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Abstract

It is well known that the branching process approach to the study of the random
graph Gn,p gives a very simple way of understanding the size of the giant component
when it is fairly large (of order Θ(n)). Here we show that a variant of this approach
works all the way down to the phase transition: we use branching process arguments
to give a simple new derivation of the asymptotic size of the largest component
whenever (np− 1)3n→∞.

1 Introduction

Our aim in this note is to show how basic results about the survival probability of branch-
ing processes can be used to give an essentially best possible result about the emergence
of the giant component in Gn,p, the random graph with vertex set [n] = {1, 2, . . . , n} in
which each edge is present independently with probability p. In 1959, Erdős and Rényi [4]
showed that if we take p = p(n) = c/n where c is constant, then there is a ‘phase tran-
sition’ at c = 1. We write Li(G) for the number of vertices in the ith largest component
of a graph G. Also, as usual, we say that an event holds with high probability or whp if
its probability tends to 1 as n → ∞. Erdős and Rényi showed that, whp, if c < 1 then
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L1(Gn,c/n) is of logarithmic order, if c = 1 it is of order n2/3, while if c > 1 then there is
a unique ‘giant’ component containing Θ(n) vertices, while the second largest component
is much smaller.

In 1984, Bollobás [1] noticed that this is only the starting point, and an interesting
question remains: what does the component structure of Gn,p look like for p = (1 + ε)/n,
where ε = ε(n)→ 0? He and  Luczak [6] showed that if ε = O(n−1/3) then Gn,p behaves in
a qualitatively similar way to Gn,1/n; this range of p is now called the scaling window or
critical window of the phase transition. The range ε3n → ∞ is the supercritical regime,
characterized by the fact that there is whp a unique ‘giant’ component that is much larger
than the second largest component. The range ε3n→ −∞ is the subcritical regime.

In this paper we are interested in the size of the giant component as it emerges. Thus
we consider the (weakly) supercritical regime where p = p(n) = (1 + ε)/n, with ε = ε(n)
satisfying

ε→ 0 and ε3n→∞ as n→∞. (1)

Our aim here is to use branching processes to give a very simple new proof of the following
result, originally due to Bollobás [1] (with a mild extra assumption) and  Luczak [6].

Theorem 1. Under the assumption (1) we have

L1(Gn,p) = (2 + op(1))εn

and L2(Gn,p) = op(εn).

Here op(f(n)) denotes a (random) quantity Xn such that Xn/f(n) tends to 0 in prob-
ability: the statement is that for any fixed δ > 0, with probability tending to 1 as n→∞,
L1(Gn,p) is in the range (2± δ)εn and L2(Gn,p) 6 δεn.

Since the original papers [1, 6] (which in fact gave a more precise bound than that
above), many different proofs of many forms of Theorem 1 have been given. For example,
Nachmias and Peres [7] used martingale methods to reprove the result as stated here.
Pittel and Wormald [8] used counting methods to prove an even more precise result; a
simpler martingale proof of (part of) their result is given in [3]. A proof of Theorem 1
combining tree counting and branching process arguments appears in [2]. More recently,
aiming for simplicity rather than sharpness, Krivelevich and Sudakov [5] gave a very
simple proof of (among other things) a weaker form of Theorem 1, where the size of the
giant component is determined only up to a constant factor.

2 Branching process preliminaries

Let us start by recalling some basic concepts and results. The Galton–Watson branching
process with offspring distribution Z is the random rooted tree constructed as follows:
start with a single root vertex in generation 0. Each vertex in generation t has a random
number of children in generation t+ 1, with distribution Z. The numbers of children are
independent of each other and of the history. It is well known and easy to check that if
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E[Z] > 1, then the process survives (is infinite) with probability % the unique solution in
(0, 1] to 1 − % = fZ(1 − %), where fZ is the probability generating function of Z. When
E[Z] < 1, the expectation of the total number of vertices in the branching process is

1 + E[Z] + E[Z]2 + · · · = 1

1− E[Z]
, (2)

and in particular the survival probability is 0.
Let us write Tn,p for the binomial branching process with parameters n and p, i.e., for

the branching process as above with offspring distribution Bi(n, p). Since the generating
function of Bi(n, p) satisfies

f(x) =
n∑
k=0

(
n

k

)
pk(1− p)n−kxk =

(
1− p(1− x)

)n
,

when np > 1 the survival probability % = %n,p satisfies

1− % = (1− p%)n.

From this it is easy to check that if ε = ε(n) = np− 1→ 0 with ε > 0 then

% ∼ 2ε (3)

as n→∞.
Conditioning on a suitable branching process dying out (i.e., having finite total size)

one obtains another branching process, called the dual branching process. In the binomial
case, one way to see this is to think of Tn,p as a random subgraph of the infinite n-ary
rooted tree Tn,1 obtained by including each edge independently with probability p, and
retaining only the component of the root. For a vertex of Tn,1 in generation 1 there are
three possibilities: it may (i) be absent, i.e., not joined to the root, (ii) survive, i.e., be
joined to the root and have infinitely many descendents, or (iii) die out. The probabilities
of these events are 1− p, p% and p(1− %), respectively. Let D denote the event that the
process Tn,p dies out, i.e., the total population is finite. Since D happens if and only if
every vertex of Tn,1 in generation 1 is absent or dies out, the conditional distribution of
Tn,p given D is the unconditional distribution of Tn,π, with π = p(1 − %)/(1 − p%). Thus
the dual of Tn,p is Tn,π.

Note that when np− 1 = ε→ 0, then

1− nπ =
1− p%− np+ np%

1− p%
∼ np%− (np− 1)− p% ∼ ε

as n→∞. Hence the mean number of offspring in the dual process Tn,π is 1− (1+o(1))ε,
and from (2) its expected total size satisfies

E(|Tn,π|) ∼ ε−1. (4)
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Writing S = Dc for the event that Tn,p survives (is infinite), and |Tn,p| for its total size
(number of vertices), it follows that for any integer L = L(n) we have

P(|Tn,p| > L) = P(S) + P(D)P(|Tn,π| > L)

6 P(S) + P(|Tn,π| > L)

6 (1 + o(1))(2ε+ 1/(εL)), (5)

with the second inequality following from Markov’s inequality.
We shall use one further property of Tn,p, which can be proved in a number of simple

ways. Suppose, as above, that ε = np− 1→ 0, and let M = M(n) satisfy εM →∞. Let
w(T ) denote the width of a rooted tree T , i.e., the maximum (supremum) of the sizes of
the generations. Then

P
(
{w(Tn,p) >M} ∩ D

)
= o(ε). (6)

To see this, consider testing whether the event WM = {w(Tn,p) > M} holds by con-
structing Tn,p generation by generation, stopping at the first (if any) of size at least M .
If such a generation exists then (since the descendents of each vertex in this generation
form independent copies of Tn,p), the conditional probability that the process dies out is
at most (1− %)M 6 e−%M → 0. Hence

P(D | WM) = o(1). (7)

Thus
P(WM) ∼ P(S ∩WM) 6 P(S) ∼ 2ε,

which with (7) gives (6).

3 Application to Gn,p

The binomial branching process is intimately connected to the component exploration
process in Gn,p. Given a vertex v of Gn,p, let Cv denote the component of Gn,p containing
v, and let Tv be the random tree obtained by exploring this component by breadth-first
search. In other words, starting with v, find all its neighbours, v1, . . . , v`, say, next find
all the neighbours of v1 different from the vertices found so far, then the new neighbours
of v2, and so on, ending the second stage with the new neighbours of v`. The third stage
consists of finding all the new neighbours of the vertices found in the second stage, and
so on. Eventually we build a tree Tv, which is a spanning tree of Cv.

Note that our notation suppresses the fact that the distributions of Tv and of Cv
depend on n and p. In the next lemma, as usual, |H| denotes the total number of vertices
in a graph H.

Lemma 2. (i) For any n and p, the random rooted trees Tv and Tn,p may be coupled so
that Tv ⊆ Tn,p.

(ii) For any n, k and p there is a coupling of the integer-valued random variables |Cv|
and |Tn−k,p| so that either |Cv| > |Tn−k,p| or both are at least k.
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Proof. For the first statement we simply generate Tv and Tn,p together, always adding
fictitious vertices to the vertex set of Gn,p for the branching process to take from, so that
in each step a vertex has n potential new neighbours (some fictitious) each of which it is
joined to with probability p. All the descendants of the fictitious vertices are themselves
fictitious.

To prove (ii) we slightly modify the exploration, to couple a tree T ′v contained within
Cv with Tn−k,p such that one of two alternatives holds: either T ′v ⊇ Tn−k,p, or else both T ′v
and Tn−k,p have at least k vertices. Indeed, construct T ′v exactly as Tv, except that at each
step at the start of which we have not yet reached more than k vertices, we test for edges
from the current vertex to exactly n− k potential new neighbours. Since |Cv| > |T ′v |, this
coupling gives the result.

From now on we take p = p(n) = (1 + ε)/n, where ε = ε(n) satisfies (1). We start
by using the two couplings described above to give bounds on the expected number of
vertices in large components. In both lemmas, N[L,n] denotes the number of vertices of
Gn,p in components with between L and n vertices (inclusive); Pn,p and En,p denote the
probability measure and expectation associated to Gn,p. Note that since all vertices are
equivalent, En,p(N[L,n]) = nPn,p(|Cv| > L) for any fixed vertex v of Gn,p.

Lemma 3. Suppose that L = L(n) = o(εn). Then Pn,p(|Cv| > L) > (2 + o(1))ε. Equiva-
lently, En,p(N[L,n]) > (2 + o(1))εn.

Proof. Taking k = L in Lemma 2(ii),

Pn,p(|Cv| > L) > P(|Tn−L,p| > L)

> P(Tn−L,p survives) ∼ 2
(
(n− L)p− 1

)
∼ 2ε,

where the approximation steps follow from (3) and the assumption on L.

Lemma 4. Suppose that L = L(n) satisfies ε2L→∞. Then En,p(N[L,n]) 6 (2 + o(1))εn.

Proof. By Lemma 2(i) and (5),

Pn,p(|Cv| > L) 6 P(|Tn,p| > L) 6 (1 + o(1))(2ε+ 1/(εL)) ∼ 2ε.

Together these lemmas show that the expected number of vertices in components of size
at least n2/3, say, is asymptotically 2εn. Two tasks remain: to establish concentration, and
to show that most vertices in large components are in a single giant component. For the
first task, one can simply count tree components. (This is a little messy, but theoretically
trivial. The difficulties in the original papers [1, 6] stemmed from the fact that non-tree
components had to be counted as well. What is surprising is that here it suffices to
count tree components.) Indeed, applying the first and second moment methods to the
number N of vertices in tree components of size at most n2/3/ω, where ω = ω(n) → ∞
sufficiently slowly, shows that this number is within op(εn) of (1−%)n, reproving Lemma 4
and (together with Lemma 3) giving the required concentration. See [2] for a version of
this argument with a (best possible) Op(

√
n/ε) error term. Since the calculations, though

requiring no combinatorial ideas, are somewhat lengthy, we take a different approach here.
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Lemma 5. Suppose that L = L(n) satisfies ε2L→∞ and L = o(εn). Then

N[L,n](Gn,p) = (2 + op(1))εn.

Proof. Let N = N[L,n](Gn,p) be the number of vertices of Gn,p in components of size at
least L. From Lemmas 3 and 4 the expectation E[N ] of N satisfies E[N ] ∼ 2εn, so it
suffices to show that

E[N2] 6 (4 + o(1))ε2n2. (8)

Fix a vertex v of Gn,p. Let us reveal a tree T ′v spanning a subset C ′v of Cv by exploring
using breadth-first search as before, except that we stop the exploration if at any point

(i) we have reached L vertices in total, or
(ii) there are dεLe vertices that have been reached (found as a new neighbour of an

earlier vertex) but not yet explored (tested for new neighbours).
More precisely, we stop as soon as condition (i) or (ii) holds, even if this is partway

through revealing a generation of T ′v , or indeed partway through revealing the new neigh-
bours of a vertex. We call a vertex reached but not (fully) explored a boundary vertex,
and note that there are at most dεLe 6 2εL boundary vertices. Let A be the event that
we stop for reason (i) or (ii), rather than because we have revealed the whole component:

A = { the exploration stops due to (i) or (ii) holding }.

Note that if |Cv| > L, then A holds.
As before, we may couple T ′v with Tn,p so that T ′v ⊆ Tn,p. Since the boundary vertices

correspond to a set of vertices of Tn,p contained in two consecutive generations, if A
holds, then either |Tn,p| > L or w(Tn,p) > εL/2. From (5) and (6) it follows that P(A) 6
(2 + o(1))ε.

Since all vertices are equivalent and |Cv| > L implies that A holds, we have

E[N2] = nE[1|Cv |>LN ] 6 nE[1AN ] = nP(A)E[N | A] 6 (2 + o(1))εnE[N | A]. (9)

Suppose that A does hold. Given any vertex w /∈ C ′v, we explore from w as usual, but
within G′ = Gn,p \ V (C ′v), coupling the resulting tree T ′w with Tn,p so that T ′w ⊆ Tn,p.
Let C ′w be the component of w in G′, so C ′w is spanned by T ′w. Let S be the event that
(this final copy of) Tn,p is infinite, and let D = Sc. Note that C ′w ⊆ Cw, and that the
two are equal unless there is an edge from C ′w to some boundary vertex. Since there
are at most 2εL boundary vertices, this last event has conditional probability at most
2εL|C ′w|p 6 3εL|C ′w|/n, say. Since |C ′w| 6 |Tn,p|, it follows that

P(|Cw| > L | A) 6 P(S) + P(D)P(|C ′w| > L | D) + 3P(D)εLn−1E[|C ′w| | D]

6 P(S) + P(|Tn,p| > L | D) + 3εLn−1E[|Tn,p| | D]

6 P(S) + (L−1 + 3εLn−1)E[|Tn,p| | D],

by Markov’s inequality. Since, by (4), the final expectation above is ∼ ε−1, and our
assumptions give that both L−1 and 3εLn−1 are o(ε2), we see that P(|Cw| > L | A) 6
(2 + o(1))ε. Hence, recalling that there are at most L vertices in C ′v,

E[N | A] 6 L+ (n− L)P(|Cw| > L | A) 6 L+ (2 + o(1))εn ∼ 2εn.
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Combined with (9) this gives (8).

To complete the proof of our main result, it remains only to show that almost all
vertices in large components are in a single giant component. For this we use a simple
form of the classical sprinkling argument of Erdős and Rényi [4].

Proof of Theorem 1. It will be convenient to write ε = ωn−1/3, with ω = ω(n)→∞ and
ω = o(n1/3). Also, let ω′ →∞ slowly, say with ω′ = o(log logω).

Set L = εn/ω′. By Lemma 5 there are in total at most (2 + op(1))εn vertices in
components of size larger than L, so L1(Gn,p) +L2(Gn,p) 6 (2 + op(1))εn. It remains only
to show that

L1(Gn,p) > (2− op(1))εn. (10)

To see this, set p1 = n−4/3, and define p0 by p0 + p1 − p0p1 = p, so that if first we
choose the edges with probability p0 and then (we sprinkle some more) with probability
p1, then the random graph we get is exactly Gn,p. Since np0 − 1 = (1 + o(1))ε, for any
δ > 0 Lemma 5 shows that with probability 1−o(1) the graph Gn,p0 has at least (2−δ)εn
vertices in components of size at least L.

Let U1, . . . , U` be the vertex sets of the components of Gn,p0 of size at least L, and let
U be their union. The probability that no edge sprinkled with probability p1 joins U1 to
Uj is

(1− p1)|U1||Uj | 6 e−p1L
2

= exp
(
− n−4/3ω2n4/3/(ω′)2

)
,

so the expected number of vertices of U not contained in the component of Gn,p containing
U1 is at most ∑̀

j=2

exp
(
− (ω/ω′)2

)
|Uj| = o(|U |).

Consequently, with probability 1 − o(1) all but at most δ|U | vertices of U are contained
within a single component of Gn,p, in which case L1(Gn,p) > (1− δ)(2− δ)εn. Since δ > 0
was arbitrary, (10) follows, completing the proof.

To conclude, let us remark that although Theorem 1 is a key result about the phase
transition, as discussed in the introduction it is far from the final word on the topic.
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