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Abstract

We give a new proof of a determinant evaluation due to Andrews, which has
been used to enumerate cyclically symmetric and descending plane partitions. We
also prove some related results, including a q-analogue of Andrews’s determinant.
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1 Introduction

In 1979, George Andrews [1] managed to evaluate the determinant

det
06m,n6N−1

(
δmn +

(
x+m+ n

n

))
. (1)

This allowed him to enumerate so called cyclically symmetric plane partitions (using the
case x = 0) and descending plane partitions (x = 2). Andrews’s proof, which takes up
most of his 33 pages paper, amounts to partially working out the LU-factorization of
the underlying matrix. This requires both clever guess-work and creative use of hyper-
geometric series identities. Later, Andrews and Stanton [3] found a shorter proof, using
what Krattenthaler [13] has called “a magnificient factorization theorem” due to Mills,
Robbins and Rumsey [18]. This proof can be simplified further, see [5, 12, 20]. It is
our purpose to present a new and simple method for evaluating (1), using orthogonal
polynomials. Roughly speaking, we compute (1) by viewing each matrix element as the
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scalar product of two Meixner–Pollaczek polynomials, with respect to the orthogonality
measure for certain Wilson polynomials, see §3.

Our method can be used to prove further results. Ciucu, Eisenkölbl, Krattenthaler
and Zare [4] found that

det
06m,n6N−1

(
δmn + t

(
x+m+ n

n

))
(2)

can be evaluated in closed form when t6 = 1. Up to conjugation, this gives four cases,
t = ±1 and t = ±e2iπ/3, the case t = 1 being (1). Our proof of (1) can be modified to
include the remaining three cases, see §4.

We will also obtain some new variations of (1). Note that evaluating (2) is equivalent
to evaluating

det
06m,n6N−1

(
m!(b)mδmn + t(b)m(b)n 2F1

(
−m,−n

b
; 1

))
. (3)

Indeed, by the Chu–Vandermonde summation, the 2F1 equals (b)m+n/(b)m(b)n. Dividing
the nth column by n!(b)n then gives (2), with x = b − 1. Using continuous dual Hahn
polynomials rather than Wilson polynomials, we will evaluate

det
06m,n6N−1

(
m!(b)mδmn + t 2(m+n)/2(b)m(b)n 2F1

(
−m,−n

b
;
1

2

))
(4)

whenever t4 = 1 (giving three non-equivalent cases, t = ±1 and t = i) and

det
06m,n6N−1

(
m!(b)mδmn + t 3(m+n)/2(b)m(b)n 2F1

(
−m,−n

b
;
1

3

))
(5)

whenever t3 = −1 (giving two non-equivalent cases, t = −1, t = eiπ/3), see §5. These
results are related to weighted enumeration of alternating sign matrixes. Indeed, as we
explain further below, the case b = 1, t = e2iπ/3 of (3) relates to the famous problem of
enumerating alternating sign matrices of fixed size. Similarly, it follows from the work of
Colomo and Pronko [6] that the case b = 1, t = i of (4) is related to the 2-enumeration of
alternating sign matrices and the case b = 1, t = eiπ/3 of (5) to the 3-enumeration.

Another problem, already discussed in [1], is to obtain a q-analogue of Andrews’s
determinant. In the combinatorially most interesting cases, x = 0 and x = 2, such q-
analogues were proved by Mills, Robbins and Rumsey [17], thereby settling conjectures
of Macdonald [16] and Andrews [1]. However, until now nobody has found a q-analogue
for the case of general x. We propose such an identity in Theorem 14 where, roughly
speaking, the summable 2F1 in (3) is replaced by a non-summable 4φ3. However, our
Theorem 14 does not contain the q-analogues found by Mills, Robbins and Rumsey. It
would be interesting to prove those results using the method of the present work. Further
identities that one should look at can be found in [11, 14]. As an example, Guoce Xin
conjectured an evaluation of

det
06m,n6N−1

(
δmn −

(
x+m+ n

n+ 1

))
,
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which was published as [14, Conj. 35] and recently proved in [11].
We would like to acknowledge that our main idea is contained in the work of Colomo

and Pronko [6, 7] on the six-vertex model. In [6], these authors found a new determinant
formula for the partition function of the homogeneous six-vertex model with domain
wall boundary conditions. At the “ice point”, the Colomo–Pronko formula expresses the
number of states of the model (on an N ×N lattice) as

det
06m,n6N−1

(
−e2iπ/3δmn + eiπ/3

(
m+ n

n

))
, (6)

which is essentially the case x = 0, t = e2iπ/3 of (2). On the other hand, by the alternating
sign matrix theorem [15, 22], the number of states is

1!4!7! · · · (3N − 2)!

N !(N + 1)!(N + 2)! · · · (2N − 1)!
. (7)

If we want to prove directly that (6) equals (7) we can proceed as follows. Let

〈f, g〉± = ±PV

∫ ∞
−∞

f(x)g(x)
e±πx

sinh(3πx)
dx

and

〈f, g〉 = 〈f, g〉+ + 〈f, g〉− = 2

∫ ∞
−∞

f(x)g(x)
sinh(πx)

sinh(3πx)
dx.

Consider the determinant
D = det

06m,n6N−1
(〈pm, pn〉) ,

where pn is a monic polynomial of degree n. By linearity in rows and columns, D does
not depend on the choice of pn. Choosing pn as orthogonal with respect to the pairing
〈·, ·〉+, D essentially reduces to (6) [6]. On the other hand, choosing pn as orthogonal with
respect to 〈·, ·〉, D becomes diagonal and can thus be evaluated [7]. (Choosing pn(x) = xn

gives a Hankel determinant, which is a limit case of the Izergin–Korepin formula [9] used
by Kuperberg [15] in his proof of (7).) Essentially, our results are obtained by variations
of this idea.

2 Preliminaries on orthogonal polynomials

For the benefit of the reader, we collect some facts on Wilson, continuous dual Hahn,
Meixner–Pollaczek and Askey–Wilson polynomials, see [10]. We refer to [2] or [8] for the
standard notation for hypergeometric and basic hypergeometric series used throughout
the paper.

The Wilson polynomials are defined by

Wn

(
x2; a1, a2, a3, a4

)
= (a1 + a2)n(a1 + a3)n(a1 + a4)n

× 4F3

(
−n, a1 + a2 + a3 + a4 + n− 1, a1 + ix, a1 − ix

a1 + a2, a1 + a3, a1 + a4
; 1

)
. (8)
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This is a polynomial of degree n in x2 with leading coefficient

(−1)n(a1 + a2 + a3 + a4 + n− 1)n.

If the parameters ak are all positive, Wilson polynomials satisfy the orthogonality relation

Γ(a1 + a2 + a3 + a4)

2π
∏

16j<k64 Γ(aj + ak)

∫ ∞
0

∣∣∣∣Γ(a1 + ix)Γ(a2 + ix)Γ(a3 + ix)Γ(a4 + ix)

Γ(2ix)

∣∣∣∣2
×Wm

(
x2; a1, a2, a3, a4

)
Wn

(
x2; a1, a2, a3, a4

)
dx = hn δmn, (9)

where

hn = hWn (a1, a2, a3, a4) =
a1 + a2 + a3 + a4 − 1

a1 + a2 + a3 + a4 − 1 + 2n

n!
∏

16j<k64(aj + ak)n

(a1 + a2 + a3 + a4 − 1)n
.

Later, we will choose a1 = 0. Then, the pole of the factor Γ(a1 + ix) at x = 0 is cancelled
by the pole of Γ(2ix). Thus, (9) remains valid for a1 = 0 as long as the other parameters
are positive.

The continuous dual Hahn polynomials are defined by

Sn
(
x2; a1, a2, a3

)
= (a1 + a2)n(a1 + a3)n 3F2

(
−n, a1 + ix, a1 − ix
a1 + a2, a1 + a3

; 1

)
.

This is a polynomial of degree n in x2 with leading coefficient (−1)n. If all ak are positive,
then

1

2π
∏

16j<k63 Γ(aj + ak)

∫ ∞
0

∣∣∣∣Γ(a1 + ix)Γ(a2 + ix)Γ(a3 + ix)

Γ(2ix)

∣∣∣∣2
× Sm

(
x2; a1, a2, a3

)
Sn
(
x2; a1, a2, a3

)
dx = hn δmn, (10)

where
hn = hCDH

n (a1, a2, a3) = n!(a1 + a2)n(a1 + a3)n(a2 + a3)n.

Similarly as for (9), (10) holds also for a1 = 0 as long as the other parameters are positive.
The Meixner–Pollaczek polynomials are defined by

P (λ)
n (x;φ) =

(2λ)n
n!

einφ 2F1

(
−n, λ+ ix

2λ
; 1− e−2iφ

)
. (11)

This is a polynomial in x of degree n with leading coefficient

(2 sinφ)n

n!
.

For λ > 0 and 0 < φ < π,

(2 sinφ)2λ

2πΓ(2λ)

∫ ∞
−∞

e(2φ−π)x |Γ(λ+ ix)|2 P (λ)
m (x;φ)P (λ)

n (x;φ) dx = hnδmn, (12)
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where

hn = hMP
n (λ) =

(2λ)n
n!

.

We will need the expansion formula

P (λ)
n

(
x;
π

2
+ φ
)

= (−1)n
(2λ)n
n!

n∑
k=0

(−n)k
(2λ)k

(2 sinφ)n−kP
(λ)
k

(
x;
π

2
− φ
)
, (13)

which can be proved by inserting (11), changing the order of summation and using the
binomial theorem.

Finally, the Askey–Wilson polynomials are defined by

pn(cos θ; a1, a2, a3, a4|q) =
(a1a2, a1a3, a1a4; q)n

an1

× 4φ3

(
q−n, a1a2a3a4q

n−1, a1e
iθ, a1e

−iθ

a1a2, a1a3, a1a4
; q, q

)
.

This is a polynomial in cos θ of degree n with leading coefficient

2n(a1a2a3a4q
n−1; q)n.

We write the orthogonality using eiθ rather than cos θ as integration variable. Assuming

|q|, |a1|, |a2|, |a3|, |a4| < 1, (14)

we have

(q; q)∞
∏

16j<k64(ajak; q)∞

2(a1a2a3a4; q)∞

∮
(z2, z−2; q)∞

(a1z, a1z−1, a2z, a2z−1, a3z, a3z−1, a4z, a4z−1; q)∞

× pm
(
z + z−1

2
; a1, a2, a3, a4|q

)
pn

(
z + z−1

2
; a1, a2, a3, a4|q

)
dz

2πiz
= hnδmn, (15)

where the integral is over the positively oriented unit circle and

hn = hAWn (a1, a2, a3, a4; q) =
1− a1a2a3a4q−1

1− a1a2a3a4q2n−1
(q; q)n

∏
16j<k64(ajak; q)n

(a1a2a3a4q−1; q)n
.

We will need the fact that (15) remains valid when a1 = 1, as long as the other conditions
in (14) hold. The reason is that the double zero of the factor (a1z, a1z

−1; q)∞ at z = 1 is
cancelled by the double zero of (z2, z−2; q)∞.

3 Proof of Andrews’s determinant

We first explain the main idea behind our proof in general terms. Suppose we are given
three symmetric bilinear forms 〈·, ·〉k, k = −1, 0, 1, which are defined on polynomials and
related by

〈f, g〉0 = 〈f, g〉1 + 〈f, g〉−1. (16)
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In the generic situation, there exist monic polynomials p
(k)
n of degree n, with 〈p(k)m , p

(k)
n 〉k =

h
(k)
n δmn. We assume that this is the case for k = 0 and k = 1.

Consider the determinant

D = det
06m,n6N−1

(〈pm, pn〉0) , (17)

with pn a monic polynomial of degree n. By linearity in rows and columns, D is in-
dependent of the choice of pn. In particular, choosing pn = p

(0)
n we find that D =

h
(0)
0 h

(0)
1 · · ·h

(0)
N−1. Choosing pn = p

(1)
n then gives the key identity

det
06m,n6N−1

(
h(1)m δmn + 〈p(1)m , p(1)n 〉−1

)
=

N−1∏
n=0

h(0)n . (18)

In the cases that we will consider, the bilinear forms will be defined by

〈f, g〉k =

∫ ∞
−∞

f(x)g(x)wk(x) dx, k = −1, 0, 1,

where w0 = w1 + w−1. In particular, we will show that if we take

w±1(x) =
3(b+2)/2

4πΓ(b)
e±πx

∣∣∣∣Γ( b2 + 3ix

)∣∣∣∣2 , (19a)

w0(x) =
3(b+2)/2

2πΓ(b)
cosh(πx)

∣∣∣∣Γ( b2 + 3ix

)∣∣∣∣2 , (19b)

where b > 0, then (18) becomes Andrews’s determinant evaluation (1), with x = b− 1.

Let us first compute the polynomials p
(0)
n . Since w0 is even, we can write p

(0)
2n (x) =

qn(x2), p
(0)
2n+1(x) = x rn(x2), where qn and rn are monic orthogonal polynomials on the

positive half-line with weight w0 and x2w0, respectively.
Recall that the gamma function satisfies the duplication formula

(2π)1/2Γ(2x) = 22x−1/2Γ(x)Γ

(
x+

1

2

)
,

the triplication formula

2πΓ(3x) = 33x−1/2Γ(x)Γ

(
x+

1

3

)
Γ

(
x+

2

3

)
and the reflection formula, which we write as

Γ

(
1

2
+ ix

)
Γ

(
1

2
− ix

)
=

π

cosh(πx)
.
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Combining these identities, one readily writes

w0(x) =
33b/2

32π3Γ(b)

∣∣∣∣Γ(ix)Γ(ix+ b/6)Γ(ix+ b/6 + 1/3)Γ(ix+ b/6 + 2/3)

Γ(2ix)

∣∣∣∣2
=

Γ(a1 + a2 + a3 + a4)

4π
∏

16j<k64 Γ(aj + ak)

∣∣∣∣Γ(a1 + ix)Γ(a2 + ix)Γ(a3 + ix)Γ(a4 + ix)

Γ(2ix)

∣∣∣∣2 ,
with (a1, a2, a3, a4) = (0, b/6, b/6 + 1/3, b/6 + 2/3). Comparing this with (9), we find that

p
(0)
2n (x) =

(−1)n

(b/2 + n)n
Wn

(
x2; 0,

b

6
,
b

6
+

1

3
,
b

6
+

2

3

)
(20a)

and that

h
(0)
2n =

1

(b/2 + n)2n
hWn

(
0,
b

6
,
b

6
+

1

3
,
b

6
+

2

3

)
=
n!(b/2)n(b/2)3n(b+ 1)3n

36n(b/2)2n(b/2 + 1)2n
. (20b)

Since x2|Γ(ix)|2 = |Γ(ix+ 1)|2, we can also write

x2w0(x) = C
Γ(b1 + b2 + b3 + b4)

4π
∏

16j<k64 Γ(bj + bk)

∣∣∣∣Γ(b1 + ix)Γ(b2 + ix)Γ(b3 + ix)Γ(b4 + ix)

Γ(2ix)

∣∣∣∣2 ,
with (b1, b2, b3, b4) = (1, b/6, b/6 + 1/3, b/6 + 2/3) and

C =
b2b3b4

b2 + b3 + b4
=
b(b+ 4)

22 · 33
.

It follows that

p
(0)
2n+1(x) =

(−1)n

(b/2 + n+ 1)n
xWn

(
x2; 1,

b

6
,
b

6
+

1

3
,
b

6
+

2

3

)
(20c)

and

h
(0)
2n+1 =

b(b+ 4)

22 · 33(b/2 + n+ 1)2n
hWn

(
1,
b

6
,
b

6
+

1

3
,
b

6
+

2

3

)
=
b(b+ 4)

4

n!(b/2 + 1)n(b/2 + 3)3n(b+ 1)3n
36n+3(b/2 + 1)2n(b/2 + 2)2n

. (20d)

As for the polynomials p
(±1)
n , it follows from (12) that

p(±1)n (x) =
n!

33n/2
P (b/2)
n

(
3x,

π

2
± π

6

)
and that

h(±1)n = 〈p(±1)m , p(±1)n 〉±1 =
(n!)2

2 · 33n
hMP
n (b/2) =

n! (b)n
2 · 33n

. (21)
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To compute 〈p(1)m , p
(1)
n 〉−1, we use (13) to expand

p(1)n = (−1)n(b)n

n∑
k=0

(−n)k
k!(b)k

33(k−n)/2p
(−1)
k .

It follows that

〈p(1)m , p(1)n 〉−1 =
(−1)m+n(b)m(b)n

2 · 33(m+n)/2

min(m,n)∑
k=0

(−m)k(−n)k
k!(b)k

=
(−1)m+n(b)m+n

2 · 33(m+n)/2
, (22)

where the final step is the Chu–Vandermonde summation.
By (21) and (22), the general determinant identity (18) is now reduced to

det
06m,n6N−1

(
m! (b)m
2 · 33m

δmn + (−1)m+n (b)m+n

2 · 33(m+n)/2

)
=

[(N−1)/2]∏
n=0

h
(0)
2n

[(N−2)/2]∏
n=0

h
(0)
2n+1,

with h
(0)
n as in (20). Multiplying the nth row and nth column with (−1)n21/233n/2, for

each n, we arrive at the following result.

Theorem 1 (Andrews). The following determinant evaluation holds:

det
06m,n6N−1

(
m! (b)mδmn + (b)m+n

)
= 2N

(
b(b+ 4)

4

)[N2 ]

×
[(N−1)/2]∏

n=0

n!(b/2)n(b/2)3n(b+ 1)3n
(b/2)2n(b/2 + 1)2n

[(N−2)/2]∏
n=0

n!(b/2 + 1)n(b/2 + 3)3n(b+ 1)3n
(b/2 + 1)2n(b/2 + 2)2n

.

Dividing the nth column by n! (b)n and writing

(b)m+n

n! (b)n
=

(
b+m+ n− 1

n

)
,

we see that Theorem 1 is indeed equivalent to the evaluation of (1).

4 The CEKZ variations

We will now modify our proof to cover the three variations of Andrews’s determinant
discovered by Ciucu, Eisenkölbl, Krattenthaler and Zare [4].

For the first variation, we take

w±1(x) =
3(b+2)/2

4πΓ(b)
e±πxΓ

(
b

2
+ 3ix+ 1

)
Γ

(
b

2
− 3ix

)
, (23a)

w0(x) =
3(b+2)/2

2πΓ(b)
cosh(πx)Γ

(
b

2
+ 3ix+ 1

)
Γ

(
b

2
− 3ix

)
. (23b)
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In other words, wk are obtained by multiplying the weights in (19) with

Γ(b/2 + 3ix+ 1)

Γ(b/2 + 3ix)
= 3i

(
x− ib

6

)
.

Recall that, in general, if pn are monic orthogonal polynomials with∫
pm(x)pn(x) dµ(x) = hnδmn,

then

p̃n(x) =
pn+1(x)− pn+1(a)

pn(a)
pn(x)

x− a
are monic orthogonal polynomials with∫

p̃m(x)p̃n(x) (x− a) dµ(x) = h̃nδmn,

where

h̃n = −pn+1(a)

pn(a)
hn.

In the case at hand, it follows that

h(0)n

∣∣∣∣
w0 as in (23b)

= −3i
p
(0)
n+1(ib/6)

p
(0)
n (ib/6)

h(0)n

∣∣∣∣
w0 as in (19b)

,

where the quantities on the right-hand side are given in (20). Applying the explicit
formula (8) with a1 and a2 interchanged, both 4F3:s reduce to a single term, and we find
that

p
(0)
2n

(
ib

6

) ∣∣∣∣∣
w0 as in (19b)

=
(−1)n(b/6)n(b/3 + 1/3)n(b/3 + 2/3)n

(b/2 + n)n
,

p
(0)
2n+1

(
ib

6

) ∣∣∣∣∣
w0 as in (19b)

=
ib

6

(−1)n(b/6 + 1)n(b/3 + 1/3)n(b/3 + 2/3)n
(b/2 + n+ 1)n

.

After simplification, this gives

h
(0)
2n

∣∣∣∣
w0 as in (23b)

=
b

2

n!(b/2 + 1)n(b/2 + 1)3n(b+ 1)3n
36n(b/2 + 1)22n

, (24a)

h
(0)
2n+1

∣∣∣∣
w0 as in (23b)

=
b(b+ 1)(b+ 4)

2

n!(b/2 + 1)n(b/2 + 3)3n(b+ 3)3n
36n+4(b/2 + 2)22n

. (24b)

The remaining quantities that we need can be obtained from the following Lemma.
We formulate it so as to cover also some cases needed in §5.
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Lemma 2. For b and t positive and −π/2 < φ < π/2, define the pairing

〈p, q〉φ =
t(2 cosφ)b+1

2πΓ(b+ 1)

∫ ∞
−∞

p(x)q(x) e2φtxΓ

(
b

2
+ tix+ 1

)
Γ

(
b

2
− tix

)
dx.

Then, the rescaled Meixner–Pollaczek polynomials

pn(x) =
n!

(2t cosφ)n
P ((b+1)/2)
n

(
tx− i

2
;
π

2
+ φ

)
are monic and satisfy the orthogonality relation

〈pm, pn〉φ =
eiφn!(b+ 1)n
(2t cosφ)2n

δmn (25)

as well as

〈pm, pn〉−φ = e−iφ
(
−tanφ

t

)m+n

(b+ 1)m(b+ 1)n 2F1

(
−m,−n
b+ 1

;
1

4 sin2 φ

)
. (26)

Proof. Consider integrals of the form

t(2 cosφ)b+1

2πΓ(b+ 1)

∫ ∞
−∞

p(x) e2φtxΓ

(
b

2
+ tix+ 1

)
Γ

(
b

2
− tix

)
dx (27)

with p a polynomial. If we replace x 7→ x+ i/2t and then shift the contour of integration
back to the real line, the value of the integral does not change. This is true since the
contour does not cross any poles of the integrand and since, by [2, Cor. 1.4.4], for large
values of |Rex| one may estimate∣∣∣∣Γ( b2 + 1 + tix

)
Γ

(
b

2
− tix

)∣∣∣∣ 6 C|Rex|be−πt|Rex|

uniformly in any vertical strip. Thus, making also a further change of variables x 7→ x/t,
we find that (27) equals

(2 cosφ)b+1eiφ

2πΓ(b+ 1)

∫ ∞
−∞

p

(
x+ i/2

t

)
e2φx

∣∣∣∣Γ(b+ 1

2
+ ix+ 1

)∣∣∣∣2 dx.
The orthogonality (25) then follows from (12). Moreover, (13) gives

p(φ)n = (−1)n(b+ 1)n

n∑
k=0

(−n)k
k!(b+ 1)k

(
tanφ

t

)n−k
p
(−φ)
k ,

where we indicate the φ-dependence of the polynomials pn. Combining this with (25),
with φ replaced by −φ, gives (26).
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In the case at hand, it follows from Lemma 2 that the monic orthogonal polynomials
with respect to w1 are given by

p(1)n (x) =
n!

33n/2
P ((b+1)/2)
n

(
3x− i

2
,
2π

3

)
and that

h(1)n =
eiπ/6(b)n+1n!

2 · 33n+1/2
, (28)

〈p(1)m , p(1)n 〉−1 = (−1)m+n e
−iπ/6(b)m+n+1

2 · 3(3m+3n+1)/2
. (29)

Plugging (24), (28) and (29) into (18), replacing b by b − 1 and simplifying, we recover
the following result.

Theorem 3 (Ciucu, Eisenkölbl, Krattenthaler and Zare). One has

det
06m,n6N−1

(
m! (b)mδmn − e2iπ/3(b)m+n

)
=
(
e−iπ/6

√
3
)N (b(b+ 3)

3

)[N2 ]

×
[(N−1)/2]∏

n=0

n!
(
b+1
2

)
n

(
b+1
2

)
3n

(b)3n(
b+1
2

)2
2n

[(N−2)/2]∏
n=0

n!
(
b+1
2

)
n

(
b+5
2

)
3n

(b+ 2)3n(
b+3
2

)2
2n

.

The second variation is obtained by choosing w1 as in (23a) but replacing w−1 by its
negative. Then,

w0(x) =
3(b+2)/2

2πΓ(b)
sinh(πx)Γ

(
b

2
+ 3ix+ 1

)
Γ

(
b

2
− 3ix

)
. (30)

Since (x + ib/6)w0(x) is odd, the monic orthogonal polynomials with respect to w0 can

be constructed as p
(0)
2n (x) = sn(x2), p

(0)
2n+1(x) = (x + ib/6) tn(x2), where sn are orthogonal

on the positive half-line with respect to (w0(x) + w0(−x))/2 = xw0(x)/(x− ib/6) and tn
are orthogonal with respect to x(x+ ib/6)w0(x).

To identify these polynomials, we write

x

x− ib/6
w0(x) =

ib

2 · 31/2

Γ(a1 + a2 + a3 + a4)

4π
∏

16j<k64 Γ(aj + ak)

×
∣∣∣∣Γ(a1 + ix)Γ(a2 + ix)Γ(a3 + ix)Γ(a4 + ix)

Γ(2ix)

∣∣∣∣2 ,
x

(
x+

ib

6

)
w0(x) =

ib(b+ 1)(b+ 2)

2 · 37/2

Γ(b1 + b2 + b3 + b4)

4π
∏

16j<k64 Γ(bj + bk)

×
∣∣∣∣Γ(b1 + ix)Γ(b2 + ix)Γ(b3 + ix)Γ(b4 + ix)

Γ(2ix)

∣∣∣∣2 ,
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where

(a1, a2, a3, a4) =

(
1

2
,
b

6
,
b

6
+

1

3
,
b

6
+

2

3

)
,

(b1, b2, b3, b4) =

(
1

2
,
b

6
+

1

3
,
b

6
+

2

3
,
b

6
+ 1

)
.

It follows that

p
(0)
2n (x) =

(−1)n

(b/2 + n+ 1/2)n
Wn

(
x2;

1

2
,
b

6
,
b

6
+

1

3
,
b

6
+

2

3

)
,

p
(0)
2n+1(x) =

(−1)n

(b/2 + n+ 3/2)n

(
x+

ib

6

)
Wn

(
x2;

1

2
,
b

6
+

1

3
,
b

6
+

2

3
,
b

6
+ 1

)
and that

h
(0)
2n =

ib

2 · 31/2(b/2 + n+ 1/2)2n
hWn

(
1

2
,
b

6
,
b

6
+

1

3
,
b

6
+

2

3

)
=

ib

2

n!
(
b+1
2

)
n

(
b+3
2

)
3n

(b+ 1)3n

36n+1/2
(
b+1
2

)
2n

(
b+3
2

)
2n

, (31a)

h
(0)
2n+1 =

1

(b/2 + n+ 3/2)2n

ib(b+ 1)(b+ 2)

2 · 37/2
hWn

(
1

2
,
b

6
+

1

3
,
b

6
+

2

3
,
b

6
+ 1

)
=

ib(b+ 1)(b+ 2)

2 · 36n+7/2

n!(b/2 + 3/2)n(b/2 + 5/2)3n(b+ 3)3n
(b/2 + 3/2)2n(b/2 + 5/2)2n

. (31b)

Since (28) is still valid and (29) holds up to a change of sign, we conclude that

det
06m,n6N−1

(
eiπ/6m! (b)m+1

2 · 3(3m+1)/2
δmn + (−1)m+n+1 e

−iπ/6(b)m+n+1

2 · 3(3m+3n+1)/2

)
=

N−1∏
n=0

h(0)n ,

with h
(0)
n as in (31). Replacing b with b − 1 and simplifying, we arrive at the following

result.

Theorem 4 (Ciucu, Eisenkölbl, Krattenthaler and Zare). One has

det
06m,n6N−1

(
m! (b)mδmn + e2iπ/3(b)m+n

)
= eiπN/3

(
b(b+ 1)

)[N2 ]
[(N−1)/2]∏

n=0

n!
(
b
2

)
n

(
b+2
2

)
3n

(b)3n(
b
2

)
2n

(
b+2
2

)
2n

[(N−2)/2]∏
n=0

n!
(
b+2
2

)
n

(
b+4
2

)
3n

(b+ 2)3n(
b+2
2

)
2n

(
b+4
2

)
2n

.

For the final variation, we choose w1 as in (19a), but replace w−1 by its negative.
Then,

w0(x) =
3(b+2)/2

2πΓ(b)
sinh(πx)

∣∣∣∣Γ( b2 + 3ix

)∣∣∣∣2 . (32)
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Since 〈1, 1〉0 = 0, there does not exist a system of orthogonal polynomials with respect to
w0. Thus, (18) is not applicable. However, we can compute the determinant (17) using
orthogonal polynomials with respect to the weight xw0(x).

More generally, consider the determinant (17), when the scalar product is given by
integration against an odd weight function w0. Suppose there exist monic orthogonal
polynomials qn with∫ ∞

−∞
qm(x2)qn(x2)xw0(x) dx = 2

∫ ∞
0

qm(x2)qn(x2)xw0(x) dx = cnδmn.

Then, the monic polynomials p2n(x) = qn(x2), p2n+1(x) = xqn(x2) satisfy

〈pm, pn〉0 =

{
ck, {m,n} = {2k, 2k + 1},
0, else.

Choosing pn in this way, D reduces to the block-diagonal determinant∣∣∣∣∣∣∣∣∣∣∣∣∣

0 c0 0 0 . . . 0
c0 0 0 0
0 0 0 c1
0 0 c1 0
...

. . .

0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Thus, as a substitute for (18) we have

det
06m,n6N−1

(
h(1)m δmn + 〈p(1)m , p(1)n 〉−1

)
=

{
(−1)N/2

(
c0c1 · · · c(N−2)/2

)2
, N even,

0, N odd.
(33)

In the case at hand, we observe that

xw0(x)

∣∣∣∣
w0 as in (32)

=
1

3i

x

x− ib/6
w0(x)

∣∣∣∣
w0 as in (30)

,

which gives

cn =
1

3i
h
(0)
2n

∣∣∣∣
as in (31a)

=
b

2
·
n!
(
b+1
2

)
n

(
b+3
2

)
3n

(b+ 1)3n

36n+3/2
(
b+1
2

)
2n

(
b+3
2

)
2n

.

Since (21) holds and (22) holds up to a change of sign, (33) can be simplified to the
following form.

Theorem 5 (Ciucu, Eisenkölbl, Krattenthaler and Zare). When N is even,

det
06m,n6N−1

(
m! (b)mδmn − (b)m+n

)
= (−1)

N
2 bN

(N−2)/2∏
n=0

(
n!
(
b+1
2

)
n

(
b+3
2

)
3n

(b+ 1)3n(
b+1
2

)
2n

(
b+3
2

)
2n

)2

,

whereas if N is odd the determinant vanishes.
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5 Further variations

It is natural to look for further interesting specializations of (18). We have not found any

more cases that are as nice as Andrews’s determinant in the sense that the quantities h
(0)
n ,

h
(1)
n and 〈p(1)m , p

(1)
n 〉−1 all factor completely. However, from the viewpoint of orthogonal

polynomials, there are five particularly natural cases based on continuous Hahn poly-
nomials rather than Wilson polynomials. As we mentioned in the introduction, some of
the resulting determinant evaluations are related to weighted enumeration of alternating
sign matrices. Since the computations are completely parallel to those in §3–4, we will be
rather brief.

In the first of these five cases, we choose the weight functions as

w±1(x) =
2b/2

2πΓ(b)
e±πx

∣∣∣∣Γ( b2 + 2ix

)∣∣∣∣2 , (34)

w0(x) =
2b/2

πΓ(b)
cosh(πx)

∣∣∣∣Γ( b2 + 2ix

)∣∣∣∣2 ,
with b > 0.

With (a1, a2, a3) = (0, b/4, b/4 + 1/2) and (b1, b2, b3) = (1, b/4, b/4 + 1/2),

w0(x) =
1

4πΓ(a1 + a2)Γ(a1 + a3)Γ(a2 + a3)

∣∣∣∣Γ(a1 + ix)Γ(a2 + ix)Γ(a3 + ix)

Γ(2ix)

∣∣∣∣2 ,
x2w0(x) =

b(b+ 2)

16
· 1

4πΓ(b1 + b2)Γ(b1 + b3)Γ(b2 + b3)

∣∣∣∣Γ(b1 + ix)Γ(b2 + ix)Γ(b3 + ix)

Γ(2ix)

∣∣∣∣2 .
Exactly as in the proof of Theorem 1, it follows that

h
(0)
2n (x) = hCDH

n

(
0,
b

4
,
b

4
+

1

2

)
=
n!
(
b+1
2

)
n

(
b
2

)
2n

4n
,

h
(0)
2n+1(x) =

b(b+ 2)

16
hCDH
n

(
1,
b

4
,
b

4
+

1

2

)
= b(b+ 2)

n!
(
b+1
2

)
n

(
b+4
2

)
2n

4n+2
,

p(±1)n (x) =
n!

23n/2
P (b/2)
n

(
2x,

π

2
± π

4

)
,

h(1)n =
n!(b)n
23n+1

, (35)

〈p(1)m , p(1)n 〉−1 =
(−1)m+n(b)m(b)n

2m+n+1 2F1

(
−m,−n

b
;
1

2

)
. (36)

After simplification, (18) then reduces to the following new identity.
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Theorem 6. The following determinant evaluation holds:

det
06m,n6N−1

(
m!(b)mδmn + 2(m+n)/2(b)m(b)n 2F1

(
−m,−n

b
;
1

2

))
= 2N

2

(
b(b+ 2)

8

)[N/2] [(N−1)/2]∏
n=0

n!

(
b+ 1

2

)
n

(
b

2

)
2n

[(N−2)/2]∏
n=0

n!

(
b+ 1

2

)
n

(
b+ 4

2

)
2n

.

Next, we take

w±1(x) = ± 2b/2

2πΓ(b)
e±πxΓ

(
b

2
+ 2ix+ 1

)
Γ

(
b

2
− 2ix

)
,

w0(x) =
2b/2

πΓ(b)
sinh(πx)Γ

(
b

2
+ 2ix+ 1

)
Γ

(
b

2
− 2ix

)
.

Similarly as in the proof of Theorem 4, we write

x

x− ib/4
w0(x) =

ib

2

1

4π
∏

16j<k63 Γ(aj + ak)

∣∣∣∣Γ(a1 + ix)Γ(a2 + ix)Γ(a3 + ix)

Γ(2ix)

∣∣∣∣2 ,
x

(
x+

ib

4

)
w0(x) =

ib(b+ 1)(b+ 2)

16

1

4π
∏

16j<k63 Γ(bj + bk)

×
∣∣∣∣Γ(b1 + ix)Γ(b2 + ix)Γ(b3 + ix)

Γ(2ix)

∣∣∣∣2 ,
where (a1, a2, a3) = (1/2, b/4, b/4 + 1/2) and (b1, b2, b3) = (1/2, b/4 + 1/2, b/4 + 1), and
conclude that

h
(0)
2n =

ib

2
hCDH
n

(
1

2
,
b

4
,
b

4
+

1

2

)
=

ib

22n+1
n!

(
b+ 1

2

)
n

(
b+ 2

2

)
2n

, (37)

h
(0)
2n+1 =

ib(b+ 1)(b+ 2)

16
hCDH
n

(
1

2
,
b

4
+

1

2
,
b

4
+ 1

)
=

ib(b+ 1)(b+ 2)

22n+4
n!

(
b+ 3

2

)
n

(
b+ 4

2

)
2n

.

(38)

Moreover, it follows from Lemma 2 that

h(1)n =
eiπ/4n!(b)n+1

23n+3/2
,

〈p(1)m , p(1)n 〉−1 = (−1)m+n+1e−iπ/4
b(b+ 1)m(b+ 1)n

2m+n+3/2 2F1

(
−m,−n
b+ 1

;
1

2

)
.

In the resulting instance of (18), we replace b by b−1 and simplify to obtain the following
result.
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Theorem 7. The following determinant evaluation holds:

det
06m,n6N−1

(
m!(b)mδmn + i2(m+n)/2(b)m(b)n 2F1

(
−m,−n

b
;
1

2

))
= e

iπN
4 2

N(2N−1)
2

×
(
b(b+ 1)

4

)[N/2] [(N−1)/2]∏
n=0

n!

(
b

2

)
n

(
b+ 1

2

)
2n

[(N−2)/2]∏
n=0

n!

(
b+ 2

2

)
n

(
b+ 3

2

)
2n

.

Next, we choose w1 as in (34) but replace w−1 by its negative. Then,

w0(x) =
2b/2

πΓ(b)
sinh(πx)

∣∣∣∣Γ( b2 + 2ix

)∣∣∣∣2 .
Exactly as in the proof of Theorem 5, we find that (33) holds with

cn =
1

2i
h
(0)
2n

∣∣∣∣
as in (37)

=
b

22n+2
n!

(
b+ 1

2

)
n

(
b+ 2

2

)
2n

,

h
(1)
n as in (35) and 〈p(1)m , p

(1)
n 〉−1 as in (36) apart from a change of sign. After simplification,

we obtain the following determinant evaluation.

Theorem 8. When N is even,

det
06m,n6N−1

(
m!(b)mδmn − 2(m+n)/2(b)m(b)n 2F1

(
−m,−n

b
;
1

2

))
= (−1)

N
2 2

N(2N−3)
2 bN

(N−2)/2∏
n=0

(
n!

(
b+ 1

2

)
n

(
b+ 2

2

)
2n

)2

,

whereas if N is odd, the determinant vanishes.

We now turn to determinant evaluations of the form (5). Let

w±1(x) = ± 3

4πΓ(b)
e±2πxΓ

(
b

2
+ 3ix+ 1

)
Γ

(
b

2
− 3ix

)
,

w0(x) =
3

2πΓ(b)
sinh(2πx)Γ

(
b

2
+ 3ix+ 1

)
Γ

(
b

2
− 3ix

)
.

We then have

x

x− ib/6
w0(x) =

i31/2b

2

1

4π
∏

16j<k63 Γ(aj + ak)

∣∣∣∣Γ(a1 + ix)Γ(a2 + ix)Γ(a3 + ix)

Γ(2ix)

∣∣∣∣2 ,
x

(
x+

ib

6

)
w0(x) =

ib(b+ 1)(b+ 2)

2 · 33/2

1

4π
∏

16j<k63 Γ(bj + bk)

×
∣∣∣∣Γ(b1 + ix)Γ(b2 + ix)Γ(b3 + ix)

Γ(2ix)

∣∣∣∣2 ,
the electronic journal of combinatorics 19(4) (2012), #P15 16



where (a1, a2, a3) = (b/6, b/6 + 1/3, b/6 + 2/3), (b1, b2, b3) = (b/6 + 1/3, b/6 + 2/3, b/6 + 1).
As in the proof of Theorem 4, it follows that

h
(0)
2n =

i31/2b

2
hCDH
n

(
b

6
,
b

6
+

1

3
,
b

6
+

2

3

)
=

ib

2 · 33n−1/2 n!(b+ 1)3n, (39)

h
(0)
2n+1 =

ib(b+ 1)(b+ 2)

2 · 33/2
hCDH
n

(
b

6
+

1

3
,
b

6
+

2

3
,
b

6
+ 1

)
=

ib(b+ 1)(b+ 2)

2 · 33n+3/2
n!(b+ 3)3n

and, using Lemma 2,

h(1)n =
eiπ/3n!(b)n+1

2 · 32n
,

〈p(1)m , p(1)n 〉−1 = (−1)m+n+1e−iπ/3
b(b+ 1)m(b+ 1)n

2 · 3(m+n)/2 2F1

(
−m,−n
b+ 1

;
1

3

)
.

After replacing b by b− 1, (18) can be simplified to the following form.

Theorem 9. The following determinant evaluation holds:

det
06m,n6N−1

(
m!(b)mδmn + eiπ/33(m+n)/2(b)m(b)n 2F1

(
−m,−n

b
;
1

3

))
= e

iπN
6 3

N(N+1)
4

(
b(b+ 1)√

3

)[N/2] [(N−1)/2]∏
n=0

n!(b)3n

[(N−2)/2]∏
n=0

n!(b+ 2)3n.

Finally, we choose

w±1(x) = ± 3

4πΓ(b)
e±2πx

∣∣∣∣Γ( b2 + 3ix

)∣∣∣∣2 ,
w0(x) =

3

2πΓ(b)
sinh(2πx)

∣∣∣∣Γ( b2 + 3ix

)∣∣∣∣2 .
As in the proof of Theorem 5, we find that (33) holds with

cn =
1

3i
h
(0)
2n

∣∣∣∣
as in (39)

=
b

2 · 33n+1/2
n!(b+ 1)3n,

h(1)n =
1

2 · 32n
n!(b)n,

〈p(1)m , p(1)n 〉−1 =
(−1)m+n+1(b)m(b)n

2 · 3(m+n)/2 2F1

(
−m,−n

b
;
1

3

)
,

which gives the following identity after simplification.
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Theorem 10. When N is even,

det
06m,n6N−1

(
m!(b)mδmn − 3(m+n)/2(b)m(b)n 2F1

(
−m,−n

b
;
1

3

))
= (−1)N/23N

2/4bN
(N−2)/2∏
n=0

(
n!(b+ 1)3n

)2
whereas if N is odd the determinant vanishes.

It may be instructive to summarize the results obtained so far. We have considered
weight functions

w±1(x) =
l(2 cos(πk/2l))b

4πΓ(b)
(±1)δe±kπxΓ

(
b

2
+ lix+ ε

)
Γ

(
b

2
− lix

)
,

which are normalized so that w0 = w1 + w−1 has total mass 1 when δ = ε = 0, and the
parameters are as in the following table:

k l δ ε
Theorem 1 1 3 0 0
Theorem 3 1 3 0 1
Theorem 4 1 3 1 1
Theorem 5 1 3 1 0
Theorem 6 1 2 0 0
Theorem 7 1 2 1 1
Theorem 8 1 2 1 0
Theorem 9 2 3 1 1
Theorem 10 2 3 1 0

.

The case (k, l, δ, ε) = (1, 2, 0, 1), which may appear to be missing, merely gives the
complex conjugate of Theorem 7.

6 A q-analogue of Andrews’s determinant

To find a q-analogue of Andrews’s determinant, it is natural to replace the Wilson poly-
nomials in (20) by Askey–Wilson polynomials. More precisely, a natural starting point
would be to combine the polynomials

pn(x; 1, b, bq, bq2|q3), pn(x; q3, b, bq, bq2|q3)

to a single orthogonal system. This is indeed possible, within the framework of orthogonal
Laurent polynomials on the unit circle.

Throughout this section, we write

ω = e2πi/3.
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Lemma 11. For |q|, |b| < 1, let

〈f, g〉0 =
(q3; q3)∞(b, b2q; q)∞

(b3q3; q3)∞

∮
f(z)g(z)

1

1 + z

(z2, z−2; q3)∞
(z, z−1; q3)∞(bz, bz−1; q)∞

dz

2πiz
,

with integration over the positively oriented unit circle. Then, the Laurent polynomials

p
(0)
2n (z) =

1

(b3q3n; q3)n
pn

(
z + z−1

2
; 1, b, bq, bq2|q3

)
,

p
(0)
2n+1(z) =

z − 1

(b3q3n+3; q3)n
pn

(
z + z−1

2
; q3, b, bq, bq2|q3

)
satisfy the orthogonality relations

〈p(0)m , p(0)n 〉0 = h(0)n δmn,

where

h
(0)
2n =

(q3, b3; q3)n(b, b2q; q)3n
(b3, b3q3; q3)2n

, (40a)

h
(0)
2n+1 = − (1− b)(1− bq2)

(1− ωbq)(1− ω2bq)

(q3, b3q3; q3)n(bq3, b2q; q)3n
(b3q3, b3q6; q3)2n

. (40b)

Proof. In the integral defining 〈p(0)m , p
(0)
n 〉0, write∮

f(z)
dz

2πiz
=

1

2

∮ (
f(z) + f(z−1)

) dz

2πiz
.

When m and n are both even, the integrand is invariant under z 7→ z−1, including the
factor

1

1 + z
+

1

1 + z−1
= 1.

The integral then reduces to (15), and we obtain the desired orthogonality with

h
(0)
2n =

hAWn (1, b, bq, bq2|bq3)
(b3q3n; q3)2n

,

which agrees with (40a). Whenm and n have different parity, we get an integral containing

z − 1

1 + z
+
z−1 − 1

1 + z−1
= 0,

so the orthogonality is obvious. Finally, when m and n are both odd, we encounter the
factor

(z − 1)2

1 + z
+

(z−1 − 1)2

1 + z−1
= −(1− z)(1− z−1).

the electronic journal of combinatorics 19(4) (2012), #P15 19



We now observe that (1− z)(1− z−1) times the orthogonality measure (normalized as in
(15)) for pn(x; 1, b, bq, bq2|q3) is the corresponding measure for

pn(x; q3, b, bq, bq2|q3),

apart from the multiplier

(1− b2)(1− b3)(1− b4)
1− b2b3b4

∣∣∣∣∣
b2=b, b3=bq, b4=bq2

=
(1− b)(1− bq2)

(1− ωbq)(1− ω2bq)
,

and conclude that

h
(0)
2n+1 = − (1− b)(1− bq2)

(1− ωbq)(1− ω2bq)

hAWn (q3, b, bq, bq2|bq3)
(b3q3n+3; q3)2n

,

which agrees with (40b).

Note that p
(0)
k is a linear combination of the first k + 1 terms in the sequence

1, z, z−1, z2, z−2, . . . .

Moreover, the coefficient of the (k+ 1)st term is 1. If we let these two properties define a
monic Laurent polynomial of degree k, then the discussion leading to (18) remains valid
if “polynomial” is replaced throughout by “Laurent polynomial”.

To apply this modified version of (18) we must split the orthogonality measure for p
(0)
n

in two parts. This will be achieved by the following version of Watson’s quintuple product
identity [21]. The fact that this fundamental result is applicable is a strong indication
that we are doing something natural.

Lemma 12. The following identity holds:

1

1 + z

(z2, z−2; q3)∞
(z, z−1; q3)∞

=
1− ω

3

(q; q)∞
(q3; q3)∞

(
(qzω, ω2/z; q)∞ − ω2(qzω2, ω/z; q)∞

)
. (41)

Proof. The left-hand side of (41) can be expressed as

1

z
(−z,−q/z; q3)∞(q3z2, q3/z2; q6)∞.

By the quintuple product identity, as given in [8, Ex. 5.6], the Laurent expansion of this
function is

1

(q3; q3)∞

∞∑
n=−∞

(−1)nq(
3n
2 )z3n−1(1 + zq3n). (42)

On the other hand, by the triple product identity [8, Eq. (1.6.1)], the right-hand side of
(41) has Laurent expansion

1− ω
3(q3; q3)∞

∞∑
n=−∞

(−1)nq(
n+1
2 )zn(ωn − ω2n+2). (43)

It is easily verified that (42) and (43) agree.
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Let us introduce the notation

µa,b(f) =
(q, b2; q)∞

(qab, b/a; q)∞

∮
f(z)

(qaz, 1/az; q)∞
(bz, b/z; q)∞

dz

2πiz
.

Then, using Lemma 12, the bilinear form introduced in Lemma 11 splits as in (16), with

〈f, g〉1 =
(1− ω)(1− bω2)

3(1 + b)
µω,b(fg),

〈f, g〉−1 =
(1− ω2)(1− bω)

3(1 + b)
µω2,b(fg).

To proceed, we need the following result.

Proposition 13. Let

P (a,b;q)
n (z) = z−[n2 ]

2φ1

(
q−n, b/a
q1−n/ab

; q,
qz

b

)
and let

Cn = C(a,b;q)
n =

{
1, n even,

an(b/a; q)n/(ab; q)n, n odd.

Then, P
(a,b;q)
n /Cn is a monic Laurent polynomial of degree n. For |b|, |q| < 1 we have the

orthogonality relation
µa,b

(
P (a,b;q)
m P (a,b;q)

n

)
= hnδmn, (44)

where

hn = (−1)na2[
n
2 ] (q, b2, b/a; q)n

(ab; q)n(abq; q)2[n/2](b/a; q)2[(n+1)/2]

.

Moreover,

µc,b
(
P (a,b;q)
m P (a,b;q)

n

)
= a[m2 ]+[n2 ]

(b2; q)m(b2; q)n(qc/a; q)[m2 ]+[n2 ](a/c; q)[m+1
2 ]+[n+1

2 ]

(ab; q)m(ab; q)n(qbc; q)[m2 ]+[n2 ](b/c; q)[m+1
2 ]+[n+1

2 ]

× 4φ3

(
q−m, q−n, ab, b/a

b2, q−[m2 ]−[n2 ]a/c, q1−[m+1
2 ]−[n+1

2 ]c/a
; q, q

)
. (45)

Before proving Proposition 13, we point out that (44) is equivalent to a result of Pastro

[19]. Namely, if we let pn(z) = z[n/2]P
(a,b;q)
n (z), then pn is a monic polynomial of degree n.

Moreover, (44) means that

µa,b(z
−kpn(z)) = 0, k = 0, 1, . . . , n− 1.

It follows that ∮
pm(z) pn(1/z)

(qaz, 1/az; q)∞
(bz, b/z; q)∞

dz

2πiz
= 0, m 6= n
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or, if the parameters are such that pn have real coefficients,∮
pm(z) pn(z)

(qaz, 1/az; q)∞
(bz, b/z; q)∞

dz

2πiz
= 0, m 6= n.

It is easily seen that this orthogonal system on the unit circle is equivalent to the one
introduced by Pastro.

Proof of Proposition 13. It is straight-forward to check that P
(a,b;q)
n /Cn is a monic Lau-

rent polynomial of degree n. To prove (45), we use [8, Eq. (III.6–7)] to write

P (a,b;q)
n (z) = z−[n2 ]

(a
b

)n (b2; q)n
(ab; q)n

3φ2

(
q−n, b/a, bz

b2, 0
; q, q

)
=
z[n+1

2 ]

bn
(b2; q)n
(ab; q)n

3φ2

(
q−n, ab, b/z

b2, 0
; q, q

)
.

These expressions also clarify the relation to Meixner–Pollaczek polynomials (11). Ex-

pressing P
(a,b;q)
m using the first of these identities and P

(a,b;q)
n using the second one gives

µc,b
(
P (a,b;q)
m P (a,b;q)

n

)
=

am

bm+n

(q, b2; q)∞(b2; q)m(b2; q)n
(qbc, b/c; q)∞(ab; q)m(ab; q)n

×
m∑
k=0

n∑
l=0

(q−m, b/a; q)k
(q, b2; q)k

(q−n, ab; q)l
(q, b2; q)l

qk+l
∮
z[n+1

2 ]−[m2 ] (qcz, 1/cz; q)∞
(bqkz, bql/z; q)∞

dz

2πiz
.

By Ramanujan’s summation [8, Eq. (II.29)],

(q, b2, qcz, 1/cz; q)∞
(qbc, b/c, bqkz, bql/z; q)∞

=
(b2; q)k+l

(b/c; q)k(qbc; q)l

∞∑
x=−∞

(q1−kc/b; q)x
(ql+1bc; q)x

(qkbz)x

in the annulus |qk+lb| < |z| < |b−1|, which is consistent with our conditions on the
parameters. Since only the term with x = [m/2]− [(n+ 1)/2] contributes to the integral,
we conclude that

µc,b
(
P (a,b;q)
m P (a,b;q)

n

)
=

am

b[
m+1

2 ]+[n+1
2 ]+n

(b2; q)m(b2; q)n(qc/b; q)[m2 ]−[n+1
2 ]

(ab; q)m(ab; q)n(qbc; q)[m2 ]−[n+1
2 ]

×
m∑
k=0

n∑
l=0

(b2; q)k+l
(b2; q)k(b2; q)l

(q−m, b/a; q)k

(q, q−[m2 ]+[n+1
2 ]b/c; q)k

(q−n, ab; q)l

(q, q[
m
2 ]−[n+1

2 ]+1bc; q)l
qk+l.

Applying [8, Eq. (II.7)] in the form

(b2; q)k+l
(b2; q)k(b2; q)l

=

min(k,l)∑
x=0

(q−k, q−l; q)x
(q, b2; q)k

(
b2qk+l

)x
,
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replacing (k, l) by (k + x, l + x) and changing the order of summation gives after simpli-
fication

µc,b
(
P (a,b;q)
m P (a,b;q)

n

)
=

am

b[
m+1

2 ]+[n+1
2 ]+n

(b2; q)m(b2; q)n(qc/b; q)[m2 ]−[n+1
2 ]

(ab; q)m(ab; q)n(qbc; q)[m2 ]−[n+1
2 ]

×
min(m,n)∑
x=0

(q−m, q−n, ab, b/a; q)x

(q, b2, q−[m2 ]+[n+1
2 ]b/c, q1+[m2 ]−[n+1

2 ]bc; q)x
qx(x+1)b2x

×
m−x∑
k=0

(qx−m, qxb/a; q)k

(q, qx−[m2 ]+[n+1
2 ]b/c; q)k

qk
n−x∑
l=0

(qx−n, qxab; q)l

(q, q1+x+[m2 ]−[n+1
2 ]bc; q)l

ql.

Computing the inner sums using [8, Eq. (II.6)] and simplifying, we arrive at (45).
To deduce (44), we observe that the right-hand side of (45) has the form

min(m,n)∑
x=0

(qx−[m/2]−[n/2]a/c)m+n−2x(· · · ),

where the missing factors are regular at c = a. When c→ a, the summand vanishes for

x 6 min

([m
2

]
+
[n

2

]
,

[
m+ 1

2

]
+

[
n+ 1

2

]
− 1

)
=

[
m+ n− 1

2

]
.

Thus, the range of summation can be reduced to[
m+ n+ 1

2

]
6 x 6 min(m,n),

which is empty for m 6= n and consists of the point x = m = n otherwise. After
simplification, this gives (44).

We can now conclude that

det
06m,n6N−1

(
(1− ω)(1− bω2)

3(1 + b)
µω,b

(
P (ω,b;q)
m P (ω,b;q)

m

)
δmn

+
(1− ω2)(1− bω)

3(1 + b)
µω2,b

(
P (ω,b;q)
m P (ω,b;q)

n

))
=

N−1∏
n=0

C2
nh

(0)
n ,

where h
(0)
n is as in (40) and the remaining quantities are given in Lemma 11 and Propo-

sition 13. To simplify, we pull out the factor (1− ω)(1− bω2)/3(1 + b) and multiply the
nth row and column with ω2[n/2](bω; q)n, for each n. We also write

Xm = (−1)m
(bω, bω2; q)m

(qbω; q)2[m/2](bω2; q)2[(m+1)/2]

=


1− bω

1− bωqm
, m even,

− 1− bω
1− bω2qm

, m odd.

(46)

After simplification, we find the following q-analogue of Andrews’s determinant.
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Theorem 14. Let ω = e2πi/3 and let Xm be as in (46). Then, the following determinant
evaluation holds:

det
06m,n6N−1

(
Xm(q, b2; q)m δmn − ω2

(b2; q)m(b2; q)n(qω; q)[m2 ]+[n2 ](ω
2; q)[m+1

2 ]+[n+1
2 ]

(bω2; q)[m2 ]+[n2 ]+1(qbω; q)[m+1
2 ]+[n+1

2 ]−1

× 4φ3

(
q−m, q−n, bω, bω2

b2, q−[m2 ]−[n2 ]ω2, q1−[m+1
2 ]−[n+1

2 ]ω
; q, q

))

=

(
3(1 + b)

(1− ω)(1− bω2)

)N (
−(1− b)(1− bq2)(1− bω2)2ω2

(1− qbω)(1− qbω2)

)[N/2]

×
[(N−1)/2]∏

n=0

ωn(bω; q)22n(q3, b3; q3)n(b, b2q; q)3n
(b3, b3q3; q3)2n

×
[(N−2)/2]∏

n=0

ω2n(qbω2; q)22n(q3, b3q3; q3)n(bq3, b2q; q)3n
(b3q3, b3q6; q3)2n

.

Replacing b by qb/2 and letting q → 1, the 4φ3 reduces to a summable 2F1 and we
recover Andrews’s determinant evaluation. Incidentally, replacing b by −qb/2 and letting
q → 1 gives Theorem 10.
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