ and combine the results where, whenever A is present we simply sum
the values of A for the various φ ∈ Φ. We now show that this can, in principle, be done.
There is no need to do this in practice since analytic methods for obtaining reasonable
estimates of A are seldom available even for a single φ.

Fix temporarily a φ ∈ Φ. Partition the elements φ′ of Φ into m sets Φ0, . . . ,Φm−1

according to the value of k in Definition 5. We now focus on these sets, first considering
functions in different sets and then functions in the same set.

Suppose φ ∈ Φi and φ′ ∈ Φj where i 6= j. Consider the compositions in Cφ ∩ Cφ′ . Let
the value of φφ′ be simply the product of φ and φ′. We note that Cφ ∩ Cφ′ = Cφφ′ since a
composition is in the intersection if and only if it satisfies both local restriction functions.
Since i 6= j, it follows that the transfer matrix for the intersection will be the same as
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that for φ with some nonzero entries replaced by zeroes. By Lemma 2(f) of [3] and the
realization that the spectral radius determines the growth rate (see below) it follows that
the number of compositions of n in the intersection grows at an exponentially smaller rate
than the number in Cφ. Hence, for asymptotic purposes, we may treat the m sets CΦi as
if they are disjoint. It follows that, except for Theorem 2, we may assume we are dealing
with just one Φi.

We now consider a single Φk. Suppose ~c ∈ CΦk is counted by (12). We can write it in

the form ~a~b~z, where ~b is a sequence of words ~ν that index T , ~s and ~f , ~a ends with one of
these ν and ~z starts with one of them. By absorbing a recursive word or two in ~a and ~z
if needed, we can insure that the following two assumptions hold for some `i.

(i) Since all compositions come from the same CΦk we can assume len(~a) = `0, the same
value for all compositions in CΦk .

(ii) Since multiplication by T adds p parts to the compositions, we can assume that the
longest and shortest values of len(~z), say `1 and `2, differ by less than p.

It follows that each composition in CΦk with at least `0 + `1 parts is counted by sT kf for
some k and has uniquely determined ~a and ~z. We can limit attention to compositions
with at least `0 + `1 parts since the generating function for those with fewer parts has
radius of convergence at least 1.

With each φi ∈ Φk we associate two sets Si and Fi as follows. ~a ∈ Si and ~z ∈ Fi if and
only if they satisfy (i) and (ii) above and ~a~b~z ∈ Cφi for some ~z. The set Si determines s
as follows. If ~a ∈ Si ends with νj, then a generating function obtained from ~a is added to
sj. A similar construction holds for ~z and f . Thus Si × Fi determines the compositions
in Cφi . If we had (Si × Fi) ∩ (Sj × Fj) = ∅, it would follow that Cφi ∩ Cφj would contain
at most some compositions shorter than `0 + `1. Thus, we need only prove that a union
of Cartesian products ∪φi∈Φk(Si × Fi) can always be written as a disjoint union of such
products. This is done by considering the given terms Si ×Fi one at the time, and using
the identity

(A×B) ∩ (C ×D)c =
(
A× (B \D)

)
∪
(

(A \ C)× (B ∩D)
)
,

where the union is disjoint. (Think of C×D as the latest Si×Fi, and A×B as one of the
pairwise disjoint components of the previously processed (i−1) products. We keep C×D
as a new component, and each previously existing component is replaced by two disjoint
pieces.) For each product in the resulting disjoint union, we construct a φ, and their sum
is the generating function for Ck, with the possible exception of short compositions.

4.2 Analytic aspects of T (x) from [3]

By Lemma 3 of [3], at each x0 ∈ (0, 1) we have a neighborhood and functions λ(x), E(x)
and B(x) analytic in that neighborhood such that

T (x) = λ(x)E(x) +B(x), (13)
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where E(x) is the projection onto the one-dimensional eigenspace of eigenvalue λ(x), the
spectral radius of B(x) is less than λ(x), and E(x)B(x) = B(x)E(x) = 0. The proof of
Lemma 3 relies heavily on results and methods from [17]. If we choose for x0 the point
r1/2, 0 < r < 1, where λ(r1/2) = 1, it follows from (13) that∑

i>0

T (x)i =
λ(x)

1− λ(x)
E(x) + (I −B(x))−1, (14)

in a punctured neighborhood 0 < |x − r1/2| < δ. (We use r1/2 so that r is the radius
of convergence for the ogf F (x), and we are consistent with our convention that C(n) ∼
Ar−n.)

The neighborhood |x− r1/2| < δ, which we shall refer to as the δ-neighborhood, plays
a key role in our proof of Lemma 4. At any point in this neighborhood, except the center
x = r1/2, the relation (14) holds. At any x0 with |x0| = r1/2, except x0 = ±r1/2, the
spectral radius of T (x0) is strictly less than 1 by Lemma 1 of [3]. Near such an x0, the
sum S(x) =

∑
i>0 T (x)i converges and S(x) is analytic in a neighborhood of x0. On the

other hand, near x0 = r1/2 the equation (14) shows that still S(x) is analytic except for an
isolated singularity at x = r1/2. It is also shown in [3] that the root of λ(x) = 1 at x = r1/2

is a simple root; thus near r1/2 we have an analytic β(x) with λ(x) = 1−β(x)(1−x/r1/2),
and β(r1/2) 6= 0.

5 Proof of Lemma 1

Part (a) follows from [3, Thm. 4] with just one random variable Y1(n) = Xn. (The
definition of “unrelated events” for that theorem is somewhat technical. The condition in
Lemma 1 that altered Φ be recurrent insures that it holds.)

We now prove (b). Into the transfer matrix T (x) of [3], introduce a new variable
0 < s 6 1 that keeps track of the number of occurrences of elements of R or simply the
number of parts. If d exceeds the span of φ, d behaves like a new span and it will be
necessary to change T so that one application of T adds more parts to the composition.
Call the new matrix T (x, s) and call the largest eigenvalue λ(x, s). This leads to the
asymptotics A(s)r(s)−n where r(s) is the solution to λ(r1/2(s), s) = 1. The case s = 1
corresponds to the asymptotics for C(n), the number of compositions of n. In the general
case, we have asymptotics for

∑
k C(n, k)sk where C(n, k) is the number of compositions

of n with exactly k copies of elements of R. It follows that∑
k<δn

C(n, k) 6 s−δn
∑
k

C(n, k)sk ∼ A(s)(sδr(s))−n.

Hence it suffices to show that
sδr(s) > r(1) (15)

for some s and δ. By Lemma 2(f) of [3], λ(x, s) < λ(x, 1) for x > 0 and 0 < s < 1. Since
λ is monotonically increasing in x, r(s) > r(1) and so (15) holds for all sufficiently small
δ depending on s. This completes the proof of (b).
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The proof of (c) is essentially the same as that given in Section 9 of [3] for large part
size. Since there are slight changes, we repeat it here for completeness.

Let p be the span of φ. Consider an expanded class CΨ where Ψ is the same as φ
except that the first p and last p parts of compositions are unrestricted. The transition
matrix T (x) is unchanged. Therefore Ψ has the same radius of convergence r as φ. Hence
the number of compositions of n in CΨ is bounded above by Cr−n for some C. Hence the
generating function for CΨ compositions by sum of parts is bounded coefficient-wise by
C(1− x/r)−1.

Imagine marking a copy of ~s in each composition in Cφ. By the previous paragraph,
the generating function for such compositions of n is bounded coefficient-wise by

C

1− x/r
xs

C

1− x/r
where s = Σ(~s).

Hence the number of such compositions of n is bounded above by nC2rs−n.
The previous paragraph overcounts the number of compositions containing ~s. For

some C ′ > 0, the total number of compositions of n is at least C ′r−n for large n. Taking
the ratio gives (c) with B = C2/C ′.

6 Proof of Lemma 2

Throughout the proof, whenever a new condition is imposed on P or N it is understood
that the implied values must be at least as large as those already chosen. All implied
limits, as in o(1), are as n→∞.

Let M∗(n) be the subset of M(n) in which the marked part is not P -isolated. Let
M∗(n) and M(n) be the cardinalities of these two sets. We will overestimate M∗(n) and
underestimate M(n) and show that their ratio can be made arbitrarily small provided P
and n−m are sufficiently large.

For both counts, we consider compositions of the form ~a~b~c where ~b contains a special
sequence of parts.

We then sum over a. The composition ~a will be like compositions in the class Cφ except
that there will be conditions on the last p parts. Since T (x) is unchanged, the radius of
convergence is unchanged and so the number of ~a is Θ(r−a) as a → ∞. A similar result
holds for ~c. We refer to this below as “theta”. Let a = Σ(~a) and c = Σ(~c).

We start with the underestimate of M(n). Let ~r(x) be as in Definition 6 and let b be
the sum of its parts excluding x. Choose P so that x is P -isolated in ~r(x). Thus b is fixed
as n → ∞, but we may increase P as necessary later. Since m > ϕ(P ), we may replace

x with a marked part m. Let ~b = ~r(m). To underestimate M(n), we will obtain a lower

bound on the number of occurrences of ~b. Since the ri are fixed and the span is p, the
choices for ~a and ~c such that ~a~b~c ∈ C are independent of m. By theta there are B and
s such that there are at least Br−a choices for ~a and Br−c for ~c when a > s and c > s.
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Thus the total number of occurrences of ~b is at least

n−(b+m)−s∑
a=s

B2r−sr−(n−s−(b+m)) = (n− 2s− b− P + 1)B2r−n+b+m,

and so for sufficiently large n and some constant C0 < B2rb,

M(n) > nC0r
−n+m.

For the non-isolated overcount, let ~a and ~c be compositions where we put no restric-
tions on how they begin or end. By theta the number of such compositions of ` is bounded
above by Dr−` for some D. The composition ~b will contain at most p + 1 parts. It will
either begin or end with the marked part m and the other ending part will be at least P
so that the marked part is not P -isolated. Let b be the sum of the parts in ~b, omitting
the marked part m. It follows that b > P . We bound the number of ~b as follows. Ignore
the part m. Choose a first part b1 in b ways. Choose an additional p− 1 parts, allowing
parts of size zero, which will be ignored when constructing ~b. Since the remaining parts
sum to b − b1 6 b − 1, each of them has at most b values. Hence we have the bound
2 · b · bp−1, where the factor of 2 is arises from the choice of which end to place m. Thus,
for some constant C1,

M∗(n) 6 C1

n∑
b=P

n−b−m∑
a=0

r−abpr−(n−a−(m+b)) < C1nr
−n+m

∑
b>P

bprb.

Combining our two estimates, we have for some constant C2 and sufficiently large n

M∗(n)

M(n)
< C2

∑
i>P

ipri + o(1).

By choosing P sufficiently large, we can make this arbitrarily small.

7 Proof of Lemma 3

By Lemma 1(a), the total number of parts and the number of parts of size k are asymp-
totically normally distributed with means and variances proportional to n. Thus (a)
follows.

We now prove (b). Let p be the span of φ. Apply Lemma 2 to obtain P = P (δ′),
where δ′ is sufficiently small and depends on the value of δ in (b).

Choose k and ` larger than ϕ(P ). Later we let P and hence k and ` tend to infinity
slowly.

Consider compositions of n + k with a marked part of size k. By changing a part of
size k into one of size ` we obtain a composition of n + ` with a marked part of size `.
This is a bijection between compositions containing a marked P -isolated part of size k and
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those containing a marked P -isolated part of size `, the marked part being the one that is
changed. By Lemma 2, we can ignore those compositions with marked parts that are not
P -isolated. Since the number of compositions of m is asymptotic to Ar−m, the number of
compositions with such P -isolated marked parts is asymptotic to both E(Xk(n+k))Ar−n−k

and E(X`(n+ `))Ar−n−`. Since E(X0(n+ k)) ∼ E(X0(n)) ∼ E(X0(n+ `)) as n→∞ with
k = o(n) and ` = o(n), (b) follows.

Part (c) follows by letting ` → ∞ in (b): Since δ can be made arbitrarily small by
choosing k sufficiently large, it follows that limu`r

−` must exist and be nonzero.

8 Proof of Lemma 4

Let Q(n) = ϕ(P (n)) where P (n) is some unspecified value that we will allow to increase
“sufficiently slowly” with n. When referring to P , Q and the Li in the statement of
the lemma, we will omit “(n)”. P must increase so slowly that min(Li) > Q. Let
s = L1 + · · ·+ Lk and m = n− s+ kQ. Since Li = o(n), we have m ∼ n.

Let R = (R1, . . . , Rk) denote an arbitrary k-tuple of positive integers.

Denote the k-tuple R with Ri = Q for 1 6 i 6 k by Qk.

Let M(n,R) be the set of compositions of n that have R as a marked subsequence and
let M(n,R) = |M(n,R)|. We would like to establish a bijection between M(n,L) and
M(m,Qk) by simply replacing the elements of one marked subsequence with those of the
other. Unfortunately this may fail if any of the following hold:

(a) an element of the marked subsequence has a part exceeding P within distance p;

(b) an element of the marked subsequence occurs within the first p parts;

(c) an element of the marked subsequence occurs within the last p parts.

(The reason for (b) and (c) is that ϕ applies only to the recurrent parts of the composition
and the ends may not be recurrent.) Let the subscript ∗ refer to those compositions for
which none of (a)–(c) hold, except that p is replaced by 2p in (c). Note that the proposed
bijection is actually a bijection when restricted to M∗(n,L) and M∗(m,Q

k). We will
show that

M∗(m,Q
k) ∼M(m,Qk) and M∗(n,L) ∼M(n,L). (16)

It then follows that

M(n,L) ∼M∗(n,L) = M∗(m,Q
k) ∼M(m,Qk) (17)

and so it suffices to estimate the size of any set that containsM∗(m,Q
k) and is contained

in M(m,Qk).

Overcounting compositions inM\M∗. The idea is to allow the parts within distance
p of a marked part to be arbitrary. We separate the composition into a sequence of
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k + 1 possibly empty subcompositions by removing the k marked parts. Each of the
subcompositions so obtained may have been shifted with regard to its modulus and may
have beginning and ending subsequences that are not allowed by the local restriction φ.
We overcount them by counting compositions with arbitrary shifts in their moduli and
with the initial and final p parts arbitrary. The generating function for these possible
subcompositions has the form (11); however, the values of s(x) and f(x) will be different.
Since T (x) is unchanged, it is a consequence of the results in [3] that the number of
such subcompositions of i is bounded above by K1r

−i for some K1 and so the generating
function is bounded coefficient-wise by K1(1− x/r)−1.

The generating function for compositions that have a nonisolated marked part Q is
bounded coefficient-wise by (

K1

1− x/r

)k+1

k (2pxP )xkQ,

where

• the first factor bounds the subcompositions,

• k chooses a marked part,

• 2p bounds the choices of a part near the chosen marked part,

• xP increases that part by P to insure that a nearby part exceeds P , and

• xkQ inserts the marked parts Qk.

The coefficient of xm is bounded by K2m
kr−m+kQ+P for some constant K2. This takes

care of all cases except the occurrence of two nearby marked parts Q.
Suppose there are two nearby marked parts. Modify the previous argument by remov-

ing these two nearby parts and all parts between them. The termwise bound is now given
by the generating function(

K1

1− x/r

)k
(k − 1)

( p∑
j=0

x

1− x

)
xkQ,

where the k − 1 chooses a position to insert the pair of nearby marked Q’s and the
summation inserts arbitrary parts between these two Q’s. Since the summation has
radius of convergence 1 and r < 1, the coefficient of xm is bounded by K3m

k−1r−m+kQ.
Thus

M(m,Qk)−M∗(m,Qk) = mkr−m+kQ
(
O(rP ) +O(1/m)

)
= nkr−n+s

(
O(rP ) +O(1/n) + o(1)

)
(18)

When a composition in M(n,L) is transformed by replacing L by Qk and the result
is an illegal composition, it must be of the form we have just bounded and so the bound
in (18) is also a bound for M(n,L)−M∗(n,L).
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Building marked compositions. We now build marked compositions that form a set
between M∗(m,Q

k) and M(m,Qk). Define the transfer matrix AQ(x) by

AQ(x)i,j =
{
T (x)i,j if νi has exactly one Q;
0 otherwise.

Let S(x) =
∑

i>0 T (x)i. Define the power-series fk,Q(x) by

fk,Q(x2) = s(x)t (S(x)AQ(x))k S(x) f(x). (19)

Since [xn]fk,Q(x) equals the number of compositions counted by M(n,Qk) having at most
one marked Q per word and no marked Q’s near the ends of the composition, it follows
that

M∗(n,Q
k) 6 [xn]fk,Q(x) 6M(n,Qk).

Using (14) in (19):

fk,Q(x2) = s(x)t

(
λ(x)

1− λ(x)
E(x)AQ(x) +BQ(x)

)k
×
(

λ(x)

1− λ(x)
E(x) + (I −B(x))−1

)
f(x), (20)

where BQ(x) = (I −B(x))−1AQ(x). When the products in (20) are expanded, we obtain
something of the form

fk,Q(x2) =

(
λ(x)

1− λ(x)

)k+1

s(x)t(E(x)AQ(x))kE(x)f(x) +
hQ(x)

(1− λ(x))k
,

where hQ(x) is analytic in a neighborhood of r1/2 because everything in (20) except λ(x)
1−λ(x)

is. The first term determines the leading asymptotic behavior of the coefficients. Recalling
that E(x) is a projection onto the 1-dimensional eigenspace of λ(x), define the functions
v(x) and αQ(x) by the equations

v(x) = E(x)f(x), and E(x)AQ(x)v(x) = αQ(x)v(x),

which are analytic in a neighborhood of r1/2. Thus

[x2m] fk,Q(x2) = D
(mDQ)k

k!
r−m + o(Mkr−n) for some D,DQ. (21)

The constants in (21). Since M(m,Q0) counts compositions with no marked parts, it
equals C(m), the number of compositions of m. Since C(m) ∼ Ar−m, we have D = A.

Note that M(m,Q1)/C(m) is the average number of parts of size Q in a composition
of m. We use the notation of Theorem 1(a), the results in Lemma 3, and the fact [3] that
X0(m) is asymptotically normal with mean and variance asymptotically proportional to
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m. By Lemma 3, if we let P (and hence Q) go to infinity sufficiently slowly with m, then
E(XQ(m))/E(X0(m)) ∼ BrQ. In this case

mDQ ∼
M(m,Q1)

M(m,Q0)
= E(XQ(m)) =

E(XQ(m))

E(X0(m))
E(X0(m)) ∼ BrQE(X0(m)).

Recalling the defining relationship

C = B lim
m→∞

E(X0(m))

m

in Theorem 1(b), we have DQ ∼ CrQ as Q→∞.

It follows from (18) that, if P →∞ sufficiently slowly with m, then (16) holds and so
(21) provides the asymptotics for M(m,Qk) and M(n,L).

9 Proofs of Lemmas 5 and 6

Proof of Lemma 5: This is Lemma 12 of [8].

Proof of Lemma 6: Fix ~r(x) as in Definition 6, let P = max(ri) and Q > ϕ(P ). By
Lemma 1(a), Pr(ζj < k) = o(1) for every fixed recurrent j. Thus∑

j<Q

Pr(ζj < k) = o(1).

We now consider j > Q. Let C(n) be the number of compositions of n and let Cj(n)
be the number of those having fewer than k copies of the part j. For some δ > 0 to be
specified later, let C+

j (n) be the number of those containing at least δn copies of ~r(x) and
C−j (n) be the remainder.

Let C−(n) count compositions with fewer than δn copies of ~r(x). By Lemma 1(b)
with δ = C1 sufficiently small, C−(n)/C(n) goes to zero exponentially fast as n → ∞.
Since C−j (n) 6 C−(n), it follows that C−j (n) < C2(1 +C3)−nC(n) where the constants do
not depend on j.

In each composition counted by C+
j (n) replace x by j in k of the~r(x). This can be done

in at least
(
δn
k

)
ways, giving a composition of n+k(j−x). Since the resulting composition

can have at most 2k − 1 parts of size j, it could have arisen by this replacement process
in at most

(
2k−1
k

)
ways. Thus

C+
j (n)

(
δn

k

)
6 C(n+ k(j − x))

(
2k − 1

k

)
and so

C+
j (n)

C(n)
6

(
2k−1
k

)(
δn
k

) C(n+ k(j − x))

C(n)
<
Br−kj

nk
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for some B = B(k, δ, x) independent of j. Thus

Cj(n)/C(n) < Br−kj/nk + C2(1 + C3)−n,

where all constants are independent of n and j. Summing the right side over Q 6 j 6
log n− ω(n), we obtain the bound

C4r
kω(n) + C2(1 + C3)−n log n = o(1)

for some constants Ci.

10 Proofs of Theorems 2 and 3

Proof of Theorem 2: There is an increasing function A`(k, P ) with supremum A
such that the number of compositions of n > k with end parts at most P is at least
A`(k, P )r−n. There is a decreasing function Au(k) with infimum A such that the number
of compositions of n > k is at most Au(k)r−n.

Using the construction ~c = ~ax~b in the statement of Theorem 2 together with the
idea and notation in the above proof of Lemma 4, we construct a composition with one
marked part. If k 6 t 6 n− k −Q, the number of compositions ~aQ~b with Σ(~a) = t and

Σ(~b) = n− t−Q is between A`(k, P )2rQ−n and Au(k)2rQ−n. Sum over all t in the interval
k 6 t 6 n − k − Q. Let k → ∞ sufficiently slowly with n. This shows that CP in the
proof of Lemma 4 satisfies

A2 =
(

lim
k→∞

A`(k, P )
)2

6 CPA 6
(

lim
k→∞

Au(k)
)2

= A2.

The theorem follows.

Proof of Theorem 3: We will show that the three hypotheses (i)-(iii) of Lemma 5 are
satisfied with the choices γ(n) = log(Cn), α = r, and c = r. The first, (i), is obvious.

For (ii), let `,m1, . . . ,m` be fixed and let k1(n) < k2(n) < · · · < k`(n) be sequences
satisfying ki(n) = log n + O(1). The expectation E

∏
(ζki)mi , when multiplied by C(n),

equals the number of compositions in which mi parts of size ki have been marked and
linearly ordered, 1 6 i 6 `. Let m =

∑
imi and let (L1, . . . , Lm) be one of the

(
m

m1,...,m`

)
possible linear orders of m1 k1’s, etc. Given a marked composition counted by Lemma 4,
the linear orders may be imposed on the marked parts in

∏
mi! ways. Hence,

C(n)E
∏

(ζki)mi ∼
(

m

m1, . . . ,m`

) ∏
mi!

A(Cn)mrs−n

m!

where s =
∑

imiki. Dividing both sides by C(n) ∼ Ar−n and noting Cn = r−γ(n)

completes the confirmation of hypothesis (ii).
Finally, the third hypothesis (iii) is given by Lemma 1 (c).
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11 Proof of Theorem 1

We recall that all logarithms are to the base 1/r.

Proof of Theorem 1(a): Assertion (a) was proved in Lemma 3, except for the formula
relating B and C. That relation was proved in the last part of the proof of Lemma 4.

Proof of Theorem 1(d): The final claim in (d) is easily proved by bounding the right
side of (5). One can also show that the sum of the right side of (5) over |k− log n| > ωd(n)
tends to zero. Thus it suffices to prove (5).

By Theorem 3 there is some ω(n)→∞ such that

qn(k) ∼ p(n)

( k∏
j=f(n)

(
1− exp

(
−rj−log(Cn)

)))( n∏
j=k+1

exp
(
−rj−log(Cn)

))

= p(n)

( k∏
j=f(n)

(
1− exp

(
−Cnrj

)))
exp

(
−Cn

n∑
j=k+1

rj
)
,

where f(n) = blog(Cn) − ω(n)c and p(n) is the probability that a random composition
of n contains all recurrent parts less than f(n). With a little calculation, we see that
Theorem 1(d) is equivalent to p(n) ∼ 1. With ζj as in Lemma 6, we have

p(n) > 1−
∑
j6f(n)

Pr(ζj =0) = 1− o(1).

We now prove the final claim about strong concentration. Since the probability of being
gap-free is bounded away from zero by previous claim in (d), it suffices to prove the
validity of the statement for all compositions. The result now follows from (b). This
proves Theorem 1(d).

Proof of Theorem 1(b,c): We first turn to the formula in (c). Since ζj in Theorem 3
is irrelevant for small j, we let ζj be as in Lemma 6 and ω(n) be any function that goes
to infinity. Note that

E(Dn) + ν =
n∑
j=1

Pr(ζj 6= 0)

and so, by Lemma 6,

E(Dn) + ν = o(1) +

blogn+ω(n)c−1∑
j=1

1 (22)

+

blogn+ω(n)c∑
j=blogn−ω(n)c

Pr(ζj 6= 0) (23)

+
n∑

j=blogn+ω(n)c+1

Pr(ζj 6= 0). (24)
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By Lemma 1(c)
Pr(ζj 6= 0) = O(nrj) provided j →∞ with n.

Thus the sum in (24) is O(rω(n)) = o(1). By the Poisson distribution, the terms in the
sum (23) are 1− exp (−Cnrj) + o(1) and so, if ω(n)→∞ sufficiently slowly, that sum is

o(1) +
∑(

1− exp
(
−Cnrj

))
.

Since the sum of exp (−Cnrj) over j < blog n− ω(n)c is o(1), we may replace 1 in the
sum (22) with 1− exp (−Cnrj). Finally,∑

j>blogn+ω(n)c

(
1− exp

(
−Cnrj

))
= o(1)

and so
E(Dn) + ν =

∑
j>0

(
1− exp

(
−Cnrj

))
− 1 + o(1).

Let f(x) =
∑

j>0

(
1−exp (−xrj)

)
. Then E(Dn) = f(Cn)−1+o(1). We use the standard

Mellin transform. (See [7, p.765], and also their Example B.5 which treats r = 1/2). It
follows that

f(x) = log x+ γ log e+
1

2
+ P0(x) + o(1),

where P0(x) is given by (2). This proves Theorem 1(c).
For the maximum part size Mn, we proceed in a similar manner:

E(Mn) =
n∑
j=1

Pr(Mn > j)

=

blogn−ω(n)c−1∑
j=1

1 +
n∑

j=blogn−ω(n)c

(
1− Pr(∧i>j{ζj = 0})

)
+ o(1)

=

blogn−ω(n)c−1∑
j=1

1 +
n∑

j=blogn−ω(n)c

(
1− exp

(
− Cn

1− r
rj
))

+ o(1)

=
n∑
j>0

(
1− exp

(
− Cn

1− r
rj
))
− 1 + o(1) = f

(
Cn

1− r

)
− 1 + o(1)

= log

(
Cn

1− r

)
+ γ log e− 1

2
+ P0

(
Cn

1− r

)
+ o(1).

It remains to prove the claims about |Dn− log n| and |Mn− log n|. Since Dn 6Mn, it
suffices to establish the lower bound for Dn and the upper for Mn. The upper bound on
Mn was proved in [3, Section 9]. In the proof of Theorem 1(d) we showed that p(n) ∼ 1,
which establishes the lower bound on Dn.
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Proof of Theorem 1(e–g): Let Γ := (Γ1,Γ2, . . . ,Γm) be a sequence of i.i.d. geometric
random variables with parameter p = 1 − r. Hitczenko and Knopfmacher [10] showed
that the probability the sequence Γ is gap-free is given by the pm in our (6) and they
established the oscillation of pm when p 6= 1/2.

Let ω(m) go to infinity arbitrarily slowly with m. Let Mm be the largest Γi.
By Theorem 1(b) |Mm − logm| < ω(m), and, as was shown in the proof of Theo-

rem 1(d), all recurrent parts less than logm − ω(m) are asymptotically almost surely
present in Γ. Let

ζj := |{i : Γi = j}|, λj := m(1− r)rj−1,

k− := blogm− ω(m)c, k+ := blogm+ ω(m)c.

When k− 6 k 6 k+,
Pr(ζj = k) ∼ e−λjλkj/k!

by the standard Poisson approximation for i.i.d. rare random variables. It should be well-
known that {ζj : k− 6 j 6 k+} are asymptotically independent, but we include a proof
since we lack a reference. For all fixed positive integers m1, . . . ,mj, we have

Pr (∧k−6j6k+{ζj = mj}) =
m!(λk−/m)mk− · · · (λk+/m)mk+

(mk−)! · · · (mk+)!(m−mk− + · · ·+mk+)!

×
(

1− λk− + . . .+ λk+

m

)m−(mk−+...+mk+ )

∼
λ
mk−
k− · · ·λ

mk+
k+

(mk−)! · · · (mk+)!
exp(−(λk− + . . .+ λk+)).

Thus, with k the largest part,

pm ∼
k+∑

k=k−

( k+∏
j=k+1

e−λj
)( k∏

j=k−

(1− e−λj)
)

∼
k+∑

k=k−

exp
(
−mrk

) k∏
j=k−

(
1− exp

(
−m(1− r)rj−1

))
. (25)

Equation (25) is the same as the sum of (5) if m = Cn/(1 − r). However, (25) was
derived under the assumption that m is an integer. We now treat (25) as a function of
real variable m, say f(m), and show that f ′(m) = o(1) as m → ∞. It then follows that
f(x) ∼ f(bxc) as x→∞ and we will be done. Call the terms in the sum (25) Tk(m). We
have

|T ′k(m)| <

∣∣∣∣T ′k(m)

Tk(m)

∣∣∣∣ =
∣∣(ln(Tk(m))′

∣∣ 6 rk +
k∑

j=k−

(1− r)rj−1

exp (m(1− r)rj−1)− 1

< rk +
k∑

j=k−

(1− r)rj−1

m(1− r)rj−1
6 rk

−
+
k − k− + 1

m
<

ω1(m)

m
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for some ω1(m) → ∞ much slower than m. Since there are only 2ω(m) values for k,
f ′(m) = o(1).

The oscillation is associated with the imaginary poles, which are at 2kπi/ ln(1/q) in
the notation of [10]. When the result is translated back from m to n, we obtain the same
period as P in (2).

We now prove (f). It follows from Theorem 3 that

gn(k) ∼
∑

j>log(Cn)−ω(n)

Pr(ζj = k, ζj+1 = ζj+2 = · · · = 0).

Setting j = `+ blog(Cn)c and δ(n) = Cn− blog(Cn)c,

gn(k) ∼
∞∑

`=−∞

rk(`−δ(n))

k!

∏
i>`

exp
(
−ri−δ(n)

)
∼

∞∑
`=−∞

rk(`−δ(n))

k!
exp

(
−r`−δ(n)

1− r

)
.

It follows from Poisson’s summation formula [23] that

gn(k) ∼
∞∑

`=−∞

∫ ∞
−∞

1

k!
exp(−2πi`t)rk(t−δ(n)) exp

(
−rt−δ(n)

1− r

)
dt.

Setting z = rt−δ(n)

1−r ,

gn(k) ∼ (1− r)k log e

k!

∞∑
`=−∞

exp(−2πi`(δ(n)− log(1− r)))
∫ ∞

0

e−zzk−1+2πi` log edz

∼ (1− r)k log e

k!

∞∑
`=−∞

Γ (k + 2πi` log e) exp

(
−2πi` log

Cn

1− r

)
∼ (1− r)k

k!
Pk

(
Cn

1− r

)
+

(1− r)k log e

k
.

This completes the proof of (f).

We now prove (g). By Lemma 6 and Theorem 1(b) we may limit our attention to
parts j for which |j − log n| 6 ω(n). By Theorem 3, the probability that part j appears
with multiplicity k is asymptotically e−µjµkj/k! where µj = Cnrj. Using the Poisson
summation formula as in the proof of (f), the expected number of parts of multiplicity k
is asymptotic to

1

k!

∑
j

exp
(
−Cnrj

)
(Cnrj)k

∼ 1

k!

∞∑
`=−∞

∫ ∞
−∞

exp
(
−2iπ`t− rt−δ(n)

)
rk(t−δ(n))dt

∼ log e

k!

∞∑
`=−∞

exp (−2iπ` log(Cn)) Γ (k + 2iπ` log e)

∼ Pk(Cn)

k!
+

log e

k
.
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The claim about mn(k) follows from the fact that mn(k) = E(Dn(k)/Dn) and the tight
concentration of Dn in (c)—an argument used by Louchard [20] for unrestricted compo-
sitions.
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