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Abstract

We develop a new perspective on the unique maximal decomposition of an arbitrary affine
permutation into a product of cyclically decreasing elements, implicit in work of Thomas Lam
[Lam06]. This decomposition is closely related to the affine code, which generalizes the k-
bounded partition associated to Grassmannian elements. We also prove that the affine code
readily encodes a number of basic combinatorial properties of an affine permutation. As an
application, we prove a new special case of the Littlewood-Richardson Rule for k-Schur functions,
using the canonical decomposition to control for which permutations appear in the expansion
of the k-Schur function in noncommuting variables over the affine nil-Coxeter algebra.
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1 Introduction

The affine permutation group S̃k+1 was originally described by Lusztig [Lus83] as a com-

binatorial realization of the affine Weyl group of type A
(1)
k . The affine permutations have

since been extensively studied; a very good overview of the basic results may be found
in [BB05]. The group S̃k+1 is important for a variety of reasons; for example, new results
on S̃k+1 often generalize or give new results in the classical symmetric group. Additionally,

S̃k+1 is the affine Weyl group of type A
(1)
k , and new combinatorics in the affine symmetric

group suggest new directions of exploration for general affine Weyl groups. Finally, the
affine nil-Coxeter algebra, which is closely related to the affine permutation group, has
proven very useful in the study of symmetric functions, via the construction of Schur (and
k-Schur) functions in non-commuting variables [FG98][Lam06].

As our primary objective, we develop new machinery for finding the unique maximal
decomposition of an arbitrary affine permutation. This may be interpreted as a canonical
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reduced decomposition of each affine permutation. This composition is encoded in the
affine code, or k-code, which may be interpreted as a weak composition with k + 1 parts,
at least one of which is zero1. We interpret the diagram of an affine code as living on
a cylinder. (Before the connection to the affine code was noticed, we called this object
a k-castle, because when the affine code’s Ferrer’s diagram is drawn on a cylinder, it
resembles the ramparts of a castle. The requirement that one part of the composition is
zero means that the castle always has a “gate.” See Figure 4.) One may then quickly
determine whether two affine permutations given by reduced words are equal by putting
each in their canonical form: Thus, we provide an alternative solution of the word problem
for the affine symmetric group. The affine code readily yields other useful information
about the affine permutation, including its (right) descent set and length. Furthermore,
the Dynkin diagram automorphism on S̃k+1 may be realized by simply rotating the affine
code.

While in review, it was noticed that the k-code coincides with the affine code, and
that the unique maximal decomposition is implicit in the work of Lam [Lam06][Theorem
13]. Our work here gives an alternative proof of the existence and uniqueness of the
maximal decomposition, as well as introducing the perspective of the two-row moves on
cyclic decompositions of an element. This added perspective is imminently useful when
considering combinatorial problems arising in the affine symmetric group; this utility is
demonstrated in Section 5, and will be further demonstrated in future work.

We furthermore describe an insertion algorithm on affine codes, which gives rise to
the notion of a set of standard recording tableau in bijection with the set of reduced
words for an affine permutation with affine code α. We also generalize a number of
constructions that arise in the study of k-Schur functions (described below) to general
affine permutations. In particular, the notions of k-conjugation and weak strip appear
and generalize naturally in the study of affine codes.

Initially we developed this machinery in order to prove a special case of the k-
Littlewood-Richardson rule describing the multiplication of k-Schur functions. The k-
Schur functions s

(k)
λ are indexed by k-bounded partitions, and give a basis for the ring

Λ(k) defined as the algebraic span of the complete homogeneous functions hi with i 6 k.
The k-Schur functions were originally defined combinatorially in terms of k-atoms, and

conjecturally provide a positive decomposition of the Macdonald polynomials [LLM03].
Since their original appearance, these functions have attracted much attention, but many
basic properties remain elusive. As of this writing, the author estimates that there are at
least five different definitions, all of which are conjecturally equivalent. A good overview
of the state-of-the-art in the study of k-Schur functions, including many of the various
definitions, is [LLM+12].

One definition of the k-Schur functions is given by the k-Pieri rule. The k-bounded
partitions are are in bijection with (k + 1)-cores and Grassmannian affine permutations.
Lam demonstrated that the cyclically decreasing elements in the affine nil-Coxeter algebra
commute and satisfy the same multiplication as the hi’s [Lam06]. As such, the k-Pieri
rule may be used to construct elements in the affine nil-Coxeter algebra which mimic the

1The affine code generalizes both the inversion vector and the Lehmer code of a classical permutation.
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k-Schur functions. This is the realization of the k-Schur functions we use throughout this
paper.

Definition 1. Given a shape µ, the k-boundary ∂k(µ) of µ is the skew shape obtained by
removing all boxes with hook > k. A skew shape is connected if any box may be reached
from any other box by a sequence of vertical and horizontal steps. A k + 1-core µ splits
if the k-boundary ∂k(µ) is not connected. If µ splits, then each connected component of
∂k(µ) is the boundary of some k +1 core ρi. These cores ρi are the components of µ. Any
collection of diagonally-stacked connected components may similarly be associated to a
core; such a collection we call a factor, in anticipation of the main result.

Our main application is the following special case of the k-Littlewood-Richardson rule,
which appears as Theorem 70:

Theorem 2. Suppose µ splits into components µi. Then

s(k)
µ =

∏
s(k)

µi
.

Example 3. Consider the 5-core (6, 3, 3, 1, 1, 1), associated to the 4-bounded partition
(3, 2, 2, 1, 1, 1):

The 5-boundary is in white, while the non-boundary boxes are shaded grey. The
boundary splits into three connected components, (1, 1, 1), (2, 2), and (3). Then the
theorem states that:

s
(4)
(6,3,3,1,1,1) = s

(4)
(3)s

(4)
(2,2)s

(4)
(1,1,1).

This special case of the k-Schur Littlewood Richardson rule is similar in flavor to one
proven by Lapointe and Morse [LM07]. Their special case, the k-rectangle rule, involves
multiplication of a k-Schur function indexed by a rectangle R with maximal hook (k + 1)
by an arbitrary k-Schur function λ. In this case:

s
(k)
R s

(k)
λ = s

(k)
R∪λ,

where R ∪ λ is the partition obtained by stacking the Ferrer’s diagrams of R and λ and
then “down-justifying”2 the resulting shape to obtain a k bounded partition. Given the
k-rectangle rule, the multiplication of the k-Schur functions for a fixed k is then fully
determined by the multiplication of the k-Schur functions indexed by shapes strictly con-
tained within a k-rectangle. The k-rectangle rule was given a combinatorial interpretation
in the affine nil-Coxeter setting in [BBTZ11].

The splitting condition we consider here is distinct from the k-rectangle rule, and
provides some products of k-Schur functions contained strictly within a k-rectangle, and
thus advances our overall understanding of the k-Littlewood-Richardson rule.

2Or “up-justifying,” if you prefer the English notation for partitions.
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1.1 Further Directions.

Our results on affine codes suggest a number of questions for further exploration. In
particular, we expect that our perspective will be helpful in problems relating to reduced
decompositions of affine permutations, especially those relating to the affine Stanley sym-
metric functions Sx, originally studied in [Lam06]. The affine Stanley symmetric function
may be defined as a sum over decompositions of an affine permutation into a product of
cyclically decreasing elements; our framework gives a natural way to relate these various
decompositions, which we will explore in further work. The affine codes may also be
helpful in the enumeration of reduced words for either classical or affine permutations, a
problem which has proven especially difficult.

As noted in [Lam06], the problem of expanding the k-Schur functions over the nil-
Coxeter algebra Ak is equivalent to finding the k-Littlewood-Richardson coefficients. A
number of the supporting results in this work determine coefficients in the expansion of
the k-Schur function for special elements, using the affine code constructions. We expect
that more information about the coefficients in the expansion may be gleaned from further
study, which in turn will illuminate the k-Littlewood-Richardson coefficients.

1.2 Overview

In Section 2 we review basic concepts from the literature and establish notation that will
be used throughout the paper. This includes a review of affine permutations, the affine
nil-Coxeter algebra, cyclically decreasing elements, and the expression of the k-Schur
functions in non-commuting variables over the affine nil-Coxeter algebra..

The bulk of the paper is in Section 3. In this section, we construct the bijection(s)
between affine permutations and k-codes, via maximal decompositions. In Subsection 3.1,
we prove that every affine permutation has a unique maximal decomposition as a prod-
uct of cyclically decreasing elements. This provides the first main result of the paper,
Theorem 20. The proof of the theorem is constructive, and provides a fast algorithm for
computing the maximal decomposition.

In Subsection 3.2, we establish ‘moves’ between various reduced decompositions of an
affine permutation into cyclically decreasing elements. These allow us to prove Proposi-
tion 27, which establishes that the maximal decomposition of any affine permutation into
cyclically decreasing elements satisfies a ‘shifted containment’ property, which is key in
the identification of the decomposition with a weak composition.

In Subsection 3.3, we reinterpret the maximizing moves to establish an insertion al-
gorithm on k-codes. This algorithm is reversible, which allows us to associate a set of
recording tableaux to each k-code, and thus to each affine permutation. By construction,
these recording tableaux are in bijection with reduced words for the affine permutation.
This is the content of Theorem 29.

In Subsection 3.4, we prove our main result, Theorem 38, which establishes the bijec-
tion between k-codes and affine permutations. We also establish a relationship between
descents of k-codes and descents of the affine permutations they correspond to.
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In Subsection 3.5, it is observed that there are actually four different bijections be-
tween affine permutations and k-codes, according to different choices for the maximal de-
composition: One can build either a decomposition into cyclically decreasing or increasing
elements, from the right side or the left side. Here we investigate the relationships between
the four k-codes assigned to a given affine permutation. The increasing and decreasing
decompositions are related by a generalization of the k-conjugate, a vital construction
on k-bounded partitions. We also note that the k-codes of the left and right decreasing
decompositions are related by a permutation (Proposition 43).

We then focus on Grassmannian elements in Subsection 3.7. These are affine permu-
tations with right descent set {0} or ∅. They are of particular interest because they index
the k-Schur functions: Grassmannian elements are in bijection with k-bounded partitions,
which may be interpreted as a k-code α with only one descent at α0. We show that the
usual k-conjugate of k-bounded partitions corresponds to switching between two maximal
decompositions of the associated Grassmannian element (Proposition 51). This allows us
to define the k-conjugate on arbitrary affine permutations.

The k-Pieri rule is used to define the k-Schur functions, and an important character-
ization of the Pieri rule is by weak horizontal strips. In particular, consider k-bounded
partitions λ ⊂ µ, and let the k-conjugate of λ and µ be λ′ and µ′ respectively. (The
k-conjugate is defined in Section 2.3.) Then we say that the skew shape µ/λ is a weak
strip if no column of µ/λ contains two boxes, and no row of µ′/λ′ contains two boxes.
Suppose the affine permutations associated to λ and µ are x and y respectively. Indeed,
µ/λ is a weak strip if and only if there exists a cyclically decreasing element dA such that
y = dAx.

In Subsection 3.8, we generalize the combinatorial Pieri rule by showing that multi-
plying any affine permutation by a cyclically decreasing element adds at most one box
to each row of its k-code, while multiplication by a cyclically increasing element adds at
most one box to each column of its k-code.

Section 4 investigates the results of multiplying cyclically increasing and decreasing
elements together. In particular, we find near-commutation rules: for cyclically increasing
and decreasing elements uB and dA, there exist A′, B′ such that uBdA = dA′uB′ . The main
result is Proposition 65.

Finally, we use the machinery of the previous sections to prove our special case of the
k-Littlewood Richardson rule in Section 5. The main result is Theorem 70.

1.3 Acknowledgements
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2 Background and Definitions

In this section we review background material and fix notations for the remainder of the
paper.

2.1 The Affine Nilcoxeter Algebra and Affine Permutations.

We begin by defining the affine nil-Coxeter algebra, and reviewing some basic facts and
definitions relating to affine permutations. Good references on affine Coxeter groups in
general and the affine symmetric group in particular include [Hum90], [BB05].

Let k be a positive integer. Let I indicate the index set Zk+1 = {0, 1, . . . , k}, which

correspond to nodes in the Dynkin diagram of type A
(1)
k . Indices from I are thus always

considered modulo k+1. The Dynkin diagram of type A
(1)
k is the cyclic graph with vertices

labeled by elements of I, and an edge connecting each pair of indices i and i + 1. For
brevity, we let [p, q] := {p, p+1, . . . , q−1, q} ( I for p 6= q−1. (For example, with k = 5,
the set [4, 2] = {4, 5, 0, 1, 2}.) We call a subset A ( I connected if the corresponding
subgraph of the Dynkin diagram is connected; i.e., A = [i, l] for some i, l. A connected
component of an arbitrary A ( I is a maximal connected subset of A.

Definition 4. The affine nil-Coxeter monoid Âk is generated by the alphabet {ai | i ∈ I},
subject to the relations:

• a2
i = 0,

• aiaj = ajai for all j > i with j − i > 1,

• aiai+1ai = ai+1aiai+1 for all i, and

• x0 = 0x = 0 for all x ∈ Âk.

The affine nil-Coxeter algebra Ak is the monoid algebra of Âk. The classical nil-Coxeter
monoid Â0

k and corresponding monoid algebra A0
k are obtained as a (parabolic) quotient

of Ak by evaluating a0 = 0.
We will also occasionally use the affine symmetric group S̃k generated by the alphabet

{si | i ∈ I}, subject to the relations:

• s2
i = 1,

• sisj = sjsi for all j > i with j − i > 1, and

• sisi+1si = si+1sisi+1 for all i.
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Figure 1: All 2-castles with 6 7 boxes, drawn in the alcoves corresponding to the various
affine permutations in S̃3. The colored walls of the alcoves indicate which simple transpo-
sition is used to cross that wall. Blue is s0, green is s1, and red is s2. The orange-shaded
regions indicate the three dominant cones; in particular, the 0-dominant elements are in
the cone which opens to the upper-right. The shading in the boxes of the castles them-
selves corresponds to length; odd-length permutations have no shading, while even-length
permutations are shaded gray.
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Figure 2: DIY Permutahedron: Cut out and glue together to get a 3-dimensional rep-
resentation of this paper’s results, restricted to the classical symmetric group S4. For
best results, print large and in color on heavy card-stock. Each vertex is labeled by a
permutation, and the k-codes associated to the right decreasing (in white) and increasing
(gray) decompositions of the permutation. Edges correspond to right multiplication by
a simple transposition: red for s1, green for s2 and blue for s3. You can use the blank
square faces to mark your own favorite permutation statistics!
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Elements of the affine symmetric group may be considered as (affine) permutations
x : Z→ Z subject to the additional requirements that:

•
∑k+1

i=1 x(i) =
(

k+2
2

)
, and

• x(i + k + 1) = x(i) + k + 1.

Any affine permutation x is then completely specified by its window notation, given by
the vector (x(1), x(2), . . . , x(k +1)). Affine permutations may be considered as bi-infinite
sequences, setting xl := x(l). These affine permutations are in bijection with non-zero
elements of the nil-Coxeter monoid.

The generators si may be considered as the simple transpositions exchanging m(k +
1) + i with m(k + 1) + i + 1 for every m ∈ Z. The set of affine permutations admit a left
action and a right action by the generators si. Considering x as a bi-infinite sequence
(. . . , x(−1), x(0), x(1), . . .), we may consider the left action of the generators as an action
on values (exchanging m(k +1)+ i with m(k +1)+ i+1 for every m ∈ Z), while the right
action is on positions (exchanging the values in positions m(k+1)+ i and m(k+1)+ i+1
for every m ∈ Z).

A reduced word or reduced expression for x is minimal length sequence (w1, . . . , wl)
with wl ∈ I such that x = sw1 · · · swl

. The number l is the length of x, which we denote
len(X). It is a consequence of basic Coxeter theory that an expression is reduced if and
only if aw1 · · · awl

6= 0. We mainly consider affine permutations as elements of the nil-
Coxeter monoid, partially because this is the natural setting to work in for the k-Schur
functions, and partially to avoid worrying about whether a given expression is reduced.

To save space, we will often write words in Ak as a subscript: for example, we write
a1a2a1 as a1,2,1.

Let x be an affine permutation. We recall the set of right descents DR(x) ( I of an
element x. We say that x has a right descent at i ∈ I, and write i ∈ DR(x),

• x(i) > x(i + 1),

• x has a reduced word ending with the generator si.

Likewise, we define the left descents DL(x) ( I. Recall that x has a left descent at i ∈ I,
and i ∈ DL(x) if either of the following two equivalent statements hold:

• i appears to the right of i + 1 in x considered as a bi-infinite sequence,

• x has a reduced word beginning with the generator si.

Note that for any x, DR(x) 6= I. (If DR(x) = I, then x would be a longest element in S̃k.
But such elements do not exist in affine Coxeter groups for a variety of reasons. [Hum90])

In Figure 1, illustrating the bijection between 2-castles and affine permutations in S̃3,
we make use of the alcove model for affine permutations, for which we refer the unfamiliar
reader to [Hum90]. In short, each triangle in the picture is an ‘alcove,’ corresponding to
a particular affine permutation. Crossing a wall of an alcove to reach an adjacent alcove
corresponds to multiplication by a simple transposition.

Lemma 5 (Extended Braid Relation). For any set [i, j] ( I, we have:

ai,i+1,...,j−1,j,j−1,...,i+1,i = aj,j−1,...,i+1,i,i+1,...,j−1,j.
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Proof. This follows from repeated application of the braid relation.

The Dynkin diagram of type A
(1)
k admits a cyclic symmetry, which descends to an

algebra automorphism of Ak.

Definition 6. The Dynkin Diagram automorphism Ψ : Ak → Ak is defined by its action
on the generators:

Ψ(ai) = ai+1.

We observe that Ψ(k+1) is the identity.

2.2 Cyclic Elements in Ak.

Definition 7. Given a subset A ( I with |A| = n we define the cyclically decreasing
element dA (d for ‘down’) to be the product dA := ai1 · · · ain for il ∈ A, where if j, j−1 ∈ A
then j appears to the left of j − 1 in any reduced word for dA. The cyclically increasing
element uA (u for ‘up’) is defined similarly, where if j and j − 1 ∈ A then j appears to
the right of j − 1 in any reduced word for dA.

Then we define:
hi :=

∑
|A|=i

dA, and ei :=
∑
|A|=i

uA.

For a partition λ = (λ1, . . . , λn), hλ =
∏

hλi
, and eλ =

∏
eλi

.
We frequently use the notation A − 1 := {i − 1 | i ∈ A} and occasionally A + 1 :=

{i + 1 | i ∈ A}.
A cyclically increasing (respectively, cyclically decreasing) element of Ak is an element

specified by ordered collection of subsets Ai ( I, given by uAnuAn−1 · · ·uA1 (respectively,

dAndAn−1 · · · dA1). We abbreviate such products using the notation ~A := {A1, . . . , An}, so
that u ~A := uAn · · ·uA1 and d ~A := dAn · · · dA1 . A cyclically increasing (resp. decreasing)

product x is maximal if the shape of ~A given by the vector sh(A) := (|A1|, |A2|, . . . , |An|) is
lexicographically maximal amongst all cyclically increasing (resp. decreasing) expressions
for x.

Example 8. Let k = 5, so that I = {0, 1, 2, 3, 4, 5}. Set A = {0, 2, 4, 5}. Then dA =
a0a5a4a2, and uA = a2a4a5a0. There is a bijection between proper subsets of I and
cyclically decreasing elements.

Theorem 9 ([Lam06]). The elements hi generate a commutative subalgebra of Ak.

Definition 10. The right descent set of an element w ∈ Ak is the set DR(w) := {p ∈ I |
wsp = 0}. The left descent set DL(w) is defined similarly.

For p ∈ I, an element w ∈ Ak is p-dominant if DR(w) ⊂ {p}. When p = 0, such
elements are also known as Grassmannian elements.

Lemma 11. A cyclically decreasing (or increasing) element is connected if and only if it
is i-dominant for some i.

Proof. If not connected, then the element has multiple descents. If it is connected, no
relations may be applied to the element, and so there is only one right descent.
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2.3 k-Schur Functions.

The literature on k-Schur functions is extensive, but an excellent overview is given in “A
Primer on k-Schur Functions,” by Schilling and Zabrocki [LLM+12]. Additional back-
ground on the realization of the k-Schur functions in non-commuting variables over the
affine nil-Coxeter algebra may be found in [BBTZ11].

Definition 12. A k-bounded partition is a partition λ = (λ1, . . . , λn) with each λi 6 k.
A k + 1-core is a partition µ with no hooks of length k + 1. Given a k + 1-core µ, the
k + 1-boundary ∂k+1(µ) is the skew shape obtained by deleting all boxes of µ with hook
length greater than k + 1. When k is not ambiguous, we will just write ∂(µ).

There is a well-known bijection between k-bounded partitions and k + 1 cores. The
bijection is defined by an algorithm on the bounded partition: starting with the first row
of the Ferrer’s diagram for λ, if the first box b of a given row has hook length > k + 1, we
add boxes to the beginning of the row until the box b has hook length 6 k. We perform
this operation on each row of λ sequentially to obtain a k + 1-core. We may recover the
k-bounded partition by taking the k-boundary of the k + 1-core and pushing all of the
boxes in the resulting skew shape to the left to form a partition.

For a k-bounded partition λ, we write c(λ) for the associated k + 1-core, and for a
k + 1-core µ, write p(µ) for the associated k-bounded partition. Thus p(c(λ)) = λ.

Of considerable importance in the study of k-Schur functions is the k-conjugate. For
a k-bounded partition λ, the k-conjugate λ(k) := p(c(λ)′), where c(λ)′ denotes the usual
conjugate of the k + 1-core associated to λ. Notice that the usual conjugate of a k-
bounded partition need not be k-bounded; the k-conjugate returns another k-bounded
partition. (See Figure 3.) The k-conjugate combinatorially implements on the level of
k-Schur functions the automorphism of the symmetric functions which exchanges hi and
ei.

Recall that for λ, ν partitions of n, ν dominates λ if 0 6
∑j

i=1(νi − λi) for every j
(possibly padding one of the partitions with zeroes if their lengths are unequal). In this
case, we write ν � λ.

The k-Schur functions are indexed by k-bounded partitions, and may be defined by
the Pieri rule. The Pieri rule gives an inductive definition of the k-Schur functions, by
setting s

(k)
(l) := hl, and then expressing hls

(k)
µ =

∑
ν s

(k)
ν according to some restrictions

on ν. In particular, the partitions ν satisfy a triangularity property with respect to the
dominance order, allowing recursive definition of the k-Schur functions.

There are different interpretations of the Pieri rule in different contexts, but the pri-
mary definition is by weak horizontal strips. Given partitions λ ⊂ µ, we say that the skew
shape µ\λ is a horizontal strip if each column of µ\λ contains at most one box. Likewise,
it is a vertical strip if each row contains at most one box. If λ ⊂ µ are k-bounded parti-
tions, we say that the skew shape µ \ λ is a weak horizontal strip if µ \ λ is a horizontal
strip and µ(k) \ λ(k) is a vertical strip. Then the Pieri rule may be stated as:

hls
(k)
µ =

∑
ν

s(k)
ν ,
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(conjugate) (k-conjugate)

Figure 3: Illustration of the bijection between k-bounded partitions and k + 1-cores and
the k-conjugation operation. In this case, k = 4. On the left are two 5-cores with the
boxes with hook > 5 shaded darker, and on the right are the corresponding 4-bounded
partitions. The 5-cores are related by conjugation; the 4-bounded partitions are related
by k-conjugation.

where ν \ µ is a weak horizontal strip [LM03]. As a consequence, we can observe that if l
is less than the last part of µ, then

hls
(k)
µ = s

(k)
µ∪l +

∑
ν

s(k)
ν ,

where each ν \ µ is a vertical strip. Furthermore, each ν dominates µ ∪ l.
Recall that there is a bijection between Grassmannian (or 0-dominant) affine permuta-

tions in S̃k and k-bounded partitions. Their relation to the k-Schur functions is described
by the following theorem, which arises as a consequence of the Pieri rule:

Proposition 13. For l ∈ {1, . . . , k}, s
(k)
(l) := hl. Each k-Schur function s

(k)
λ appears

with multiplicity one in hλ. Furthermore, in its expansion in Ak, s
(k)
λ contains a unique

0-dominant summand, wλ.

There is a second interpretation of the Pieri rule in the context of the affine nil-Coxeter
algebra. Take x to be a 0-dominant element of the affine nil-Coxeter monoid. Then:

hls
(k)
x =

∑
y

s(k)
y ,

where the sum is over Grassmannian elements y such that y = dAx for some A ( I with
|A| = l.

Corollary 14. Each k-Schur function s
(k)
λ contains a unique i-dominant summand for

each i ∈ I.

Proof. The statement is true for i = 0. One may obtain an i-dominant summand in s
(k)
λ

by applying Ψi(wλ). This summand is unique, or else we could apply Ψk−i to obtain more
than one 0-dominant summand.
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An important part of our later proofs in this paper will rely on finding coefficients of
certain elements in the expansion of hλ, eλ, or s

(k)
λ . For this, we employ the notation:

[x]f := coefficient of x in f .

For example, in hl, we have:
[dA]hl = δ|A|,l.

3 Canonical Cyclic Decompositions and k-Codes

We first consider products of cyclically decreasing elements. All of the results in this
section may be adapted to products of cyclically increasing elements with small modifi-
cations. For example, results concerning k-bounded partitions for products of cyclically
decreasing elements become statements about k-column bounded partitions for cyclically
increasing products. These different decompositions are explored in Section 3.5.

Suppose we have a collection of subsets ~A = {A1, . . . , An} such that each Ai ( I. Then
we can form a cyclically decreasing product d ~A = dAn · · · dA1 . Trivially every element
w ∈ Ak has an expression as a cyclically decreasing product, by taking any reduced
expression of length n and considering the element as a product of n cyclically decreasing
elements of length 1.

Our primary goal for this section is to show that every affine permutation has a maxi-
mal expression as a product of cyclically decreasing elements, in the sense that the vector
(|A1|, . . . , |An|) is lexicographically maximal amongst all cyclically decreasing decompo-
sitions of x. Given such a maximal decomposition, we may associate it with its k-code,
defined immediately below. We then show that k-codes are in bijection with affine permu-
tations. Along the way we will create algorithms analogous to jeu de taquin and insertion
on k-codes, corresponding respectively to maximizing a cyclically decreasing decomposi-
tion and multiplying by a single generator.

Definition 15. A k-code is a function α : Zk+1 → Z>0 such that there exists at least
one i with α(i) = 0. The window notation for α is the vector [α0, α1, . . . , αk−1, αk]. We
usually identify α with its window notation.

The diagram of a k-code α is a Ferrer’s diagram on a cylinder with k + 1 columns,
indexed by Zk+1 where the i-th column contains αi boxes. A k-code filling is a marking
of the diagram of α with residues from Zk+1, with the box in the ith column and jth row
marked with residue i − j. We may flatten a k-code’s diagram by cutting out a column
j with αj = 0. A reading word of a k-code filling is obtained by reading the rows of this
flattened filled diagram from right to left, beginning with the last row.

A non-maximal k-code filling S = ~A is given by a collection of subsets {A1, . . . , An}
with Ai ( I. The ith row of the diagram of S contains the residues in Ai.

A k-column castle tableau is defined similarly, but on a cylinder with k + 1 rows
marked with residues. In this case, the flattening is obtained by removing a row j with
αj = 0. The reading word is obtained from a flattened tableau by reading the columns
top-to-bottom, beginning with the right-most column.
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Figure 4: On the left is the diagram of the 9-core with window notation
(2, 3, 1, 0, 0, 1, 0, 0, 3, 1) drawn on a cylinder. On the right are two possible flattenings
of this tableau. The reading word of the top flattening is (9, 6, 0, 9, 7, 5, 2, 1, 0, 9, 8). The
reading word of the bottom flattening is (9, 6, 0, 9, 7, 2, 1, 0, 9, 8, 5). These two reading
words are related by commutation relations in A9.

Because there is a unique k-code filling constructed from each k-code, we will com-
monly identify these two objects, referring to both as a k-code. We will develop an
insertion algorithm in Section 3.3, which will produce two ‘tableaux’. The first tableau is
just the k-code filling, and the second is a ‘recording tableau,’ which yields a new com-
binatorial object in bijection with cyclic decompositions of an affine permutation. The
k-shape filling may be considered as a tableau by analogy to the RSK algorithm, rather
than being a chain in a poset.

Examples are provided in Figures 4 and 5.
The rows of a k-code filling each correspond to a cyclically decreasing element with

the residues appearing in that row. This cyclically decreasing element is invariant under
different choices of flattening for the tableau; the reading words of flattened tableaux will
be related by commutation relations in Ak.

Note that the number of boxes in a k-code filling is equal to the number of letters in
the decomposition d ~A, providing a natural grading on k-codes which will correspond to
the length grading on affine permutations.

We will show that k-codes are in bijection with affine permutations in Theorem 38.

3.1 Maximal Cyclic Decompositions and k-Codes

Our first objective is to show that there exists a unique maximal set A ( I such that
x = ydA for some y. The process is constructive, and provides a simple algorithm for
finding A. Given any x, for each i ∈ DR(x) we find the largest possible set Di := [i, j] ( I
such that:

x = yajaj−1 · · · ai.

We ultimately show (Lemma 18) that A is the union of the sets Di, and is thus uniquely
specified. But first we need a Lemma describing the relationship between these various
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Figure 5: On the left is a flattened 7-castle tableau for the 7-castle α = (5, 2, 0, 1, 0, 0, 3, 1).
The reading word for this tableau is (4, 5, 6, 4, 0, 7, 5, 3, 1, 0, 7, 6). On the right is a 7-
column bounded tableau for the k-code ρ = (0, 4, 1, 0, 2, 1, 3, 0), whose reading word is
(4, 3, 0, 2, 5, 7, 1, 2, 4, 5, 6).

sets Di.

Definition 16. Let x be an affine permutation, considered as an element of the nilCoxeter
monoid, and i ∈ DR(x). Define the set Di = [i, j] to be the maximal set such that

x = yajaj−1 · · · ai,

for some y ∈ Âk.

Lemma 17. Suppose x is an affine permutation, and A = Di, B = Dj ( I. Then if
A ∩ B 6= ∅, either A ⊂ B or B ⊂ A. Furthermore, if A ∩ B = ∅ then A ∪ B is not
connected.

Proof. We begin by constructing sequences of residues A0 and B0 in the following way.
Set A0 = (i + n, i + n− 1, . . . , i + 1, i) with n maximal such that x = yui+n · · ·ui; we may
have n > k, so that the A0 contains repetitions of the same index. Likewise, construct
B0 = (p + m, p + m− 1, . . . , p + 1, p), such that m is maximal and and x = yup+m · · ·up.
Our initial goal will be to show that if B0 and A0 share any indicies, then we must have
A0 ⊂ B0 or vice versa.

As x is an affine permutation, we may consider x as a doubly-infinite sequence of
integers without repetitions. We set xl := x(l). Recall that if l ∈ DR(x), we have
xl > xl+1, and x has a reduced word ending in l. Since x = yui+n · · ·ui+1ui, we have
xi > xi+1. Removing the descent at i, we obtain yui+n · · ·ui+1, and so this element has a
right descent at i + 1. But here xi appears in position i + 1, and so we have xi > xi+2.
We may continue peeling off generators from the right to show that xi > xk for each
k ∈ {i + 1, i + 2, . . . , i + n + 1}.

Now we consider two cases.
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• Case 1: |A0|, |B0| 6 k. Then we can set A and B to be the set of indices appearing
in A0 and B0 respectively. If p = DR(dB) appears in A, then xi > xp. But xp > xk

for all k ∈ [p + 1, p + m + 1], so that xi > xl for all l ∈ [i + 1, p + m + 1]. Thus,
B ⊂ A.

• Case 2: |A0| > k + 1. Then p ∈ A0, so that either xi > xp or xi > xp+k+1 if p < i
as an integer. In the case where xi > xp, we have xi+k+1 = xi + k + 1 > xp, so that
i 6∈ B0. Additionally, if i− 1 were in B0, we would have xp > xi > xi+1, which would
in turn mean i ∈ B0. Thus, i − 1, i 6∈ B0. The same reasoning holds if p > i as an
integer.

As such, B0 is a proper subset of the index set, containing neither i− 1 or i. We set
B = {p, p + 1, . . . , p + m} and A = {i, i + 1, . . . , i − 2} ( I. Then we have shown
that B ⊂ A.

Thus, if A ∩B 6= ∅, we have either B ⊂ A or vice versa.
Now suppose A ∩ B = ∅ and A ∪ B connected as a subgraph of the Dynkin diagram,

and let A = [i, j] and B = [p, q]. If |A|, |B| < k, we have p = j+1,and xi > xj+1 = xp > xk

for all k ∈ [p + 1, q + 1]. But then xi > xk for all k ∈ [i + 1, q + 1], so we can find C such
that A ( C and x = wdC , contradicting the maximality of A. If |A| = k, we must have
|B| = 1, so we may repeat the same argument and show that B was not maximal. Thus
we have A ∪B disconnected.

Corollary 18. For any affine permutation x, there exists a unique maximal A ( I such
that x = ydA with len(x) = len(y) + |A|.

Proof. Consider DR(x). For each i ∈ DR(x), we can construct a maximal set Ai = [i, j]
for some j such that x = yidAi

. By Lemma 17, if we consider any pair of these sets, they
are either disjoint with their union disconnected, or one is contained in the other. Thus,
the union of the Ai gives a set A such that x = ydA for some y. By construction, A is
maximal.

For uniqueness, suppose B is another such set. Then DR(dB) ⊂ DR(x); by construc-
tion of A, we have either A = B or B ( A. Then maximality of B implies B = A.

Corollary 19. For any affine permutation x ∈ Ak, suppose A is the unique maximal
A ( I such that x = ydA. Suppose B ( I and z ∈ Ak such that x = ydA = zdB. Then
B ⊂ A.

Proof. This is a direct consequence of the proof of Lemma 17.

Theorem 20. Every affine permutation has a unique maximal decomposition into cycli-
cally decreasing elements.

Proof. This follows immediately by repeated application of Corollary 18.

Remark 21 (Algorithm for Computing the Canonical Decomposition.). The proofs of
these results directly translate into an algorithm for finding the canonical decreasing
decomposition of any affine permutation x. For each i ∈ DR(x) we associate a set Di
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Figure 6: The maximal cyclically decreasing and increasing k-code fillings for the affine
permutation with window notation [−4, 1, 2, 0, 5, 14, 7, 11].

obtained by finding the largest connected cyclically decreasing word ending in ui such
that x = ydDi

. Then set A1 to be the union of the sets Di, so that x = x1dA1 for some
x1. Repeat this procedure on x1 to obtain A2, and so on.

Example 22. Let k = 7. Consider the affine permutation x with base window is
[−4, 1, 2, 0, 5, 14, 7, 11]. Then DR(x) = {0, 3, 6}. We form the sets Di: D0 = {0, 1, 2, 3},
D3 = {3}, and D6 = {6, 7, 0, 1, 2, 3, 4}, so that their union A1 = D6 = {6, 7, 0, 1, 2, 3, 4}.
Then we can find x1 such that x = x1dA1 .

This x1 has base window [1, 2, 0, 5, 6, 7, 11, 4]. We have DR(x1) = {2, 7}, and find the
sets D2 = {2} and D7 = {7, 0, 1, 2}, so that A2 = {7, 0, 1, 2}, and x1 = x2dA2 .

The permutation x2 has base window [2, 0, 3, 5, 6, 7, 4, 9], and DR(x2) = {6, 1}. Then
we form the sets D1 = {1} and D6 = {6}, so that A3 = {1, 6}.

Finishing things up, one may derive A4 = {5} and A5 = {4}, so that:

x = u4u5u1,6u2,1,0,7u4,3,2,1,0,7,6.

This is the maximal decomposition of x. This is depicted as a k-code filling in Figure 6.
Using a similar algorithm, we may find a cyclically increasing decomposition of x.

This decomposition turns out to be x = u5u4u3u2u1,3u0,2u1,7u3,5,6,7,0

This is depicted as a k-column castle tableau in Figure 6.

3.2 Maximizing Moves on k-Codes.

Given a non-maximal cyclically decreasing decomposition, there are a number of ‘moves’
we can apply in sequence to obtain the maximal decomposition. Because of the close link
between decompositions and k-codes, we will develop these ‘moves’ in tandem in both
contexts. These moves bear some similarity to moves on rc-graphs [BB93] or may be
thought of as a k-bounded variation on jeu de taquin, as they may be used to obtain a
k-code from a non-maximal k-code.

We first examine the action of a single generator applied to a single cyclically decreasing
element dA:

• Commutation. Suppose i− 1, i, i + 1 6∈ A. Then sidA = dA∪{i}.
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• Zero. Suppose i ∈ DL(dA). Then sidA = 0.

• Braid. Suppose i ∈ A, i 6∈ DL(dA). Then sidA = dAsi+1.

These all follow directly from the definition of the cyclically decreasing elements and the
relations in Ak.

Now consider the product of two cyclically decreasing elements, dBdA. Using the above
single-generator moves, we establish a number of ‘moves’ for merging elements of B into
A. This allows us to maximize the vector (|A|, |B|) lexicographically.

Lemma 23 (Two-Row Moves.). The following identities hold for products of cyclically
decreasing elements dA and dB:

• Commutation. Suppose i, i−1, i+1 6∈ A, and i ∈ DR(dB). Then dBdA = dB\{i}dA∪{i}.

• Chute Move. Suppose A = [i, j] and B = [i − 1, p] with p 6∈ A and j ∈ B. Then
dBdA = dB\{j}dA∪{i−1}.

• Zero. Suppose A = [i, j] and B = [p, q] with p ∈ A and j ∈ B. Then dBdA = 0.

Proof. The commutation rule follows directly from the single generator moves. The final
two identities follow from applying a sequence of braid and commutation relations in the
product. (And in fact, the Zero move can be derived from the Chute Move.)

The two-row moves translate directly into operations on (skew) k-codes. In the prod-
uct, dB and dA correspond to two stacked rows containing the residues in B and A. The
two-row moves are illustrated in Figure 7.

Given a skew k-code dBdA, application of a two-row move reduces the size of B by
one and increases the size of A by one. All of the two-row moves are reversible, and so we
also have a set of reverse two-row moves which increase the size of B by one and reduce
the size of A by one.

We now provide a useful technical lemma with a very nice proof!

Lemma 24. In any product dBdA 6= 0, there exists j such that j 6∈ A, and j − 1 6∈ B. In
the two-row notation for dBdA 6= 0, there is an empty column.

Proof. The two statements are equivalent. We suppose there is no empty column in the
two-row notation, and show that the product dAdB is unreduced.

Since there is no empty column, we have three possible states for each column.

• State TOP: i− 1 ∈ B and i− 2 6∈ A,

• State DOWN: i− 1 6∈ B and i− 2 ∈ A, or

• State CHARM: i− 1 ∈ B and i− 2 ∈ A.

Since B ( I, there exists i 6∈ B; since there is no empty column, this gives i− 1 ∈ A, so
there exists a TOP column. We now consider each residue j in decreasing order, beginning
with i− 1.

If the current column is of type TOP, one of three cases holds:
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Figure 7: The two-row moves as they act on k-code fillings.

• If j−1 ∈ B and j−2 6∈ A, then the product dAdB is unreduced, by the commutation
two-row move.

• If j − 1 ∈ B and j − 2 ∈ A, the next column if of type CHARM.

• If j − 1 6∈ B and j − 2 ∈ A, the next column if of type TOP.

So the next column is either of type CHARM or TOP.
If the current column is of type CHARM, one of three cases holds:

• If j− 1 ∈ B and j− 2 6∈ A, then the product dAdB is unreduced, by the chute move.

• If j − 1 ∈ B and j − 2 ∈ A, the next column if of type CHARM.

• If j − 1 6∈ B and j − 2 ∈ A, the next column if of type TOP.

So the next column is either of type CHARM or TOP.
So for every column, the next column is of type CHARM or TOP. Both of these cases

have the residue j − 1 ∈ A, so that every residue must be in A. But A ( I, providing a
contradiction.

For any S = {s1, . . . , si} ⊂ I, let S − 1 denote the set {s1 − 1, s2 − 1, . . . , si − 1}.

Lemma 25. Given two sets A, B ( I with dBdA 6= 0, there exist sets A′, B′ such that
dBdA = dB′dA′ and B′ ⊂ A′ − 1. In particular, in the k-code filling for dB′dA′, every
residue in B′ sits directly above a residue in A′.

Proof. We establish an explicit algorithm for maximizing the product dAdB 6= 0 using a
sequence of two-row moves.
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By Lemma 24, there exists a residue i such that i 6∈ A, i − 1 6∈ B. We set E := i
to be the current empty column. From the current empty column, we will read columns
in increasing order. If the next column is empty, we set E := E + 1 to be the current
empty column and continue. Otherwise, we have one of three possibilities for the adjacent
column:

• TOP: We apply a commutation move. The current empty column becomes of type
DOWN, and the next column becomes empty. We set the current empty column to
the next column.

• DOWN: We set N = E + 1, and continue reading to the right incrementing N to
keep track of the current non-empty column. If column N + 1 is of type TOP, the
product is unreduced. If column N + 1 is empty, we set E := N + 1 and continue.
If column N + 1 is of type DOWN, we set N := N + 1 and continue.

The last case is when N + 1 is of type CHARM; in this case we keep reading (set
N := N + 1), but have a new set of possibilities. The next column N + 1 may be
of type CHARM or DOWN, either of which is ok: set N := N + 1 and carry on. If
the next column is of type TOP, then the product is unreduced by the chute move.
Finally, if the next column is empty, we set that column to be the current empty
column E := N + 1 and continue.

• CHARM: We set N := E + 1 and read columns as in the case DOWN. The only
difference is that if we meet a TOP column before meeting a DOWN column, we
may apply a chute move. Then the current empty column becomes of type DOWN,
and the TOP column becomes empty. We set the current empty column to be the
newly created empty column, and continue.

In all cases where a box is moved, a box moves from the top row to the bottom row.
This implies that this process must stabilize at some point. In all cases we eliminate
columns of type TOP, so that the final expression will contain no TOP columns. Thus,
A′ ⊂ B′ − 1.

Example 26. Let k = 9, with A = {2, 3, 5, 8}andB = {0, 1, 2, 3, 4, 7, 8}. We find A′, B′

such that the product dB′dA′ is maximal. We apply a series of moves:

dBdA = (a87a43210)(a8a5a32)

= (a87a4321)(a8a5a32a0)(commutation)

= (a87a4a21)(a8a5a3210)(chute move)

= (a7a4a21)(a87a5a3210)(chute move).

Thus, we have A′ = {0, 1, 2, 3, 5, 7, 8} and B′ = {1, 2, 4, 7}.

For a product of more than two cyclically decreasing elements d ~A, we may progres-
sively apply two-row moves to pairs of adjacent cyclically decreasing elements, eventually
obtaining a decomposition with Ai+1 ⊂ Ai − 1 for each i. Such a decomposition can be
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represented by a k-code fillings by selecting in row i the residues in Ai. Thus, we have
the following Lemma:

Proposition 27 (Maximal Cyclic Products). For any w ∈ Ak, if w = d ~A is a maximal

expression for w as a cyclically decreasing product then ~A has Ai+1 ⊂ Ai − 1 for each i.
In particular, we observe that sh( ~A) is a partition.

Thus, we have shown that any reduced decomposition may have a series of two-row
moves applied to it to obtain a decomposition corresponding to a k-bounded tableau.

3.3 Insertion Algorithm.

Consider x an affine permutation with x = d ~A, ~A = {A1, . . . , An}, giving the maximal
decomposition of x. We consider the product xap for p 6∈ DR(x), and find an algorithm
for determining the k-code filling T ′ for xap. To do this, we attempt to insert the residue
p into the set Aj, beginning with j = 1. One of following possibilities occurs:

• (Inclusion I.) If p− 1, p, p + 1 6∈ Aj: By the commutation relation, we may include p
into Aj. Include p into Aj and halt the algorithm.

• (Inclusion II.) If p − 1, p 6∈ Aj, but p + 1 ∈ Aj: We have p + 1 ∈ DR(Aj), and may
include p into Aj. So again, include p into Aj and halt the algorithm.

• (Bump Move.) If p 6∈ Aj and p − 1 ∈ Aj, we have dAj
up = up−1d(Aj\{p−1})∪{p}. In

other words, bump the residue p− 1 from Aj and replace it with the residue p.

• (Braid Move.) If p ∈ Aj but p 6∈ DR(Aj), then dAj
up = up−1dAj

by a braid relation.
In this case, leave Aj unchanged and continue the process, trying to insert p− 1 into
Aj+1.

These cover all possibilities. When the product is non-zero, this gives us a way to insert
a new box into the k-code.

We remove the explanations from the different cases to obtain a reduced list of insertion
moves:

• (Inclusion.) If p− 1, p 6∈ Aj: Include p into Aj and halt the algorithm.

• (Bump Move.) If p 6∈ Aj and p − 1 ∈ Aj, Remove the residue p − 1 and include
residue p in Aj. Continue the insertion with the residue p− 1 into row j + 1.

• (Braid Move.) If p ∈ Aj but p 6∈ DR(Aj): Leave row Aj unchanged, and continue
the insertion algorithm with residue p− 1 into row j + 1.

Definition 28. Let S be a k-code and p a residue. We denote the insertion of p into S
by S ← p.

Notice that in both the braid move and the bump move, the residue p − 1 is in the
(possibly modified) Aj − 1. As a result, inserting a residue i into a k-code will produce
another k-code, so long as the product xui 6= 0. Luckily, we can use Corollary 36 to read
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off the right descents of x from its k-code, making it immediately clear whether a given
value can be inserted or not.

We may form a recording tableau Q in the usual way. Suppose w = [w1, . . . , wn] is a
word in the alphabet I which inserts to a k-code P . On inserting the jth letter of w, we
write a j in the final box in the insertion of [w1, . . . , wj]. The only special case is the bump
move, which replaces the box with residue p with the box with residue p+1. Suppose the
residue p box was marked with an l in the recording tableau: We simply put this l in the
box with residue p + 1 and delete the box with residue p. (This is illustrated in Figure 8)

Any reduced word w for a given permutation x may be inserted to the empty k-code
to obtain a tableau Q which depends on the reduced word that was inserted. In fact, all
of the insertion moves are invertible, allowing a reverse insertion algorithm. Then given
a recording tableau Q one may recover the reduced expression w.

Theorem 29. Let Q = {Qi} be the set of recording tableaux associated to a k-code α
obtained from a maximal decomposition of an affine permutation x. Then Q is in bijection
with the set of reduced words for x.

Call a recording tableau Q standard if it arises as the recording tableau of some
reduced expression for an affine permutation. Then it is clear that there is a bijection
between standard recording tableaux of a given shape and reduced expressions for the
affine permutation with the associated k-code.

Problem 30. Find a combinatorial description of the recording tableaux.

Example 31. At k = 1, there are no relations between the generators u0 and u1. In this
case, there are exactly two k-codes of size n ((n, 0) and (0, n)), and exactly two non-zero
words on n letters, one with right descent 0 and one with right descent 1.

Example 32. With k = 3, let w = [0, 3, 1, 2, 1, 0]. Then the insertion of w is the k-code
α = (2, 1, 3, 0). But the recording tableau has first row [2, 5, 1], which is not standard in
the usual sense for tableaux.

3.4 Bijection Between Affine Permutations and k-Codes.

Our goal in this section is to prove the bijection between k-codes and affine permutations.
We begin by restating the results of Theorem 20 and Proposition 27 in a consolidated
statement:

Theorem 33 (Canonical Cyclically Decreasing Decomposition.). Every affine permu-
tation x admits a unique maximal decomposition as a product of cyclically decreasing
elements x = d ~A. This decomposition has Ai+1 ⊂ Ai − 1 for each i, and thus sh( ~A) is a
partition.

Proof. This follows from repeated application of Corollary 18 to obtain a complete de-
composition of the affine permutation x as a product of maximal cyclically decreasing ele-
ments. By construction, this decomposition is maximal. It must also satisfy Ai+1 ⊂ Ai−1
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Figure 8: The insertion algorithm for k = 4 with the word w = [0, 1, 2, 3, 1, 2, 0, 1]. The
left tableaux are the k-code fillings obtained at each step, and the right tableaux are the
recording tableaux.
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for each i, or else we could apply a two-row move to obtain a new decomposition greater
in lexicographic order.

Definition 34. We refer to the maximal decomposition of x as the canonical decreasing
decomposition of x, denoted RD(x). The corresponding maximal decomposition into
cyclically increasing elements is the canonical increasing decomposision of x, denoted
RI(x).

We define a map σ from affine permutations to k-code fillings. For x an affine permu-
tation with canonical decreasing decomposition x = d ~A, take σ(x) to be the k-code filling
whose ith row is given by the set of residues Ai.

Definition 35. A descent of a k-code α is an index i such that αi−1 < αi.

Corollary 36 (Descent Sets from k-code fillings.). Given a maximal k-code filling T =
σ(x) for an affine permutation x = d ~A, then r ∈ DR(x) if and only if r appears in the
first row of T and the column containing this box contains a right descent for one of the
dAi

.

Proof. These descents occur by repeated use of the braid relation to move a right descent
in dAi

to the beginning of a reduced expression for x.

Corollary 37. Let x be an affine permutation with decomposition x = d ~A. Then this
decomposition is maximal if and only if Ai+1 ⊂ Ai − 1 for every i.

Proof. The forward direction is given by Lemma 27.
On the other hand, if Ai+1 ⊂ Ai for all i, we may apply the algorithm in Remark 21

to obtain a maximal decomposition x = d ~B. We can also associate a k-code filling T to
the decomposition d ~A. The algorithm constructs sets Dj for each j ∈ DR(x) and takes B1

to be the union of the sets Dj. By Corollary 36, we may then observe that A1 = B1. We
may then repeat this process to show that Ai = Bi for every i. Thus, d ~A is the maximal
decomposition of x.

Theorem 38. The set of k-codes is in bijection with affine permutations in S̃k+1.

Proof. The map σ takes permutations of length n to k-codes with n boxes, so we may
consider σ as a graded map on finite sets. Additionally, we may also recover x by taking
the reading word of σ(x). By Corollary 37, for any x 6= y, we have σ(x) 6= σ(y), so σ is
one-to-one. Then we only need to show that every k-code T is a maximal decomposition
of some affine permutation; equivalently, that element obtained by the reading word of T
is non-zero in Ak.

For this, we induct on the number of boxes n in T . At n = 1, the single box corresponds
to a simple transposition, and the statement holds. Suppose that S is the tableau of shape
α with n + 1 boxes and αj−1 = 0, αj 6= 0. Then j is a descent of S. Removing the box j,
we may apply a sequence of commutation two-row moves to remove one box from column
j and shift it to position j−1. Since S was a k-code, the resulting S ′ is also a k-code, but
on n boxes. As such, it is equal to σ(x) for some x. This x has j 6∈ DR(x), so xuj 6= 0.
Reinserting j into S ′ yields S, so we see that σ(xuj) = S. This completes the proof.
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Corollary 39. Consider an affine permutation x with k-code filling T . Then x is i-
dominant if and only if T has a flattening which is a k-bounded partition with residue i
in the lower left box.

Proof. This follows immediately from Corollary 36.

Note that this gives an alternate proof of the bijection between k-bounded partitions
and 0-dominant (or Grasssmannian) elements.

This allows us to prove a theorem on the nil-Coxeter realization of the k-bounded
symmetric functions.

We complete this subsection with a simple statement relating the k-codes to symmetric
functions in non-commuting variables.

Theorem 40. Suppose that sh(σ(x)) = λ. Then:

[x]hλ = 1, and [x]s
(k)
λ = 1.

Proof. In both hλ and [x]s
(k)
λ , all coefficients are integers > 0. We have [x]hλ = 1 by

the uniqueness of the cyclic decomposition of x. Furthermore, hλ = s
(k)
λ +

∑
µ s

(k)
µ , where

each µ dominates λ. If we had some µ with [x]s
(k)
µ = 1, we could then have [x]hµ = 1,

contradicting the maximality of the decomposition of x.

3.5 Relating the Various Cyclic Decompositions of an Affine
Permutation.

The constructions of this section may be modified to provide four different k-codes as-
sociated to any affine permutation x. These are obtained by finding maximal cyclically
increasing and decreasing decompositions for x from the right and from the left. The
decomposition from the left finds x = dAndAn−1 · · · dA1 maximizing (|An|, |An−1|, . . . , |A1|)
lexicographically. This may be found by modifying the algorithm for generating a k-code
to consider the left descents of x instead of the right descents.

Definition 41. Let x be an affine permutation. Set RD(x) to be the k-code corresponding
to the maximal right decomposition of x into a product of cyclically decreasing elements.
Likewise, set RI(x) to be the k-code from the right increasing decomposition, and LD(x)
and LI(x) be the k-codes from the left decreasing and increasing decompositions, respec-
tively.

Example 42. Let k = 3, and x = a2,1,0,3,0,1,2,1,0,3,1,2,0,1,0. Then x has the following maximal
cyclic decompositions:

• Decreasing Right:
x = a2a3a0a1a3,2a0,3,2a1,0,3a2,1,0,

so RD(x) = (3, 8, 4, 0).
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• Increasing Right:
x = a2a1a0a3a2a1a0a3a2,3a1,2a3,0,1,

so RI(x) = (11, 3, 0, 1).

• Decreasing Left:
x = a2,1,0a3,2,1a0,3,2a3,1a2a3a0a1,

so LD(x) = (4, 3, 8, 0).

• Increasing Left:
x = a2,3,1a1,3a0,2a3a2a1a0a3a2a1a0,

so LI(x) = (3, 0, 11, 1).

An alternative way to produce LD(x) from RD(x) is to use the reverse two-row moves
to ‘up-justify’ RD(x). The resulting object’s reading word gives the left decomposition of
x into cyclically decreasing elements.

We can establish a more direct relationship between LD(x) and RD(x).

Proposition 43. RD(x) is a permutation of LD(x), and RI(x) is a permutation of LI(x).

Proof. Suppose x = d ~A with sh( ~A) = λ. Recall that hλ = hλn · · ·hλ1 . By Theorem 40,
we have [x]hλ = 1, corresponding to the unique maximal cyclically decreasing decompo-
sition of x. But because the hi’s commute, we have [x]hλ1 · · ·hλn = 1. Since x appears
in hλn · · ·hλ1 , there exists a cyclically decreasing decomposition for x = d ~B of shape
(λn, . . . , λ1). This decomposition is maximal as a left cyclically decreasing decomposi-
tion, or else commutativity of the hi’s would imply that our original decomposition of x
was not maximal. Then sh( ~B) is the reverse of λ, and Bi−1 ⊂ Bi − 1 for each i, implying
that the entries in LD(x) are the same as the entries in RD(x), up to some reordering.

The proof for the increasing case is identical.

Problem 44. Describe the permutation relating RD(x) and LD(x) for arbitrary x. Is
there a straightforward way to calculate the permutation, short of directly computing the
left maximal decomposition?

Lemma 45. For any affine permutation x, the descent sets of RI(x) and RD(x) are equal.
Also, the descent sets of LI(x) and LD(x) are equal.

Proof. The descent sets of RI(x) and RD(x) are equal to DR(x), by Corollary 36. One can
prove an analog of Corollary 36 for the left decompositions, giving the second statement.

Recall that the inverse of an affine permutation x is obtained by reversing any reduced
word for x.

Proposition 46. Let x be an affine permutation. Then RD(x−1) = LI(x) and LD(x−1) =
RI(x).
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Proof. The element x−1 is obtained by reversing a reduced expression for x. The reversal
of a cyclically decreasing element is a cyclically increasing element, and vice versa. Thus,
reversing the cyclic decomposition immediately converts the maximal decreasing right
decomposition for x into the maximal increasing left decomposition for x (which coincides
with the maximal right increasing decomposition of x−1).

3.6 Affine Codes and k-Codes

The various k-codes associated to an affine permutation relate directly to the affine code
derived from considering x as a permutation of the integers. There are various ways to
construct the code of a permutation in the finite case; we directly generalize four methods
and place them in correspondence with the k-codes. Two of these methods correspond to
the affine code of the permutation, and two correspond to the inversion vector. We unify
the two concepts by referring to both as simply the code of the permutation.

Definition 47. An affine code is given by a vector with k+1 entries, L = {L1, . . . , Lk+1}.
Four different affine codes are described below, by providing an algorithm for finding the
ith entry of the code for an affine permutation x.

• CRD: The right decreasing code is given by the number of j < i with x(j) > x(i).

• CRI: The right increasing code is given by the number of j > (i + 1) with x(j) <
x(i + 1).

• CLD: The left decreasing code is given by the number of j < x−1(i + 1) with x(j) >
i + 1.

• CLI: The left increasing code is given by the number of j > x−1(i) with x(j) < i.

Example 48. Consider the affine permutation x with k = 3 and window notation
[1,−6, 0, 15]. Then the CRD is (3, 8, 4, 0): for example, 11, 7 and 3 all appear to the
left of 1 = x(1), so that the first entry of CRD(x) is 3. This matches the k-code for this
element, described in Example 42.

Proposition 49. The affine codes described above are equal to the respective k-codes for
an affine permutation.

Proof. We show that CRD(x) = RD(x); the other three equalities follow similar logic.
Let L := CRD(x) = (L1, . . . , Lk+1), and let K := RD(x) = (K1, . . . , Kk+1). We show
that L = K.

When x = dA for some A, the statement is clear: For any i ∈ I, if i 6∈ A then there
are no larger elements to the left of position i, so Li = 0, as will Ki. If i ∈ A, the
transposition at positions i, i + 1 moves exactly one large element to the left of position
i, so that Li = 1. Likewise, K1 = 1 in this case, so the base case holds.

For the induction step, let x = ydA be a reduced product, with A maximal. By
induction, we have CRD(y) = RD(y). By inspection, applying dA to y either increases
by one or stabilizes each entry Li in CRD(y), according to whether i ∈ A. Then the
proposition holds.
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3.7 Grassmannian and i-Dominant Elements.

A special case, important in the study of k-Schur functions, occurs when an affine per-
mutation x has DR(x) ⊂ {i} for some i ∈ I. When i = 0, x is called a Grassmannian
element, and otherwise it is known as an i-dominant element. By Corollary 36 these are
given by the k-codes with (at most) a single decent at position i; a flattening of such a
k-code is a k-bounded partition.

The following result is known within the community (in particular to the authors
of [BBTZ11]), but the author has been unable to find a reference. We state the result
here as a corollary of the k-code construction.

Corollary 50. Let wλ be the 0-dominant element in the expansion of s
(k)
λ . Then wλ has

a unique reduced decomposition as a maximal cyclically decreasing product, where the i-th
cyclically decreasing element has length λi. This word is obtained by writing the diagram
of the k-bounded partition of λ and marking the k + 1-residues in each box, and then
reading the rows of the resulting tableau right-to-left. In other words, if λ has n parts,

wλ =
n∏

i=1

d[−n+i,−n+i+λn−i−1],

where the subscripts are considered modulo k + 1.

An identical argument allows one to find a reduced word for wλ as a maximal cyclically
increasing product. To find this reading word, consider the bijection between k-bounded
partitions and k + 1-cores. The k-bounded partition is obtained by removing all boxes
with hook > k + 1 from the k + 1-core, and then “left-justifying” the resulting skew
shape (called the k-boundary of the core). To obtain a cyclically increasing word for wλ,
one instead “down-justfies” the k-boundary to obtain a partition whose columns are all
k-bounded. Fill the boxes of this partition with k+1 residues, and then read the columns
top-to-bottom, right-to-left.

Let λ be a k-bounded partition. Then the bijection between k-bounded partitions and
k + 1 cores yields a core µ. The bijection between k + 1-cores and k-column bounded
partitions gives us a k-column bounded partition ν. To all of these things, there is a
0-dominant element w ∈ Ak. We can read off the maximal cyclically decreasing product
for w from λ, and the maximal cyclically increasing product for w from ν.

In particular, we can convert very quickly between maximal cyclically increasing and
decreasing expressions for w.

If we wish to find an i-dominant maximal cyclically decreasing (resp. increasing) word,
we can simply add i to all the residues in λ (resp. ν); this is equivalent to applying the
Dynkin diagram automorphism i times to the word for the 0-dominant element w.

Suppose x is an i-dominant affine permutation with k-code α = RD(x) which flattens
to the k-bounded partition λ. Then x also has a k-column castle β = RI(x), which also
has (at most) one descent, and is thus also associated to a k-bounded partition µ. These
two partitions are related by an operation called the k-conjugate. There is a bijection
c from k-bounded partitions to k + 1 cores, which are partitions containing no hooks of
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length k + 1. Denote the core associated to a partition ν by c(ν), and the conjugate of a
partition by νt. Then the k-conjugate of λ is defined to be λ(k) := c−1((c(λ))t) = µ.

We summarize this discussion in the following proposition:

Proposition 51. Let x be a 0-dominant affine permutation, associated to k-bounded
partition λ with column heights given by λ′ = (λ′

1, . . . , λ
′
k), some of which may be zero.

Then the k-code RD(x) = (λ′
1, . . . , λ

′
k, 0). Furthermore, if ν is the k-conjugate of λ, with

column heights (ν ′
1, . . . , ν

′
k), we have RI(x) = (ν ′

1, . . . , ν
′
k, 0).

Example 52. Consider the 3-bounded partition λ = (3, 2, 2, 1, 1). Below we see λ, the
associated (3 + 1)-core, and 3-column bounded partition:

0 1 2
3 0
2 3
1
0

x x x + + +
x + +
x + +
+
+

0 1 2 3 0 1
3 0 1

Then the maximal cyclically decreasing decomposition for wλ is a0a1a3,2a3,0a2,1,0, ob-
tained by reading the residues in the rows from right to left, top to bottom. The maximal
cyclically increasing decomposition is a1a0a3a1,2a0,1a3,0.

The constructions of this section provide a natural generalization of the k-conjugate
to arbitrary affine permutations.

Definition 53. If x has RD(x) = α and RI(x) = β, then we say that α and β are k-
conjugates, and write α(k) = β. Additionally, we define the k-conjugate of x to be the
affine permutation x(k) with RD(x(k)) = β and RI(x(k)) = α.

The following proposition is then immediate.

Proposition 54. The k-conjugate induces an involution on the affine symmetric group.
This involution preserves length and right descent sets of affine permutations.

3.8 Generalized Pieri Rule.

There is a combinatorial Pieri Rule on k-bounded partitions which corresponds to the
Pieri Rule for k-Schur functions.

In this subsection, we generalize the combinatorial Pieri Rule to k-codes, and general
affine permutations. First, we establish the notion of skew k-codes.

Definition 55. Let α and β be k-codes. We say that β contains α, α ⊂ β, if αi 6 βi for
every i ∈ I. We define a skew k-code to be a pair (β, α) where α ⊂ β. The tableau of a
skew k-code is the k-code filling of β with all boxes from α removed.

We say that a skew-k-code is a horizontal strip if the tableau of (β, α) contains no more
than one box in each column. Likewise, (β, α) is a vertical strip if its tableau contains no
more than one box in each row.
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Proposition 56. Let x and y be affine permutations with xy 6= 0. Then RD(y) ⊂ RD(xy).

Proof. Given the k-codes RD(x), RD(y) we may obtain RD(xy) by stacking the two castle
tableaux appropriately and applying a sequence of two-row moves to obtain a maximal
decomposition of xy. In the application of two-row moves, the lower row is always pre-
served as columns of type TOP are eliminated. Since RD(y) contains no pairs of adjacent
rows of type TOP, we then observe that the k-code of y is preserved as we maximize the
product xy to obtain RD(xy).

Theorem 57 (Generalized Pieri Rule). Let x be an affine permutation with maximal
right decomposition x = d ~A and k-code α = RD(x). Let B ( I. Suppose the product
dBx 6= 0. Then the skew composition (RD(dBx), RD(x)) is a horizontal strip and the
skew composition (RI(dBx), RI(x)) is a vertical strip.

Proof. We see that RD(x) ⊂ RD(dBx) by Proposition 56.
It is easier to show that the skew composition (LD(dBx), LD(x)) has no more than

one box in each column. The result then follows from Proposition 43, which states that
the columns of LD(dBx) are a permutation of the columns of RD(dBx). Furthermore,
showing that (LD(dBx), LD(x)) has no more than one box in each column is equivalent
to showing that (RD(xdB), RD(x)) has no more than one box in each column. Thus, we
will focus on proving this statement.

To prove this statement, we stack RD(x) on RD(dB) to form a skew k-code (β, α), and
maximize the product using two-row moves. We note that by Lemma 24 there must be
an empty column in (β, α) or else the product would not be reduced. One may then use
an algorithm similar to the algorithm in the proof of Lemma 25 to maximize the product
and obtain RD(xdB). When i ∈ B but i− 1 6∈ A1, (so we have a TOP state), we can use
a sequence of two-row moves to move an entire column of dA downward. The two types
of move needed - iterated commutation moves and iterated chute moves, are illustrated
in Figure 9. Otherwise, the algorithm is exactly as in Lemma 25.

The proof that (RI(dBx), RI(x)) is a vertical strip is similar.

4 Multiplication of Cyclically Increasing Elements by

Cyclically Decreasing Elements.

In this section we investigate products of cyclically increasing with cyclically decreasing
elements. We focus in particular on product uBdA with connected A, B ( I, since non-
connected cyclic elements are commutative products of connected elements.

Lemma 58. Let A, B ( I with |B|+ |A| > k + 1. Then uBdA is i-dominant if and only
if A is i-dominant and B is (i− 1)-dominant.

Proof. Assume uBdA is i-dominant. Then it is clear that A must be i-dominant (and thus
connected).
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GP1: Right Overhang: Iterated Chute Move

GP2: Left Overhang: Iterated Commutation Move

Generalized Pieri Rule

GP1Z: Right Overhang to Zero

0
GP2Z: Left Overhang to Zero

0

Figure 9: Multi-row moves used in the proof of the Generalized Pieri Rule, for finding
the k-code for the product xdB. The blue boxes represent residues in dB, and the black
boxes represent the k-code RD(x). The empty column appears on the left; reading to the
right, we may move down columns appearing over an empty space by applying iterated
commutation or chute moves.

Let A = {i, i+1, . . . , l}. In order for the product uBdA to be i-dominant, we must have
DR(B) ⊆ {i − 1, l + 1}, and thus B has at most two connected components. However,
since uB is cyclically increasing, if there is a component with right descent l + 1, that
component must have cardinality one, or else there will be a braid relation in the product
uBdA creating a right descent at l + 1 6= i.

Now if |B| + |A| > k + 1, we have B ∩ A 6= ∅. We have |A| < k + 1, so |B| > 2. In
this case, B must have a single connected component because the component with right
descent i − 1 must be large enough to overlap with A, since the component with right
descent l + 1 has cardinality 1. But then l + 1 is in the component with right descent
i− 1, implying that there was only one component to begin with.

If |B| + |A| = k + 1, by similar reasoning, we have B = I \ A, and is thus connected
with right descent i− 1.

For the reverse direction, we associate with B the k-bounded partition (1|B|), and we
associate with A the k-bounded partition (|A|). Then we consider the product e|B|h|A| =

s
(k)

(1|B|)
s
(k)
(|A|). By the forward direction, any 0-dominant element in this product is of the

form uB′dA′ for some A′, B′ ( I, where A′ is 0-dominant, B′ is k-dominant, |A′| = |A|,
and |B′| = |B|. (If these last two conditions did not hold, we could find such an expression
for the element because uB′dA′ is a summand in the product e|B|h|A|.) But this specifies
A′ and B′ completely. Thus, there is only one summmand in e|B|h|A| when expressed as
a sum of k-Schur functions. As such, there is only one i-dominant term, and it may be
obtained by applying the Dynkin diagram automorphism i times. This exactly recovers
the sets A and B, and implies that the product uBdA is reduced and i-dominant.

In proving this Lemma, we have also proved the following Corollary:
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Corollary 59. Suppose λ splits into two partitions (1p) and (q), with p+q > k+1. Then

s
(k)
λ = s

(k)
(1p)s

(k)
(q) .

Corollary 60. If uBdA is i-dominant with |B|+ |A| > k + 1, we have:

uBdA = dA+1uB+1,

where S + 1 is the set obtained by adding 1 to each element of S ⊂ I. In particular, uB

is i− 1-dominant.

Example 61. This calculation is easiest to see with a particular example; the general
case is identical. Suppose I = {0, 1, 2, 3, 4, 5, 6} and A = {0, 1, 2, 3, 4}, B = {3, 4, 5, 6}.
Then:

uBdA = a3456a43210

= a345643210

= a345432160

= a543452160

= a543214560

= a54321a4560

= dA+1uB+1.

Proof of Corollary. This follows directly from the Lemma and a simple computation. By
the Lemma, A = {i, i + 1, . . . , l} and B = {j, j + 1, . . . , i − 1, } are connected, and so
DR(uB) = {i− 1}. Then:

uBdA = (ajaj+1 · · · ai−2ai−1)(alal−1 · · · ai+1ai).

If |B|+ |A| = k + 1, we have j = l + 1. Then using the commutation relations:

uBdA = (al+1al+2 · · · ai−2ai−1)(alal−1 · · · ai+1ai)

= (al+1alal−1 · · · ai+1)(al+2 · · · ai−2ai−1ai)

= dA+1uB+1.

If |B| + |A| > k + 1, then B and A must overlap. Thus we have l ∈ B. In the following
computation, we use a sequence of subscripts to indicate the product of ai’s. (So, for
example, a1,2,3 = a1a2a3.) (The computation uses the extended braid relation, Lemma 5.)
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Then:

uBdA = aj,j+1,··· ,l,l+1,l+2,··· ,i−2,i−1al,l−1,··· ,i+1,i

= aj,j+1,··· ,l,l+1al+2,··· ,i−2,i−1al,l−1,··· ,i+1ai

= aj,j+1,··· ,l,l+1al,l−1,··· ,i+1al+2,··· ,i−2,i−1ai

= aj,j+1,··· ,l,l+1al,l−1,··· ,j+1,j,j−1,··· ,i+1al+2,··· ,i−2,i−1ai

= aj,j+1,··· ,l,l+1,l,··· ,j+1,jaj−1,··· ,i+1al+2,··· ,i−2,i−1ai

= al+1,l,··· ,j+1,j,j+1,··· ,l,l+1aj−1,··· ,i+1al+2,··· ,i−2,i−1ai

= al+1,l,··· ,j+1,jaj+1,··· ,l,l+1aj−1,··· ,i+1al+2,··· ,i−2,i−1ai

= al+1,l,··· ,j+1,jaj−1,··· ,i+1aj+1,··· ,l,l+1al+2,··· ,i−2,i−1,i

= dA+1uB+1.

This completes the proof.

4.1 Products of Cyclically Increasing and Decreasing Elements

We catalog the result of multiplying uBdA for any connected A, B ( I. First we fix some
notation.

Definition 62. Let B ( I be connected, with B = {i, i + 1, . . . , j − 1, j}. Set:

B+ = B ∪ {j + 1}
B− = B \ {j}
B+ = B ∪ {i− 1}
B− = B \ {i}

Additionally, let the sets with both subscripts and superscripts be defined in the obvious
way. (So that B+

− = (B ∪ {j + 1}) \ {i}, for example.)

Lemma 63. Let B ( I be connected, with B = {i, i + 1, . . . , l, l + 1, . . . , j − 1, j}. Set
B1 = {i, i + 1, . . . , l} and B2 = {l, l + 1, . . . , j}. Then:

uB = uB1uB2

dB = dB2dB1 .

Proof. This is follows immediately from the definitions of uB and dB.

Proposition 64. Let B = {i, i + 1, . . . , j − 1, j} and A = {p, p + 1, . . . , q − 1, q}. Then
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we have the following:

uBdA =



0 j = q

dAuB+
−

if B ⊂ A and j 6= q

dA+
−
uB if A ⊂ B and j 6= q

dA−uB+ if A ∩B = ∅, i = p− 1, j 6= q + 1

dA+uB− if A ∩B = ∅, i 6= p− 1, j = q + 1

dA+
−
uB+

−
if A ∩B = ∅, i = p− 1, j = q + 1

dAuB if A ∩B = ∅, i 6= p− 1, j 6= q + 1

(1)

Proof. These all follow from straight-forward computations and the extended braid rela-
tion, Lemma 5.

These computations are nearly identical to the computation in the proof of Corol-
lary 60, and are thus omitted here.

Proposition 65. Let B, A ( I, with both B and A connected. Then there exist connected
sets B′, A′ ( I with |A′ + B′| = |A + B| such that

uBdA = dA′uB′ .

Furthermore, the pair (A′, B′) is one of (A, B), (A, B+
−), (A+

−, B), (A+, B−), or (A−, B+).

Proof. One may use Lemma 63 and Proposition 64 to derive arbitrary products uBdA

by taking B = (B ∩ A) ∪ (B \ (B ∩ A)). Then the proof comes down to checking six
additional cases, which all work out. These additional cases are the ‘overlapping’ cases
where A ∩B 6= ∅, but B not contained in A and vice versa.

In particular, consider the product w for A = {0, 1, . . . , 1} and Bi connected with
|Bi| > |Bi+1| for each i given by:

w := uBl
uBl−1

. . . uB1dA = dA′uB′
l
uB′

l−1
. . . uB′

1

Then w is 0-dominant only if uB′
1
uB′

2
. . . uB′

l
is 0-dominant.

5 The k-Littlewood-Richardson Rule for Split

k-Schur Functions

Our goal in this section is to prove a special case of the Littlewood-Richardson rule
for k-Schur functions, as described in the introduction. The proof will rely heavily on
the maximal decomposition of affine permutations as well as multiplication of cyclically
increasing and decreasing elements.

First, we reformulate the splitting condition for cores in terms of the sizes of rows and
columns of the associated bounded partitions.
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Figure 10: A split 5-core. The core splits into the orange core c(µ) and the green core
c(ν). The 5-boundary is given by the lighter-colored boxes. Down-justifying the orange
core gives a 4-column bounded partition, and left-justifying the green partition gives a
4-bounded partition. The sum of any light orange column and light green row is > 5,
because the dark grey box has hook > 5.

Lemma 66. Let λ be a k-bounded partition whose associated k + 1-core c(λ) splits into

k + 1-cores c(µ) and c(ν). Then for any i, j, we have µ
(k)
i + νj > k + 1.

Proof. Suppose µ(k) has m parts and ν has n parts. We show that µ
(k)
m + νn > k + 1; the

statement then holds for arbitrary i, j since µ(k) and ν are partitions, so that:

µ
(k)
i + νj > µ(k)

m + νn > k + 1.

Diagonally stacking the cores c(µ) and c(ν) yields the core c(λ). By pushing the k-
boundary of c(µ) down, we obtain the k-column bounded partition whose transpose is the
k-bounded partition µ(k). Pushing the k-boundary of c(ν) to the left, we obtain ν. (See
Figure 10 for an example.) All of the boxes in the last column of c(µ) have hook 6 k,
and are thus in the boundary ∂k(c(µ)). Likewise for the boxes in the top row of c(ν). But

c(λ) splits at a box with hook > k + 1, so we have µ
(k)
m + νn > k + 1.

Suppose λ splits into factors µ and ν. We will express summands in s
(k)
µ as products of

cyclically increasing elements and summands in s
(k)
ν as a product of cyclically decreasing

elements. To find k-Littlewood-Richardson coefficients, we need to identify 0-dominant
terms in the product s

(k)
µ s

(k)
ν . In any product wv for w, v ∈ Â, we have DR(v) ⊂ DR(wv).

Thus, if v is not 0-dominant then the product wv cannot be 0-dominant. Since s
(k)
ν has

a unique 0-dominant summand uν , we consider products u ~Auν , where u ~A appears in s
(k)
µ .

We then need to answer two questions:

• For which ~A is the product u ~Auν 0-dominant?

• Which of these u ~A appear as summands in s
(k)
µ ?

Definition 67. Let x, y ∈ Âk. Then x is left-compatible with y, which we denote x ` y,
if xy 6= 0 and DR(xy) = DR(y).

Then, when ν 6= ∅, the k-Littlewood-Richardson coefficients may be expressed as:

cλ
µ,ν =

∑
[x]s(k)

µ ,

where the sum is over x ` uν such that xuν = uλ.
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Lemma 68. Suppose u ~B = uBm · · ·uB1 is a maximal cyclically increasing product of shape
λ = (|B1|, . . . , |Bm|) and d ~A = dAn · · · dA1 satisfies |Aj| + |Bi| > k + 1 for all i, j. Then
u ~Bd ~A is i-dominant if and only if d ~A is i-dominant and u ~B is (i− n)-dominant.

In this case, we also have:

uBm · · ·uB1d ~A = d ~A+muBm+1 · · ·uB1+1.

Proof. For the reverse direction, let λ = sh( ~B) and µ = sh( ~A) be the bounded partitions
associated to the elements u ~B and d ~A. Then diagonally stacking the k+1-cores c(λ(k)) and
c(µ) yields a k + 1-core ν that splits into λ(k) and µ. The 0-dominant element associated
to ν is equal to Ψ(−i)(u ~Bd ~A), and so we see that the product is i-dominant.

The forward direction is more complicated. We see immediately that d ~A must be i-
dominant in order for the product to be i-dominant. Thus, we induct on m, the number
of parts of ~B.

For the base case, ~B = B1, and our assumption is uB1 ` d ~A. Since d ~A is i-dominant,
we have An connected, so let An = [i − n + 1, j]. (The features of the base case are
illustrated in Figure 11.)

Let L = [p, q] be any connected component of B1 with DR(L) 6= {i − n}. (We will
argue by contradiction to show that no such L can exist.) We observe that DR(uB1)∩{i−
n+1, . . . , j} = ∅, or else the product is zero or non-dominant. Thus, q 6∈ {i−n+1, . . . , j},
so that q ∈ [j + 1, i− n− 1].

In fact, we claim that L∩{i−n, . . . , j} = ∅. Otherwise, L must contain j, as uL is an
increasing product. If j ∈ L, set d ~A′ be the maximal decomposition of aj+1 · · · aqd ~A. Since

[j + 1, q] ∩ {i − n, . . . , j} = ∅, ~A′ has the same number of parts as ~A. Then we consider
ajd ~A′ . If j + 1 ∈ A′

m, multiplication by aj starts a new row in the k-code RD(d ~A′), which
creates a new right descent. If j + 1 6∈ A′

m, then ajd ~A′ = 0, since j ∈ DR(dAm). Thus,
j 6∈ L, and so L ∩ {i− n, . . . , j} = ∅.

If there is no connected component of B1 with right descent i − n, we then have
B1 ⊂ I \ {i − n, . . . , j}. But there are |An| + 1 elements in {i − n, . . . , j}, so that
|B1| 6 k + 1 − (|An| + 1), so that |B1| + |An| 6 k, contradicting the assumption that
|B1|+ |An| > k + 1.

On the other hand, suppose B1 has a connected component C with right descent i−n.
Then C = {r, . . . i − n − 1, i − n}. If there are other connected components, we know
that they are contained in [j + 1, i− n − 1]. Since C contains i− n, no other connected
component may contain any elements in [r − 1, i− n + 1], or else that component would
be connected to C. As a result, if C ∩ [i− n + 1, j] 6= ∅ there can be no other connected
components. Thus, all other components are subsets of [j+1, r−2]. But if there are other
connected components, we then have |C∪[j+1, r−2]∪An| = k, so that |B|+|An| < k+1,
contrary to assumption.

Thus, there are no connected components of B1 with right descent other than (i−n).
As a result, B1 is (i− n)-dominant, as desired. (For an example, see Figure 11.)

For the inductive step, we assume that x = uBm−1 · · ·uB1 is (i−m)-dominant and u ~B

maximal. Set ~B− = {B1, . . . , Bm−1}. We consider DR(uBm). Maximality of ~B implies
that each Bn is a subset of Bn−1 + 1.
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Figure 11: An example with k = 9 for the base case of Lemma 68. On the left is the
k-code is for a 0-dominant element d ~A of length 24; we consider a 0-dominant product
uBd ~A where |B| > 5. Left-multiplying by any of the generators in An = {a7, a8, a9, a0, a1}
will either create a descent or kill the element. Thus, elements in An cannot be right
descents of uB, and by the argument in the proof, cannot be in any connected component
of B whose right descent is not 6.
On the right is the Dynkin diagram with k = 9. The set An is highlighted in red,
and an increasing subset C with right descent 6 is highlighted in cyan. The proof for
the base case argues that any other connected component of B would then have to be
contained in the set {2, 3}, but then |B| + |An| 6 9, contradicting the assumption that
|B| + |An| > 10 = k + 1. We may then observe that B must be connected with right
descent 6.

We observe that if uBm is not connected with right descent i− n + m, there exists an
alternate factorization x = u ~B′ with B′

1 = {j − (m − 1) | j ∈ Bm}. This occurs because
each connected component of Bm contributes a right descent to u ~B. Factoring out this
right descent on the right leaves the next element in the connected component, and so on.
This B′

1 must have uB′
1
d ~A 0-dominant, or else u ~Bd ~A will not be zero-dominant. Then by

the base case, this B′
1 must be connected with right descent i − n. But this means that

Bm was connected with right descent i− n + m.

Lemma 69. Suppose a k-bounded partition λ splits into two components, µ and ν. Then
s
(k)
µ s

(k)
ν = s

(k)
λ .

Proof. We induct on the number of parts in µ, considering elements of Âk appearing
with non-zero coefficient in s

(k)
µ as products of cyclically increasing elements, and those

appearing in s
(k)
ν as decreasing elements. Then any x with [x]s

(k)
µ 6= 0 has a cyclically

increasing expansion x = uBm · · ·uB1 where |Bi| = µ
(k)
i .

Let aν denote the unique 0-dominant term in s
(k)
ν , with maximal cyclically decreasing

product aν = dAn · · · dA1 . Then we claim that there exists a unique summand x in s
(k)
µ

such that x ` aν , and furthermore that x is (k + 1 − n)-dominant. By the splitting
condition we have |Bi|+ |Aj| > k +1 for all i, j. To do this, we will induct on the number
of parts of µ(k).
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Figure 12: An example with k = 9 for the induction step of Lemma 68. The k-code
on the left represents the element u ~B and the k-code on the right is for an element d ~A;
consider a 0-dominant product uBu ~Bd ~A where |B| > 5. Left-multiplying dA by any of the
generators in S = {a7, a8, a9, a0, a1} will either create a descent or kill the element. B
cannot contain any of the blue residues or else maximality of uBu ~B will be violated. If a5

is a right descent of uB then a2 will be a right descent of uBu ~B, and is thus disallowed (and
colored red in the diagram). If Bm is disconnected, (for example, set B = {4, 5, 6, 8, 9}),
we can re-express the element as u ~B = xu1,2,3,5,6. But this violates the base case. Then
since |B| > 5, B must be connected with DR(uB) = {9}.

For the base case, µ(k) has a single part, so that s
(k)
(l) = el =

∑
|A|=l uA. In this case,

every summand is maximal. Then by Lemma 68, if x ` aν , then x is (k+1−n)-dominant.

There is a unique such element in s
(k)
(l) , so the product s

(k)
(l) s

(k)
λ has a single 0-dominant

summand, as desired.
For the induction step, we suppose the statement holds for any k-bounded partition

ρ with 6 m parts. Let µ(k) = ρ ∪ (l) be a k-bounded partition with m + 1 parts. We
consider the product:

els
(k)
ρ = s(k)

µ +
∑

κ

s(k)
κ ,

according to the Pieri rule. We recall that each κ � µ. Finally, let aρ be the unique

(k + 1− n)-dominant summand in s
(k)
ρ .

Claim 1: For any x a summand in els
(k)
ρ , if x ` aν then x = uCaρ with |C| = l.

We are interested in 0-dominant elements in the product els
(k)
ρ s

(k)
ν . Recall that for any

elements p, q in a Coxeter group, we have DR(q) ⊂ DR(pq). Then any 0-dominant term

in s
(k)
ρ s

(k)
ν is of the form paν for some p. But by the inductive hypothesis, we see that the

only non-zero summand p in s
(k)
ρ with p ` aν is aρ. The claim then follows immediately.

Claim 2: For any x ` aν , we have

[x]els
(k)
ρ = 1.

By first claim, we have x = uCaρ. If the coefficient were greater than 1, we would
have a second decomposition uDaρ. But then uC = uD.
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Claim 3: Let x = uCaρ ` aν , and aν := u ~B. Then if uCu ~B is not maximal, then

[x]s
(k)
µ = 0.
By the results of Section 3, x has a unique maximal decomposition x = uC′u ~B′ , where

~B′ has the same number of parts as ~B and |C ′| 6 |C|. By the inductive hypothesis, u ~B′

is then (k + 1− n)-dominant; let it be of shape γ. By Proposition 56, we have ρ ⊂ γ. Set
γ+ = γ ∪ (|C ′|), which is sh(x).

By Theorem 57, γ+ \ ρ is a weak strip, so γ+ appears in the Pieri rule expansion of

els
(k)
ρ . Furthermore, [x]s

(k)

γ+ = 1, by Theorem 40. Then we observe that:

1 = [x]els
(k)
ρ

= [x](s(k)
µ + s

(k)

κ+ +
∑

κ

s(k)
κ )

= [x]s(k)
µ + [x]s

(k)

κ+ +
∑

κ

[x]s(k)
κ .

All of these coefficients are > 0, and [x]s
(k)

κ+ = 1, so [x]s
(k)
µ = 0.

Thus, when x ` aν and [x]s
(k)
µ > 0, we have x = uCu ~B is maximal. Then by Lemma 68,

x is (k + 1 − n)-dominant. There is a unique such element in s
(k)
µ , which completes the

proof.

Theorem 70. Suppose λ splits into components µi. Then

s
(k)
λ =

∏
s(k)

µi
.

Proof. This follows from successive application of Lemma 69.
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