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Abstract

The Ehrhart polynomial LP of an integral polytope P counts the number of
integer points in integral dilates of P . Ehrhart polynomials of polytopes are often
described in terms of their Ehrhart h∗-vector (aka Ehrhart δ-vector), which is the
vector of coefficients of LP with respect to a certain binomial basis and which
coincides with the h-vector of a regular unimodular triangulation of P (if one exists).
One important result by Stanley about h∗-vectors of polytopes is that their entries
are always non-negative. However, recent combinatorial applications of Ehrhart
theory give rise to polytopal complexes with h∗-vectors that have negative entries.

In this article we introduce the Ehrhart f∗-vector of polytopes or, more generally,
of polytopal complexes K. These are again coefficient vectors of LK with respect to
a certain binomial basis of the space of polynomials and they have the property that
the f∗-vector of a unimodular simplicial complex coincides with its f -vector. The
main result of this article is a counting interpretation for the f∗-coefficients which
implies that f∗-coefficients of integral polytopal complexes are always non-negative
integers. This holds even if the polytopal complex does not have a unimodular
triangulation and if its h∗-vector does have negative entries. Our main technical
tool is a new partition of the set of lattice points in a simplicial cone into discrete
cones. Further results include a complete characterization of Ehrhart polynomials of
integral partial polytopal complexes and a non-negativity theorem for the f∗-vectors
of rational polytopal complexes.

Keywords: Ehrhart theory, f∗-vector, h∗-vector, Ehrhart polynomial, counting in-
terpretation, non-negativity, partial polytopal complex, simplicial complex, discrete
cone, affine semigroup.
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1 Introduction

For any set X ⊂ Rn the Ehrhart function LX(k) = #(Zn ∩ kX) counts the number of
lattice points in the k-th dilate of X for 1 6 k ∈ Z. Ehrhart’s theorem states that if P is
a lattice polytope then LP (k) is a polynomial in k and, by induction, the same holds for
polytopal complexes with integral vertices [1, 10, 11].

Recently, a number of articles have appeared that realize various combinatorial count-
ing polynomials as Ehrhart functions of suitable polytopal complexes and then apply
results from Ehrhart theory to prove theorems about these combinatorial functions [3, 4,
8, 15]. In particular, it is possible to obtain bounds on the coefficients of these polynomials
in this way [6]. For this purpose, the coefficients with respect to the monomial basis are
not always easiest to work with. There are other bases of polynomial space that give rise
to coefficient vectors such as the h∗- and f ∗-vectors that are more amenable to analysis.
These are defined as follows.

Let p(k) be a polynomial in k of degree at most d. Then there exist coefficients h∗i
and f ∗i for i = 0, . . . , d such that

p(k) =
d∑
i=0

h∗i

(
k + d− i

d

)
=

d∑
i=0

f ∗i

(
k − 1

i

)
. (1)

The coefficients h∗i and f ∗i depend both on p and on d, so we will sometimes write h∗i (p, d)
and f ∗i (p, d) to make this dependency explicit. The vectors (h∗0, . . . , h

∗
d) and (f ∗0 , . . . , f

∗
d )

are called the h∗- and f ∗-vectors of p and their entries are the h∗- and f ∗-coefficients of p,
respectively. Note that the h∗-vector also goes by the name of the Ehrhart δ-vector [18].
Whenever we refer to the h∗- or f ∗-vector of an integral polytope or polytopal complex
P , we mean the h∗- or f ∗-vector of its Ehrhart polynomial LP . For more details on these
vectors and, most importantly, the motivation for defining them we refer the reader to
Section 2.3.

One famous result about h∗-vectors is Stanley’s theorem which asserts that the h∗-
coefficients of the Ehrhart polynomial of an integral polytope are always non-negative
integers [17]. Behind this theorem lies a beautiful interpretation, due to Ehrhart, of the
h∗-coefficients of the Ehrhart polynomial of a simplex ∆ as counting lattice points at
various heights in the fundamental parallelepiped of the cone over the homogenization of
∆ [10, 11].

While h∗-vectors of integral polytopes are always non-negative, h∗-vectors of integral
polytopal complexes may well have negative entries. Moreover, polytopal complexes with
negative h∗-coefficients appear in natural combinatorial applications. For example, color-
ing complexes of uniform hypergraphs can have negative h∗-coefficients. Their f ∗-vector,
however, is always non-negative. See Section 2.6 and [7] for details.

Thus, the question arises whether this is always true: Do polytopal complexes always
have a non-negative integral f ∗-vector? The purpose of this article is to give a positive
answer to this question.

Our main result is a counting interpretation of the f ∗-vector of a simplex ∆, in the
spirit of the classic counting interpretation of the h∗-vector of a simplex. Given a relatively

the electronic journal of combinatorics 19(4) (2012), #P16 2



open lattice simplex ∆, the f ∗-vector counts the number of so-called atomic lattice points
at different heights in the fundamental simplex of the cone over the homogenization of ∆.
More precisely:

Theorem 1. Let ∆ ⊂ Rn be an open lattice simplex, let d′ > d = dim(∆) and let
f ∗(L∆, d

′) = (f ∗0 , . . . , f
∗
d′). Then f ∗i counts the number of atomic lattice points in the

half-open fundamental simplex of coneR(∆× {1}) at level i+ 1.

The definitions of the fundamental simplex, atomic lattice points and their level are
given in Section 3. An open lattice simplex is the relative interior of a lattice simplex.

From this counting interpretation we can immediately obtain a complete characteri-
zation of the f ∗-vectors of integral partial polytopal complexes. Here, an integral partial
polytopal complex is any set that can be written as the disjoint union of relatively open
polytopes with integral vertices.

Theorem 2. A vector is the f ∗-vector of some integral partial polytopal complex if and
only if it is integral and non-negative.

In particular, this gives us the desired non-negativity result for f ∗-vectors of polytopal
complexes.

Theorem 3. Every integral polytopal complex, and in particular every lattice polytope,
has a non-negative integral f ∗-vector.

The crucial point here is that the f ∗-vector is non-negative and integral even if the
complex does not have unimodular triangulation and even if its h∗-vector has negative
entries. Note that non-negativity of the f ∗-vector follows automatically if the complex
has a unimodular triangulation or if the h∗-vector is non-negative. This means that
Theorem 3 gives a new result only if the complex in question is non-convex and does
not have a non-negative h∗-vector. But, as we already mentioned, there are non-convex
polytopal complexes with negative h∗-coefficients that do appear in practical applications.

The key technical ingredient that goes into the above counting interpretation is the
following partition of the set of lattice points in a simplicial cone into “discrete cones”.

Theorem 4. Let v1, . . . , vd be linearly independent integer vectors in Zn for n > d. Then

relint(coneR(v1, . . . , vd)) ∩ Zn =
⋃

z atomic

z + coneZ(v1, . . . , vlev(z)),

where the union ranges over all atomic lattice points in the half-open fundamental simplex
of coneR(v1, . . . , vd) and this union is disjoint.

Here lev(z) denote the level of z and coneR(v1, . . . , vd) refers to all non-negative linear
combinations of the vi whereas coneZ(v1, . . . , vd) refers to all non-negative, integral linear
combinations of the vi, i.e., the affine semigroup generated by the vi. Again, we refer to
Sections 2 and 3 for details.

Theorem 4 is much more general then necessary for Theorems 1, 2 and 3 and is the
main technical result of this article. In particular, Theorem 4 can be used to obtain a
counting interpretation and a non-negativity theorem in the rational case.
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Theorem 5. Let ∆ ⊂ Rn be an open rational simplex, let d′ > d = dim(∆) and m be
a positive integer such that m∆ is integral. There exist polynomials p0, . . . , pm−1 such
that for all integers k > 0 and 0 6 l < m with (k, l) 6= (0, 0) the Ehrhart function of ∆
satisfies L∆(km+ l) = pl(k). Then for all 0 6 i 6 d and all 0 6 l < m the f ∗-coefficient
f ∗i (pl, d) counts the number of atomic lattice points z in the half-open fundamental simplex
of coneR(∆× {m}) at level i+ 1 with zn+1 = im+ l + 1.

This counting interpretation yields a non-negativity theorem for the f ∗-vector just as
in the integral case. The f ∗-vector of a rational polytopal complex is the vector of all
numbers f ∗i (pl, d) for i = 0, . . . , d and 0 6 l < m, see Section 5 for details.

Theorem 6. Any rational partial polytopal complex has a non-negative integral f ∗-vector.

Interestingly, there is another variant of Theorem 5 that expresses the Ehrhart function
of a rational simplex in terms of restricted partition functions. For our purposes the
restricted partition function pm1,...,md

(k) is given by

pm1,...,md
(k) = #

{
(λ1, . . . , λd)

∣∣∣∣∣ 0 6 λi ∈ Z,
d∑
i=1

λimi = k

}
,

see Section 5 for details. Then Theorem 4 allows us to write the Ehrhart function of a
rational simplex in terms of restricted partition functions in the following way.

Theorem 7. Let ∆ ⊂ Rn be an open lattice simplex with vertices v1, . . . , vd+1 and let
m1, . . . ,md+1 be minimal positive integers such that mivi is integral for all 1 6 i 6 d+ 1.
Then

L∆(k) =
d∑
i=0

S∑
s=0

ci,s · pm1,...,mi+1
(k − s)

for all 1 6 k where S =
∑d+1

i=1 mi and ci,s denotes the number of atomic lattice points
z at level i + 1 in the fundamental simplex of coneR(a1, . . . , ad+1) with zn+1 = s. Here,
ai = (mivi,1, . . . ,mivi,n,mi) for all i = 1, . . . , d+ 1.

This paper is organized as follows. In Section 2 we give some preliminary definitions,
sketch a classic proof of the non-negativity of h∗-vectors for polytopes and give an example
of a natural simplicial complex with a negative h∗-vector. In Section 3 we present the par-
tition of the set of lattice points in an open simplicial cone into discrete subcones, which
is the main technical result of this article. In Section 4 we use this partition result to give
a counting interpretation of the f ∗-coefficients of a simplex, prove the non-negativity of
the f ∗-vector and give a complete characterization of the Ehrhart polynomials of integral
partial polytopal complexes. Up to this point we have mainly worked with integral poly-
topes, to make the ideas behind the construction more transparent. However, most of our
results apply to the rational case as well. In Section 5 we introduce f ∗-vectors of rational
polytopes, give a counting interpretation, prove the non-negativity of the f ∗-vectors of
rational partial polytopal complexes and relate Ehrhart functions of rational simplices to
restricted partition functions.
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2 Preliminaries

Note: A comprehensive definition of all notions from polytope theory, Ehrhart theory or
generating function theory that we make use of is out of scope of this article. For any
undefined terms we refer the reader to [1, 16, 21].

2.1 Geometry

A polytope is the convex hull of finitely many points. A supporting hyperplane of a
polytope P is a hyperplane such that P is contained in one of the two corresponding
closed half-spaces. A face of P is the intersection of a supporting hyperplane with P . By
convention P is a face of itself as well. The dimension of P is the dimension of its affine
hull. The faces of dimension 0 are called vertices.

A polytope is integral if all its vertices are elements of the integer lattice Zn, where n
is the dimension of the ambient space. Integral polytopes are also called lattice polytopes.
Two polytopes P,Q are lattice equivalent if there is an affine isomorphism φ of the ambient
space with φ(P ) = Q that induces a bijection on the integer lattice Zn.

The relative interior of a polytope P is the interior of P taken with respect to its affine
hull. We also use the term open polytope to refer to the relative interior of a polytope.
When we speak of the faces of an open polytope, we mean the faces of its closure. Every
polytope is the disjoint union of the relative interiors of its faces.

A simplex is the convex hull of finitely many affinely independent points. A simplex
of dimension d has exactly d + 1 vertices. The standard simplex ∆d of dimension d is
the convex hull of d+ 1 standard unit vectors. An integral simplex is unimodular if it is
lattice equivalent to a standard simplex.

A polytopal complex is a finite set of polytopes K with the following two properties:
1) If P ∈ K and Q is a face of P , then Q ∈ K. 2) If P,Q ∈ K, then P ∩Q ∈ K and P ∩Q
is a face of both P and Q. The elements of K are also called faces of K. The dimension
of K is the maximum dimension of any face of K. The support of K is the union of all
polytopes in K. A polytopal complex is integral if all of its faces are integral.

A simplicial complex is a polytopal complex whose faces are simplices. A triangulation
of a set X ⊂ Rn is a simplicial complex whose support is X. A simplicial complex is
unimodular if all of its faces are unimodular. Note that not all integral polytopes, not
even all integral simplices, have a unimodular triangulation.

The f -vector of a d-dimensional simplicial complex K is the vector (f0, f1, . . . , fd)
where fi is the number of i-dimensional faces of K. The h-vector of K is the vector
(h0, . . . , hd+1) defined in terms of the f -vector via

hk =
k∑
i=0

(−1)k−i
(
d− i
d− k

)
fi−1

for k = 0, . . . , d+ 1 where f−1 := 1. Note that the h-vector has one more entry than the
f -vector but h0 = 1 is fixed.
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2.2 Ehrhart theory

As mentioned in the introduction, our point of departure is Ehrhart’s theorem, which
states that for any integral polytope P ∈ Rd there exists a polynomial LP (k) such that

#
(
Zd ∩ kP

)
= LP (k)

for all 1 6 k ∈ Z.
It is straightforward to see that Ehrhart’s theorem carries over to polytopal complexes.

However, many applications go one step further and work with “partial” polytopal com-
plexes instead, where some faces are missing. In particular, inside-out polytopes are
examples of half-open polytopal complexes that are widely used in combinatorial appli-
cations of Ehrhart theory [3, 4, 6]. Let us now make precise what we mean by “partial”
in this context.

As defined in the previous section, a (relatively) open polytope is the relative interior
of a polytope. The vertices, faces and facets of an open polytope are defined to be the
vertices, faces and facets of its closure. Note that thus the vertices of an open polytope are
not contained in the open polytope. An open polytope is called integral if all its vertices
are integral.

For any polytopal complex K, the support of K is the disjoint union of the relative
interiors of all faces of K. This motivates the following definition: A partial polytopal
complex is a disjoint union of open polytopes. The difference between a polytopal complex
and a partial polytopal complex is therefore simply that some of the relatively open faces
of the polytopal complex (that would need to be included because a polytopal complex
has to be closed under passing to faces) have been removed.

Two important special cases of partial polytopal complexes are the following.
A “half-open” polytope is a set of the form P \

⋃l
i=1 σi where P is a polytope and

the σi are faces of P . Every half-open polytope is the support of some partial polytopal
complex. The half-open simplices that we will meet in the next section are examples of
this.

A relative simplicial complex is a set of simplices of the form K \K ′ where K is a sim-
plicial complex and K ′ is a subcomplex of K. Relative simplicial complexes can be written
as partial polytopal complexes. They appear, for example, in Steingŕımsson’s construc-
tion of the coloring complex [20]. Relative polytopal complexes can be defined similarly
and again they can be realized as partial polytopal complexes. Inside-out polytopes are
examples of relative polytopal complexes [5].

2.3 f ∗- and h∗-vectors

Let us denote by ∆d
i the d-dimensional standard simplex with i open facets, i.e.,

∆d
i :=

{
x ∈ Rd+1

∣∣∣∣∣
d∑
j=0

xj = 1, xj > 0 for 0 6 j < i, xj > 0 for i 6 j 6 d

}
.
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It turns out that L∆d
i
(k) =

(
k+d−i
d

)
for i = 0, . . . , d + 1 and in particular L∆d

d+1
(k) =(

k−1
d

)
where ∆d

d+1 = relint ∆d is the relative interior of the standard d-dimensional sim-
plex. To see this, one can use an argument similar to the one given in [1, Section 2.3].
These observations have the following immediate consequences for a d-dimensional inte-
gral polytopal complex C.

1. If C has a unimodular triangulation K, then C can be written as a disjoint union of
relatively open unimodular simplices ∆i

i+1 of varying dimension i = 0, . . . , d. Thus

LC(k) =
d∑
i=0

f ∗i

(
k − 1

i

)
where the coefficients f ∗i count the number of i-dimensional relatively open uni-
modular simplices appearing in the disjoint union. In this case the f -vector of the
simplicial complex K coincides with the vector of coefficients f ∗i , which explains the
name.

2. If C has a unimodular triangulation K that can be written as a disjoint union of
unimodular half-open simplices ∆d

i , i = 0, . . . , d of fixed dimension d, then

LC(k) =
d∑
i=0

h∗i

(
k + d− i

d

)
where the coefficients h∗i count the number of i-dimensional relatively open unimod-
ular simplices appearing in the disjoint union. In particular, if K is a shellable1

complex that is a topological ball then the h-vector of K coincides with the vector
of coefficients h∗i , which explains the name. Note that if K is not a topological ball,
then hd+1 is non-zero in general and the h∗- and h-vectors may differ.

If C does not have a unimodular triangulation, we can still define the h∗- and f ∗-
vectors of C. In fact, we can define h∗- and f ∗-vectors for arbitrary polynomials by
proceeding as sketched in the introduction.

For any integer i, (
k

i

)
=
k · (k − 1) · . . . · (k − i+ 1)

i!

is a polynomial in k of degree i. Moreover, both{(
k − 1

i

) ∣∣∣∣ i = 0, . . . , d

}
and

{(
k + d− i

d

) ∣∣∣∣ i = 0, . . . , d

}
form bases of the vector space of polynomials in k of degree at most d. Thus, for any
non-negative integer d and any polynomial p(k) of degree at most d we can define vectors

1See [21] for the definition of shellable.
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f ∗(p, d) = (f ∗0 , . . . , f
∗
d ) and h∗(p, d) = (h∗0, . . . , h

∗
d) by

p(k) =
d∑
i=0

f ∗i

(
k − 1

i

)

p(k) =
d∑
i=0

h∗i

(
k + d− i

d

)
.

We call f ∗(p, d) the f ∗-vector of p and the numbers f ∗i the f ∗-coefficients of p. Similarly,
we call h∗(p, d) the h∗-vector of p and the numbers h∗i the h∗-coefficients of p.

At this point, it important to call attention to the following subtlety: h∗ depends
on the choice of d, whereas f ∗ does not. More precisely, the f ∗-vector has the following
property. Let p be any polynomial and let d1, d2 > deg(p) be any two integers. Then
f ∗i (p, d1) = f ∗i (p, d2) for all 0 6 i 6 min(d1, d2). This statement is false for h∗. Despite
this difference, we will suppress p and d in our notation for both f ∗ and h∗ whenever it is
clear from context which p and d are meant.

Now that we have defined the f ∗- and h∗-vectors of polynomials, we can define f ∗-
and h∗-vectors of polytopes (and more generally polytopal complexes) via the Ehrhart
function.

Let K denote a polytopal complex. Then the f ∗- and h∗-vectors of K are, respectively,
defined by

f ∗(K, d) = f ∗(LK , d)

h∗(K, d) = h∗(LK , d),

where d > dim(K).
If we do not specify d explicitly, it is understood that d = dim(K), that is, f ∗(K) =

f ∗(K, dim(K)) and h∗(K) = h∗(K, dim(K)).

2.4 Generating function point of view

Classically, the h∗-vector is defined in terms of generating functions.

Proposition 8 (c.f. Lemma 3.14 in [1]). If p is a polynomial of degree at most d, then

h∗0z
0 + . . .+ h∗dz

d

(1− z)d+1
=
∑
k>0

p(k)zk.

A similar statement can be made about the f ∗-vector.

Proposition 9. If p is a polynomial of degree at most d, then

f ∗0 z
1

(1− z)1
+ · · ·+ f ∗d z

d+1

(1− z)d+1
=
∑
k>0

p(k)zk.
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Proof. The coefficient of zk in the Laurent expansion of 1
(1−z)j+1 is precisely L∆j(k) =(

k+j
j

)
, the number of lattice points in the k-th dilate of a j-dimensional unimodular

simplex. Thus
zj+1

(1− z)j+1
=
∑
k>0

(
k − 1

j

)
zk

which yields the desired identity.

Corollary 10. The f ∗- and h∗-vectors of a polynomial p satisfy

h∗0z
0 + . . .+ h∗dz

d =
d∑
j=0

f ∗j z
j+1(1− z)d−j.

2.5 Counting interpretation for the h∗-vector

Given linearly independent integer vectors a1, . . . , an ⊂ Zd we define the cone over the ai
by

coneR(a1, . . . , an) =

{
x ∈ Rd

∣∣∣∣∣ x =
n∑
i=1

λiai, 0 6 λi ∈ R

}
.

Instead of allowing real coefficients λi, we can also restrict ourselves to integral coef-
ficients. In this way, we obtain the discrete cone over the ai which is

coneZ(a1, . . . , an) =

{
x ∈ Rd

∣∣∣∣∣ x =
n∑
i=1

λiai, 0 6 λi ∈ Z

}
.

The discrete cone is the affine semigroup generated by the ai.
The fundamental parallelepiped Π(a1, . . . , an) of the cone is

Π(a1, . . . , an) =

{
x ∈ Rd

∣∣∣∣∣ x =
n∑
i=1

λiai, 0 6 λi < 1, λi ∈ R

}
.

The crucial property of the fundamental parallelepiped is that it tiles the cone. That
is, the cone can be written as the disjoint union of integral translates of the parallelepiped,
where the translation vectors are precisely the elements of the discrete cone. In terms of
the Minkowski sum, this can be written simply as:

coneR(a1, . . . , an) = coneZ(a1, . . . , an) + Π(a1, . . . , an).

In particular

Zd ∩ coneR(a1, . . . , an) = coneZ(a1, . . . , an) + (Zd ∩ Π(a1, . . . , an)). (2)
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This can be phrased in terms of multivariate generating functions. Consider the ring
of generating functions in the variables z1, . . . , zd and write zx = zx11 · . . . · z

xd
d for any

integer point x ∈ Zd. Then∑
x∈Zd∩coneR(a1,...,an)

zx =

∑
x∈Zd∩Π(a1,...,an) z

x

(1− za1) · . . . · (1− zan)
(3)

since 1
(1−za1 )·...·(1−zan )

is the multivariate generating function of coneZd(a1, . . . , an). Note
that the numerator is a finite sum, so that if all of the components of the ai are non-
negative, the numerator is in fact a polynomial.

Now, let n < d be integers and let v1, . . . , vn ∈ Zd−1
>0 denote the vertices of an integral

simplex ∆ in Rd−1. By embedding ∆ into Rd at height xd = 1, we pass to the vectors
a1, . . . , an with ai = (vi,1, . . . , vi,d−1, 1) and

#(Zd−1 ∩ k∆) = #(Zd ∩ coneR(a1, . . . , an) ∩ {x ∈ Rd | xd = k})

which, expressed in terms of generating functions, reads∑
k>0

∑
x∈Zd−1∩k∆

zx11 · · · z
xd−1

d−1 z
k
d =

∑
x∈Zd∩coneR(a1,...,an)

zx. (4)

Combining identities (3) and (4), substituting 1 for z1, . . . , zd−1 and substituting z for
zd we obtain ∑

k>0

L∆(k)zk =

∑n−1
i=0 h

∗
i z
i

(1− z)n

where h∗i is the number of lattice points x ∈ Π(a1, . . . , an) with xd = i.
This completes the proof of Ehrhart’s classic interpretation of the h∗-vector.

Theorem 11 (Ehrhart [10, 11]). Let v1, . . . , vn+1 ∈ Zd be linearly independent and let
ai = (vi,1, . . . , vi,d, 1) for i = 1, . . . , n+ 1. Let h∗ = (h∗0, . . . , h

∗
n) denote the h∗-vector of

the n-dimensional simplex ∆ = conv(v1, . . . , vn+1). Then

h∗i = #(Zd+1 ∩ Π(a1, . . . , an+1) ∩ {x ∈ Rd+1 | xd+1 = i}).

By virtue of the fact that polytopes are convex, the fact that every integral polytope
can be triangulated and using a clever irrational shifting argument to get rid of lattice
points on lower-dimensional faces [2], this theorem can be extended to general lattice
polytopes.

Theorem 12 (Stanley [17]). Let K be a d-dimensional integral polytope. Then the h∗-
vector of K is non-negative.

Our goal is now to obtain a similar counting interpretation, and, in particular, a similar
non-negativity result for the f ∗-vector of polytopal complexes. Before we come to this,
we present examples of polytopal complexes where the h∗-vector has negative entries.
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2.6 h∗-vectors with negative entries

Stanley’s theorem tells us that in order to find h∗-vectors with negative entries we have to
look outside the class of integral polytopes. We will consider integral polytopal complexes
instead.

Coloring complexes of graphs are a class of simplicial complexes that have been studied
by a number of authors in recent years, see, e.g., [7, 9, 12, 13, 14, 20]. All coloring
complexes of graphs have a non-negative h∗-vector. A natural generalization are coloring
complexes of hypergraphs. For details about this notion and about the computation of
their h- and h∗-vectors, we refer the interested reader to [7].

A hypergraph H is a finite set V of vertices, together with a set E of edges. An edge
is a set of vertices of cardinality at least two. A proper coloring of H is a labeling c of
the vertices of H with the property that every edge e ∈ E contains at least two vertices
i, j ∈ e that have a different color ci 6= cj. Let S be the set of all vectors in x ∈ {0, 1}|V |
that are not equal to the all-one and all-zero vectors. We can now define the simplicial
complex K which is called the coloring complex of H as follows. σ is a face of K if and
only if 1) σ ⊂ S, 2) for any two vertices x, y ∈ σ we have x 6 y or y 6 x componentwise
and 3) there exists an edge e ∈ E such that for all vertices x ∈ σ and all i, j ∈ e we have
xi = xj. Notice that an element of x ∈ S appears as a vertex of K if and only if x, viewed
as a coloring of the vertices of H with exactly two colors 0 and 1, is an improper coloring.

As an example, we consider the hypergraph H on vertex set {1, . . . , 10} with edges
{1, 2, 3, 4, 5, 6}, {4, 5, 6, 7, 8, 9} and {1, 2, 3, 7, 8, 9}. The associated coloring complex K is
3-dimensional. It consists of three 3-dimensional spheres S1, S2, S3 that intersect in a single
common 0-dimensional subsphere S ′. The spheres Si all have the same combinatorial
structure: They are each isomorphic to the simplicial complex obtained by taking the
boundary complex of the 5-dimensional cube [0, 1]5 triangulated by the braid arrangement
and removing the all-zero and all-one vertices (and all incident faces).

Computation, by hand or using software packages such as Sage [19], shows that the
Si have h∗-vector h∗(Si, 3) = (0, 30, 60, 30). Similarly one can work out that the 3-
dimensional h∗-vector of the 0-dimensional sphere S ′, which consists of just two isolated
vertices, is h∗(S ′, 3) = (2,−6, 6,−2). Given this data, we can then compute the h∗-vector
of K using inclusion-exclusion: After adding the h∗-vectors of the Si we have counted the
common subsphere S ′ three times, so we have to subtract it twice to obtain the h∗-vector
of K. Then, the h∗-vector of K is

h∗(K, 3) = h∗(LK , 3) = h∗(LS1 + LS2 + LS3 − 2LS′ , 3)

= 3h∗(S1, 3)− 2h∗(S ′, 3)

= 3 · (0, 30, 60, 30)− 2 · (2,−6, 6,−2)

= (−4, 102, 168, 94)

which has a negative entry.
Intuitively speaking, the reason for the negative entry is that the complex consists

of spheres that have an intersection of codimension strictly greater than 1. Further ex-
amples of hypergraph coloring complexes with negative entries in their h∗-vector can be
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constructed in this way.

3 Partitioning a simplicial cone into discrete cones

As we have seen, (2) gives a partition of the set of lattice points in C = coneR(a1, . . . , an)
into discrete cones. This partition is ideally suited for the analysis of the h∗-vector. To get
our hands on the f ∗-vector, however, we need a different partition, given in Theorem 4,
which we will develop in this section. Whereas in (2) we used one translate of the full-
dimensional discrete cone for each lattice point in the fundamental parallelepiped of C to
partition Zd ∩ C, we will now use only atomic lattice points in the fundamental simplex
of C and the dimension of the discrete cone with an atomic lattice point z as apex will
depend on the height of z in C.

The basic idea for this construction is illustrated in Figure 1. Consulting Figure 1
before reading this section is highly recommended.

Theorem 4 is the main technical result of this article, as the counting results in sub-
sequent sections can be derived from Theorem 4 in a straightforward fashion. In order to
prove this partition result, we first need a couple of definitions and an auxiliary lemma.

For every real number x there exist an integer int(x) ∈ Z and a real number frac(x) ∈
(0, 1] such that

x = int(x) + frac(x).

Note that if x is not an integer then int(x) = bxc and frac(x) = x−bxc. But if x ∈ Z,
then int(x) = bxc + 1 and frac(x) = x − bxc − 1. So we call int(x) and frac(x) the skew
integral and skew fractional part of x, respectively. If v ∈ Rd is a vector, we use int(v) and
frac(v) to denote the vector of skew integral and skew fractional parts of the components
of v, respectively.

Given linearly independent integer vectors v1, . . . , vd ∈ Zd, we define the fundamental
simplex ∆(v1, . . . , vd) generated by these vectors by

∆(v1, . . . , vd) =

{
d∑
i=1

λivi

∣∣∣∣∣ 0 6 λi ∈ R,
d∑
i=1

λi 6 d

}
.

The half-open fundamental simplex is

∆◦(v1, . . . , vd) =

{
d∑
i=1

λivi

∣∣∣∣∣ 0 < λi ∈ R,
d∑
i=1

λi 6 d

}
.

We say a point z ∈ coneR(v1, . . . , vd) is at level k if z =
∑d

i=1 λivi with k − 1 <∑d
i=1 λi 6 k and define k = lev(z) to be the level of z. We denote by Lev(k) the set of

all lattice points in ∆◦(v1, . . . , vd) at level k.
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Figure 1: This figure illustrates Theorem 4. (Note that some lattice points in the cone are
not shown here.) Suppose we have three linearly independent vectors v1, v2, v3 ∈ R3. The
simplex conv(3v1, 3v2, 3v3, 0) is the fundamental simplex of the cone generated by v1, v2, v3.
The half-open fundamental simplex is the intersection of the fundamental simplex with
the interior of the cone. It is partitioned into three levels as indicated. The first level
consists of all points below the hyperplane spanned by v1, v2, v3, including the points on
the hyperplane. The second level contains all points between the hyperplanes spanned by
v1, v2, v3 and 2v1, 2v2, 2v3, respectively, excluding the points on the former but including
the points on the latter and similarly for level 3. The set of atomic lattice points in the
cone is defined inductively. In the figure, the solid points in the interior of the cone show
atomic lattice points, whereas the empty circles show lattice points that are not atomic.
All lattice points at level 1 in the open cone are atomic, as the point labeled a in the
figure. Because a is atomic, none of the points a+kv1 for 1 6 k ∈ Z are atomic. Suppose
b is a lattice point in level 2 that cannot be reached from any atomic lattice point in level
1 by adding v1. Then b is atomic and all points that can be reached from b by adding v1

or v2 are not atomic. Similarly, for any atomic lattice point c in level 3, all points that
be reached by adding the first three generators to c are not atomic. There are no atomic
lattice points above level 3. The statement of Theorem 4 is that by placing i-dimensional
discrete cones at all atomic lattice points in level i in this way, we obtain a partition of
the set of lattice points in the interior of coneR(v1, v2, v3).
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We now define sets T1, . . . , Td with the property that Ti ⊂ Lev(i). The definition is
inductive:

T1 = Lev(1),

Tk = Lev(k) \

(
k−1⋃
i=1

⋃
z∈Ti

z + coneZ(v1, . . . , vi)

)
.

We call the lattice points in
⋃∞
i=1 Ti atomic. If z =

∑d
i=1 λivi =: V λ for some atomic

z, then we also call λ atomic. If furthermore x =
∑d

i=1 µivi then note that for all k we
have

x ∈ z + coneZ(v1, . . . , vk) if and only if µ ∈ λ+ coneZ(e1, . . . , ek),

where the ei denote the standard unit vectors.
Similar to our definition of lev(z), we write lev(λ) to denote the level of λ, i.e., lev(λ)

is the unique integer such that lev(λ)− 1 <
∑d

i=1 λi 6 lev(λ).
We write deg(λ) to denote the degree of λ: If there exists an index 1 6 j 6 d such that

λj > 1, then deg(λ) is defined to be the smallest such index. If there is no such index, we
let deg(λ) := d+ 1.

So λ ∈ Rd
>0 is atomic if and only if V λ is integer and there does not exist a µ ∈ Rd

>0

such that V µ is integer, µ 6= λ and

λ ∈ µ+ coneZ(e1, . . . , elev(µ)).

These definitions are illustrated in Figure 1.
Despite their inductive definition, it turns out that atomic coefficient vectors λ have

a simple characterization.

Lemma 13. Let z =
∑n

i=1 λivi be a lattice point in the interior of coneR(v1, . . . , vd). This
means in particular that λ ∈ coneR(e1, . . . , ed). Then:

1. If λ is not atomic, then deg(λ) < lev(λ).

2. If lev(λ) = 1, then deg(λ) = d+ 1.

3. If lev(λ) > d, then deg(λ) 6 d.

4. If deg(λ) < lev(λ), there exists an atomic µ such that λ ∈ µ+ coneZ(e1, . . . , elev(µ)).

5. If deg(λ) < lev(λ), then λ is not atomic.

6. If lev(λ) > d, then λ is not atomic. In particular, there are only finitely many
atomic lattice points.

So in particular we have the following characterization of atomicity:

λ is atomic if and only if λj 6 1 for all indices j < lev(λ).
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Or equivalently:

λ is atomic if and only if deg(λ) > lev(λ).

Proof of Lemma 13. We proceed in several steps.

Part (1): If λ is not atomic, then deg(λ) < lev(λ).

We have to show that there exists an index j < lev(λ) such that λj > 1. If λ
is not atomic, then there exists an atomic µ with lev(µ) < lev(λ) such that λ ∈ µ +
coneZ(e1, . . . , elev(µ)), i.e., there exists a non-negative integral vector δ ∈ Zd>0 \ {0} such
that λ = µ+ δ with δi = 0 for all i > lev(µ). As λ 6= µ, δj > 1 for some j 6 lev(µ). Thus
λj > δj > 1 and deg(λ) 6 j 6 lev(µ) < lev(λ) as desired.

Part (2): If lev(λ) = 1, then deg(λ) = d+ 1.

We have 0 <
∑

i λi 6 1 and λi > 0 for all i. Thus λi 6 1 for all i.

Part (3): If lev(λ) > d, then deg(λ) 6 d.

If
∑

i λi > d, then, by the pigeonhole principle, there is an i such that λi > 1 whence
deg(λ) 6 i 6 d.

Part (4): If deg(λ) < lev(λ), then there exists an atomic µ 6= λ such that λ ∈ µ +
coneZ(e1, . . . , elev(µ)).

Let lev(λ) = l. Let λl, λl−1, . . . , λk be a sequence of coefficient vectors with lev(λi) = i
constructed recursively as follows. We start with λl = λ. Given λi, we distinguish two
cases.

i. If deg(λi) < lev(λi), then we define the next element in our sequence as λi−1 =
λi − edeg(λi). In this case, lev(λi−1) = lev(λi) − 1 = i − 1 and deg(λi−1) > deg(λi).
Note that deg(λi) 6 d, because either lev(λi) 6 d and then deg(λi) < d by assumption
or lev(λi) > d and then deg(λi) 6 d by part (3).

ii. If deg(λi) > lev(λi), then we stop and λk = λi is the last element of our sequence.
Note that k > 1, as lev(λ) = 1 implies that deg(λ) = d+ 1 by part (2).

By part (1), we know that λk is atomic as deg(λk) > lev(λk). By construction, we
know that

deg(λl) 6 deg(λl−1) 6 · · · 6 deg(λk+1) < lev(λk+1) = lev(λk) + 1

whence

λl = λk +
l∑

i=k+1

edeg(λi)

where deg(λi) 6 lev(λk) for all i = k + 1, . . . , l and so

λ ∈ λk + coneZ(e1, . . . , elev(λk))
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as desired. Note that µ := λk 6= λ as deg(λ) < lev(λ) but deg(µ) > lev(µ). Note also
that µ− λ is integral, so that

∑
i µivi is a lattice point.

Part (5): If deg(λ) < lev(λ), then λ is not atomic.

By part (4), it follows that λ ∈ µ+ coneZ(e1, . . . , elev(µ)) for µ 6= λ, which means that
λ is not atomic.

Part (6): If lev(λ) > d, then λ is not atomic. In particular, there are only finitely many
atomic lattice points.

If lev(λ) > d, then lev(λ) > deg(λ) by part (3) and so λ is not atomic by part (5).
Since every level contains only finitely many lattice points, it follows that the total number
of atomic lattice points is finite.

After these preparations, we can now show Theorem 4, the partition theorem at the
heart of this article.

Theorem 4. Let v1, . . . , vd be linearly independent integer vectors in Zn for n > d. Then

relint(coneR(v1, . . . , vd)) ∩ Zn =
⋃

z atomic

z + coneZ(v1, . . . , vlev(z)), (5)

where the union ranges over all atomic lattice points in the half-open fundamental simplex
of coneR(v1, . . . , vd) and this union is disjoint.

Proof of Theorem 4. First, we note that without loss of generality, we can assume n = d.
Next, we observe that the right-hand side is contained in the left-hand side of (5) by
construction. So we only have to show that the left-hand side is contained in the right-
hand side and that the union is disjoint.

The union is disjoint.

Let λ = α + δ = β + γ where α and β are atomic, δ ∈ coneZ(e1, . . . , elev(α)) and
γ ∈ coneZ(e1, . . . , elev(β)). Without loss of generality, we assume that lev(α) 6 lev(β).

Note that because δ and γ are integer vectors, frac(λ) = frac(α) = frac(β) and, as both
α and β are atomic, αi = frac(αi) for all i < lev(α) and βi = frac(βi) for all i < lev(β),
by the characterization of atomicity. Furthermore,

• αi = βi for all i < lev(α) because at these indices both α and β are fractional, and

• αi = βi for all i > lev(β) because at these indices αi = βi = λi by construction.

Now we distinguish two cases.

Case 1: lev(α) < lev(β).

• αi > βi for lev(α) 6 i < lev(β), because β is fractional at these indices, and

• αi > βi for i = lev(β), because βi 6 λi = αi.
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So α > β which implies lev(α) > lev(β), which gives a contradiction.

Case 2: lev(α) = lev(β).

In this case, we know αj = βj for all j 6= lev(α) = lev(β). So let i = lev(α). First we
observe that

λi = αi + δi = βi + γi

where δi and γi are integers, so that αi − βi is an integer. Second we argue that because
lev(α) = lev(β),

|αi − βi| = |
∑
j

αj −
∑
j

βj| < 1.

Taking these observations together, we obtain αi = βi and hence α = β, as desired.

The left-hand side of (5) is contained in the right-hand side.

Let λ be the coefficient vector of a lattice point in the cone. If deg(λ) > lev(λ), then λ
is atomic and hence contained in the right-hand side. Otherwise deg(λ) < lev(λ) and thus,
by part (4) of Lemma 13, there exists an atomic µ such that λ = µ+coneZ(e1, . . . , elev(µ)),
which shows that λ is contained in the right-hand side as well.

4 What f ∗-vectors count

We now apply the partition theorem from the previous section to obtain results on the f ∗-
vector of polytopes. We start out with the proof of Theorem 1, the counting interpretation
of the f ∗-coefficients of a lattice simplex.

Theorem 1. Let ∆ ⊂ Rn be an open lattice simplex, let d′ > d = dim(∆) and let
f ∗(L∆, d

′) = (f ∗0 , . . . , f
∗
d′). Then f ∗i counts the number of atomic lattice points in the

half-open fundamental simplex of coneR(∆× {1}) at level i+ 1.

Proof of Theorem 1. Let the vertices of ∆ be denoted by v1, . . . , vd+1. Then the vertices
of ∆ × {1} ⊂ Rn+1 are linearly independent integer vectors a1, . . . , ad+1 ∈ Zn+1 with
ai = (vi,1, . . . , vi,n, 1). Let

C = coneR(a1, . . . , ad+1)

denote the cone generated by the ai. As ∆ is open, the number of lattice points in the
k-th dilate of ∆ equals the number of lattice points in the relative interior of C at height
k, i.e.,

L∆(k) = #(Zn+1 ∩ relint(C) ∩ {x ∈ Rn+1 | xn+1 = k}). (6)

By Theorem 4, we know

relint(C) ∩ Zn+1 =
⋃

z atomic

z + coneZ(a1, . . . , alev(z)) (7)
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where the union is disjoint and runs over all atomic lattice points z ∈ C. As all ai have last
coordinate equal to 1 and the number of non-negative integer solutions to λ1 + . . .+λl = k
is
(
k+l−1
l−1

)
, we have for any 1 6 l 6 d+ 1 and all integers k > −l + 1 the identity

#(Zn+1 ∩ coneZ(a1, . . . , al) ∩ {x ∈ Rn+1 | xn+1 = k}) =

(
k + l − 1

l − 1

)
.

Note that the expression on the right-hand side of the above equation is a polynomial
of degree l − 1 in k. This polynomial evaluates to zero for k ∈ {−1, . . . ,−l + 1} and so
the above identity holds for all integers k > −l + 1. Let z ∈ Zn+1 be an integer vector
with zn+1 = l. Then, translating the discrete cone on the left-hand side by z amounts to
shifting the counting polynomial by l. More precisely,

#(Zn+1 ∩ (z + coneZ(a1, . . . , al)) ∩ {x ∈ Rn+1 | xn+1 = k}) =

#(Zn+1 ∩ coneZ(a1, . . . , al) ∩ {x ∈ Rn+1 | xn+1 = k − l}) =

(
k − 1

l − 1

)
,

for any k > 1. In particular, for any atomic lattice point z ∈ C we have zn+1 = lev(z)
and so

#(Zn+1 ∩
(
z + coneZ(a1, . . . , alev(z))

)
∩ {x ∈ Rn+1 | xn+1 = k}) =

(
k − 1

lev(z)− 1

)
(8)

for any integer k > 1. Combining (6), (7) and (8), we obtain

L∆(k) =
d∑
i=0

(# atomic z ∈ C at level i+ 1 ) ·
(
k − 1

i

)
which proves the theorem.

The previous theorems allow us to prove Theorem 2, a complete characterization of
f ∗-vectors of integral partial polytopal complexes.

Theorem 2. A vector is the f ∗-vector of some integral partial polytopal complex if and
only if it is integral and non-negative.

Proof of Theorem 2. First, we argue that every integral partial polytopal complex has a
non-negative f ∗-vector. Let K be an integral half-open polytopal complex of dimension
d. Then the support of K can be written as the disjoint union of relatively open lattice
simplices σ1, . . . , σN , whence f ∗(K, d) is the sum of all f ∗(σj, d). By Theorem 1, f ∗(σj, d)
is a non-negative integer for all j and hence, so is f ∗(K, d). Note that this argument
only works because f ∗i (σj, dim(σj)) = f ∗i (σj, d) for all 0 6 i 6 dim(σj), a property the
h∗-vector does not have.

Next, we argue that every non-negative integral vector f ∗ = (f ∗0 , . . . , f
∗
d ) for some d

can be realized as the f ∗-vector of some integral half-open polytopal complex K. This,
however, is straightforward. Given f ∗ we let K be a polytopal complex that is the disjoint
union of f ∗i open unimodular i-dimensional lattice simplices for each i = 0, . . . , d. By
construction f ∗(K, d) = f ∗, as desired.
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This implies in particular that every integral polytopal complex (and hence every lat-
tice polytope) has a non-negative integral f ∗-vector (Theorem 3). The crucial point here
is that this holds even if the polytopal complex does not have a unimodular triangulation
and even if its h∗-vector does have negative entries.

5 The rational case

Ehrhart’s theorem for rational polytopes states that if P is a rational polytope, then LP (k)
is a quasipolynomial in k. A quasipolynomial is a function q(k) such that there exists a
number m and polynomials p0(k), . . . , pm−1(k) such that q(km+ l) = pl(k) for all integers
k, l with 0 6 l < m. An m with this property is called a period of the quasipolynomial q,
whereas the minimal m with this property is called the minimal period of q. Note that
any positive integer m such that mP is an integral polytope is a period of LP . The degree
deg(q) of a quasipolynomial is the maximum degree of the polynomials pi.

It is possible to define h∗-vectors for quasipolynomials and thus for rational polytopes
and Stanley’s non-negativity theorem also applies in this more general case [1, 2]. In this
section, we show how the above results for the f ∗-vector can be generalized to the rational
case.

For a given quasipolynomial q, a given period m of q and an integer d > deg(q) we
define the f ∗-vector of q by

f ∗(q, d,m) = (f ∗0 (p0, d), . . . , f ∗0 (pm−1, d),

f ∗1 (p0, d), . . . , f ∗1 (pm−1, d),

. . . ,

f ∗d (p0, d), . . . , f ∗d (pm−1, d)).

Note that in this case

q(km+ l) =
d∑
i=0

f ∗i (pl, d) ·
(
k − 1

i

)
,

for all 0 6 k, l ∈ Z with 0 6 l < m and (k, l) 6= (0, 0).
In analogy to the integral case, we define the f ∗-vector of a rational polytope P

(or more generally a rational partial polytopal complex) to be f ∗(LP , d,m) for a given
d > dim(P ) and a given period m of LP .

Given these conventions, we can now turn to the proof of Theorem 5.

Theorem 5. Let ∆ ⊂ Rn be an open rational simplex, let d′ > d = dim(∆) and m be
a positive integer such that m∆ is integral. There exist polynomials p0, . . . , pm−1 such
that for all integers k > 0 and 0 6 l < m with (k, l) 6= (0, 0) the Ehrhart function of ∆
satisfies L∆(km+ l) = pl(k). Then for all 0 6 i 6 d and all 0 6 l < m the f ∗-coefficient
f ∗i (pl, d) counts the number of atomic lattice points z in the half-open fundamental simplex
of coneR(∆× {m}) at level i+ 1 with zn+1 = im+ l + 1.
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Proof of Theorem 5. The proof proceeds just as in the integral case, with the following
differences. Let v1, . . . , vd+1 denote the vertices of ∆ and define generators a1, . . . , ad+1

by ai = (mvi,1, . . . ,mvi,n,m). Note that the vectors ai are integral by definition of m,
but they are not primitive2 in general! We now consider the fundamental simplex of
the cone C = coneR(a1, . . . , ad+1) with respect to these generators and observe that the
lattice points z in C at level i+ 1 have last coordinate zn+1 = im+ l+ 1 for some integral
0 6 l < m. All lattice points z ∈ coneZ(a1, . . . , ad+1), however, have last coordinate
zn+1 = jm for some non-negative integer j. The theorem then follows.

Theorem 5 implies the non-negativity Theorem 6 just as in the integral case.

Theorem 6. Any rational partial polytopal complex has a non-negative integral f ∗-vector.

Proof of Theorem 6. Let K be a rational partial polytopal complex of dimension d =
dim(P ). Let m be a positive integer such that mK is integral. Let T be a triangulation of
K that uses only vertices of K. By Theorem 5 all open simplices σ in T have an Ehrhart
quasipolynomial Lσ with period m. Thus

f ∗(K, d,m) =
∑
σ∈T

f ∗(σ, d,m)

which shows that f ∗(K, d,m) is non-negative and integral.

Interestingly, there is another variant of Theorem 5 that makes use of a different
grading of the cone over ∆.

We define the restricted partition function pm1,...,md
(k) of positive integersm1, . . . ,md, k

to be the coefficient of zk in the Laurent expansion of the generating function

1

(1− z)m1 · . . . · (1− z)md
,

or, equivalently,

Fm1,...,md
(k) = #

{
(λ1, . . . , λd)

∣∣∣∣∣ 0 6 λi ∈ Z,
d∑
i=1

λimi = k

}
.

Theorem 7. Let ∆ ⊂ Rn be an open lattice simplex with vertices v1, . . . , vd+1 and let
m1, . . . ,md+1 be minimal positive integers such that mivi is integral for all 1 6 i 6 d+ 1.
Then

L∆(k) =
d∑
i=0

S∑
s=0

ci,s · pm1,...,mi+1
(k − s)

for all 1 6 k where S =
∑d+1

i=1 mi and ci,s denotes the number of atomic lattice points
z at level i + 1 in the fundamental simplex of coneR(a1, . . . , ad+1) with zn+1 = s. Here,
ai = (mivi,1, . . . ,mivi,n,mi) for all i = 1, . . . , d+ 1.

2An integral vector z ∈ Zn is called primitive if the line segment from z to the origin contains no
lattice point except its end points. Equivalently, z is primitive if its components have greatest common
divisor 1.
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Proof of Theorem 7. Theorem 7 follows from Theorem 4 using the observation that for
any lattice point y with 0 6 yn+1 = s ∈ Z the value pm1,...,mi+1

(k − s) of the restricted
partition function equals the number of lattice points z in y + coneZ(a1, . . . , ai+1) with
zn+1 = k.
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