
Large incidence-free sets in geometries

Stefaan De Winter
Department of Mathematical Sciences

Michigan Technological University
Michigan, U.S.A.

sgdewint@mtu.edu

Jeroen Schillewaert Jacques Verstraete ∗

Department of Mathematics
University of California at San Diego

California, U.S.A.

{jschillewaert,jverstraete}@math.ucsd.edu

Submitted: Jan 6, 2012; Accepted: Oct 22, 2012; Published: Nov 8, 2012

Mathematics Subject Classifications: 15A18,05D40,51E12

Abstract

Let Π = (P,L, I) denote a rank two geometry. In this paper, we are interested in
the largest value of |X||Y | where X ⊂ P and Y ⊂ L are sets such that (X×Y )∩I =
∅. Let α(Π) denote this value. We concentrate on the case where P is the point
set of PG(n, q) and L is the set of k-spaces in PG(n, q). In the case that Π is the
projective plane PG(2, q), Haemers proved that maximal arcs in projective planes
together with the set of lines not intersecting the maximal arc determine α(PG(2, q))
when q is an even power of 2. Therefore, in those cases,

α(Π) = q(q −√q + 1)2.

We give both a short combinatorial proof and a linear algebraic proof of this result,
and consider the analogous problem in generalized polygons. More generally, if P is
the point set of PG(n, q) and L is the set of k-spaces in PG(n, q), where 1 6 k 6 n−1,
and Πq = (P,L, I), then we show as q →∞ that

1

4
q(k+2)(n−k) . α(Π) . q(k+2)(n−k).

The upper bounds are proved by combinatorial and spectral techniques. This leaves
the open question as to the smallest possible value of α(Π) for each value of k. We
prove that if for each N ∈ N, ΠN is a partial linear space with N points and N
lines, then α(ΠN ) & 1

eN
3/2 as N →∞.
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1 Introduction

A rank two geometry is a triple Π = (P,L, I) such that P is a set of points, L is a collection
of subsets of P , and I ⊆ P × L is an incidence relation. A partial linear space is a rank
two geometry (P,L, I), where the elements of L are referred to as lines, with the property
that any two lines intersect in at most one point and any two points are contained in at
most one line. In this paper, we consider the problem of finding the maximum value of
|X||Y | such that X ⊂ P and Y ⊂ L and (X × Y ) ∩ I = ∅. In words, no points in X are
incident to any elements of Y . Precisely, we define

α(Π) = max{|X||Y | : X ⊂ P, Y ⊂ L, (X × Y ) ∩ I = ∅}.

We concentrate specifically on the case where Π is a projective n-dimensional space,
PG(n, q), and P is the point set of Π and L is the set of k-spaces in Π. Recall that
k-dimensional projective spaces have vectorial dimension k + 1. Throughout, I denotes
the subspace relation. This problem has been studied in the case of projective planes
by Haemers (consider Corollary 3.1.3 on page 29 of his Ph.D. thesis [11] or page 603 in
[12]), and is motivated by analogous problems for sets, for instance the well-studied topic
of cross-intersecting families (see Tokushige [17]). Our first theorem in the vector space
setting is as follows:

Theorem 1. Let n > 2, k ∈ {1, 2, . . . , n − 1}, and for each prime power q, let Πq =
(P,L, I) be a rank two geometry, where P is the point set of PG(n, q) and L is the set of
k-spaces in PG(n, q). Then as q →∞,

1

4
q(k+2)(n−k) . α(Πq) . q(k+2)(n−k).

Furthermore, if k = n− 1, then

α(Πq) >

{
qn−1b q+1

2
c2 if n is odd

qn+1 − qn + qn−1 if n is even and q = 22h for some h ∈ N

Explicit constructions establishing the lower bounds are given in Section 4. The upper
bound is proved in Subsection 3.3. For general k, Theorem 1 determines α(Π) asymp-
totically up to a factor 4. It is an intriguing problem to determine whether the upper or
lower bound in Theorem 1 is asymptotically tight.

Problem 2. Let k, n ∈ N with k < n, and let Πq = (P,L, I) where P is the point set of
PG(n, q) and L is the set of k-spaces in PG(n, q). Determine α(Πq).

In particular, one may ask whether α(Πq) ∼ q(k+2)(n−k) as q → ∞, especially for the
case of all projective planes, where k = 1 and n = 2. If k = n − 1, n is even, and q
is an even power of two, we obtain α(Πq) ∼ qn+1 as q → ∞ from the last inequality in
Theorem 1. In the next section, we concentrate on projective planes and obtain some
sharper results.
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1.1 Projective planes

A projective plane of order q is a partial linear space in which each line is incident with
q + 1 points, in which each point is on q + 1 lines, and such that every two lines intersect
in a unique point, and every two points are on a unique line. We always assume q > 2.

Using Corollary 3.1.3 on page 29 in [11] with s = t = q; α = q + 1 it is easy to show
that if Π is projective plane of order q, then α(Π) 6 q(q − √q + 1)2 with equality only
for the set of points on a maximal arc of degree

√
q (i.e. a point set such that each line

of Π intersects Σ in either 0 or
√
q points) in Π and the lines disjoint from the maximal

arc. In Section 2, we give a new and combinatorial proof of this result, see Subsection
1.2 for the necessary definitions. This result has recently independently been obtained
by D. Stinson, see [16]. Projective planes isomorphic to PG(2, q) for some q are called
Desarguesian.

Theorem 3. Let Πq consist of the points and lines in a projective plane of order q. Then

α(Πq) 6 q(q −√q + 1)2

with equality only for the set of points on a maximal arc of degree
√
q in Πq and the lines

of Πq not incident with any of these points.

It follows that to achieve equality in Theorem 3 if Πq is Desarguesian q necessarily
is an even square (see Ball, Blokhuis and Mazzocca [1]). Note also that if Πq is the
Desarguesian projective plane of order q = 22h, a maximal arc of degree 2h always exists
(see Denniston [7]). For projective planes, Problem 2 is intriguing, since we are not aware
of infinitely many projective planes Πq of order q for which α(Πq) 6 0.99q3. We believe
that projective planes of prime order might be a good candidate for such family.

1.2 Generalized polygons

A generalized n-gon, n > 3, or a generalized polygon, is a non-empty point-line geometry
Γ = (P ,L, I), the incidence graph of which has diameter n (i.e. any two elements are at
most at distance n) and girth 2n (i.e., the length of any shortest circuit is 2n; in particular
we assume that there is at least one circuit). Recall that the incidence graph is the graph
with P∪L as set of vertices, and in which two vertices x, y are adjacent if and only if xIy.
A thick generalized polygon is a generalized polygon for which each element is incident
with at least three elements. In this case, the number of points on a line is a constant,
say s + 1, and the number of lines through a point is also a constant, say t + 1. The
pair (s, t) is called the order of the polygon; if s = t we say that the polygon has order s.
Throughout this paper s and t will always be finite.

The spectral proof of Theorem 3 can be generalized to give bounds for generalized
polygons. The Feit-Higman Theorem [10] states that finite generalized n-gons of order
q > 2 exist only for n ∈ {3, 4, 6}. The thick generalized 3-gons are called projective planes
(then necessarily s = t); this case is handled by Theorem 3. The generalized 4-gons,
6-gons, 8-gons are also called generalized quadrangles, generalized hexagons, generalized
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octagons, respectively. Our methods work for polygons of order (s, t) as well, however we
feel the more tedious calculations involved would decrease the readability of the paper.

Theorem 4. Let Π be a generalized n-gon of order q > 2, where n ∈ {4, 6}. Then

α(Π) 6 (n/2)q(
qn − 1

q2 − 1
)2

Furthermore, if q is an even power of a prime then there exists a generalized n-gon Π of
order q such that α(Π) > q2n−3 − q2n−4 + q2n−5.

The upper bound is proved in Subsection 3.4, and constructions establishing the lower
bound are stated in Section 4. This leaves the interesting open problem of determining
α(Πq) asymptotically as q →∞, where Πq is a generalized quadrangle or hexagon of order
q, in particular whether the n/2 factor is necessary.

Remark 5. A further consequence of the Feit-Higman theorem is that for thick generalized
octagons of order (s, t) necessarily s 6= t. This is the reason that generalized octagons are
not discussed in this paper.

1.3 Partial linear spaces

In this section we give a universal and almost tight lower bound on α(Π) when Π =
(P,L, I) is an arbitrary partial linear space with N points and N lines.

Theorem 6. For N ∈ N, let ΠN = (P,L, I) be a partial linear space with |P | = |L| = N .
Then as N →∞,

α(ΠN) &
1

e
N3/2.

The probabilistic proof of Theorem 6 is in Section 5. We also define in a partial linear
space Π = (P,L, I) the quantity ᾱ(Π) to be the maximum value of |X||Y | such that there
exists X ⊂ P and Y ⊂ L with |X| = |Y | and with (X × Y ) ∩ I = ∅. The key difference
between this and α(Π) is the restriction |X| = |Y |. The results of Mubayi and Williford
(see Theorem 5 in [14]) show that ᾱ(Π) > 0.037q3 when Π is a Desarguesian projective
plane of order q. The following problem is open:

Problem 7. Determine whether there exists ε > 0 such that if Π = (P,L, I) is any partial
linear space with |P | = |L| = N , and N is large enough, then ᾱ(Π) > N1+ε.

This problem on ᾱ(Π) is related to a notoriously difficult conjecture of Erdős in Ramsey
Theory on quadrilateral-free graphs [6], which would suggest that for each ε > 0, there
exists for infinitely many N a partial linear space Π = (P,L, I) such that ᾱ(Π) 6 N1+ε.
Note that this is far removed from projective planes Π for which ᾱ(Π) has order N3/2.
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1.4 Notation

We use the following asymptotic notation throughout this paper: if f, g : N → R+ are
functions and

lim
n→∞

f(n)

g(n)
= 1

then we write f(n) ∼ g(n). If

lim sup
n→∞

f(n)

g(n)
6 1

then we write f(n) . g(n). Let Nk,n denote the number of k-dimensional subspaces of
PG(n, q), namely

Nk,n =
(qn+1 − 1)(qn − 1) . . . (qn−k+1 − 1)

(qk+1 − 1)(qk − 1) . . . (q − 1)
.

Note that Nk,n ∼ q(k+1)(n−k) as q →∞.

2 Combinatorial proof of theorem 3

Let Σ be a set of k+ 1 points in a projective plane Π of order q such that j + 1 lines of Π
do not contain any point of Σ. Let L := {`1, . . . , `q2+q−j} be the set of lines intersecting
Σ, and set xi = |`i ∩ Σ|.

We count the pairs (℘, `) with ℘ ∈ Σ, ` ∈ L and ℘ ∈ `:

q2+q−j∑
i=1

xi = (k + 1)(q + 1).

Next we count triples (℘1, ℘2, `) with ℘1, ℘2 ∈ Σ, ℘1 6= ℘2, ` ∈ L and ℘1, ℘2 ∈ `:

q2+q−j∑
i=1

xi(xi − 1) = (k + 1)k.

Hence
q2+q−j∑
i=1

x2i = (k + 1)(q + 1 + k).

Now, by the Cauchy-Schwarz inequality,

0 6 (q2 + q − j)
q2+q−j∑
i=1

x2i −

q2+q−j∑
i=1

xi

2

, (1)

and so
0 6 (q2 + q − j)(k + 1)(q + 1 + k)− (k + 1)2(q + 1)2. (2)
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and as (k + 1) is a positive common factor we also have

0 6 (q2 + q − j)(q + 1 + k)− (k + 1)(q + 1)2. (3)

Similarly, interchanging the roles of j and k,

0 6 (q2 + q − k)(q + 1 + j)− (j + 1)(q + 1)2 (4)

Adding the inequalities (3) and (4) we obtain after simplification

q((j + 1) + (k + 1)) + (j + 1)(k + 1) 6 q(q2 + q + 1) (5)

Using the inequality of arithmetic and geometric means,

2q
√

(j + 1)(k + 1) + (j + 1)(k + 1) 6 q(q2 + q + 1)

Putting
√

(j + 1)(k + 1) = t yields the quadratic inequality

t2 + 2qt− q(q2 + q + 1) 6 0

The positive solution of the corresponding quadratic equation is t =
√
q(q − √q + 1).

Hence α(Π) 6 q(q − √q + 1)2. So assume now α(Π) = q(q − √q + 1)2. As we used
the inequality of arithmetic and geometric means, in order to fulfill (5) we need to have
j + 1 = k + 1 =

√
q(q −√q + 1), implying, using Inequality (1), that the variance of the

xi is zero. We conclude that xi =
√
q for all i. Consequently Σ is a point set such that

each line of Π intersects Σ in either 0 or
√
q points, that is, Σ is a maximal arc of degree√

q. This proves the theorem.

3 Spectral proofs of the upper bounds in Theorems

1 and 4

A rank two geometry Π = (P,L, I) can be recast as a bipartite graph whose parts are
P and L and such that ℘ ∈ P is joined by an edge to ` ∈ L if and only if (℘, `) ∈ I.
This bipartite graph is, as mentioned earlier, called the incidence graph of Π and denoted
G(Π). In this section, we use the spectrum of the adjacency matrix of G(Π) to prove the
upper bounds on α(Π) given in Theorems 1 and 3.

3.1 Linear algebra

We briefly recall some basic linear algebra. If G is a graph then the adjacency matrix of
G is the symmetric matrix A(G) whose rows and columns are indexed by the vertices of
G and such that Auv = 1 if {u, v} is an edge of G, and Auv = 0 otherwise. We use the
convention that the eigenvalues of A, which are real, are listed in non-increasing order
of absolute value, namely λ1, λ2, λ3, . . . , λn where |λ1| > |λ2| > . . . > |λn|. We shall let
e1, e2, . . . , en be an orthonormal basis of eigenvectors corresponding to the eigenvalues
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λ1, λ2, . . . , λn. The matrix A is doubly stochastic if all its row and column sums equal
some fixed integer k. In that case, if a set V of size N indexes the rows of A, then λ1 = k.
If A is the adjacency matrix of a bipartite graph with parts U and V of sizes M and N
respectively, and every vertex in U has degree a and every vertex in V has degree b, and
1U , respectively 1V , denotes a vector which is 1 on U and zero on V , respectively 1 on V
and zero on U , then

e1 =

√
a1U +

√
b1V√

aM + bN
and e2 =

√
a1U −

√
b1V√

aM + bN
(6)

are both normalized eigenvectors of A corresponding to eigenvalues λ1 =
√
ab and λ2 =

−
√
ab. All remaining eigenvectors e3, · · · , en are orthogonal to these eigenvectors. In the

particular case that A is doubly stochastic, so every vertex of the bipartite graph has
degree k = a = b, we get λ1 = k and λ2 = −k.

3.2 Main lemma

If G is a bipartite graph with parts U = {1, 2, . . . ,M} and V = {M+1,M+2, . . . ,M+N}
and adjacency matrix A, and X and Y are subsets of U and V respectively, then e(X, Y )
denotes the number of edges of G with one end in X and the other end in Y . We observe
that

e(X, Y ) = 1tYA1X .

The main lemma we require is listed below. This appears as Theorem 3.1.1 on page 27 of
[11] (see also the paragraph on page 28 following its proof) and as Theorem 5.1 on page
602 in [12]. For completeness, we give a direct proof.

Lemma 8. If G is a bipartite graph with parts U and V such that every vertex of U
has degree a and every vertex of V has degree b, and X ⊂ U and Y ⊂ V . Let A be the
adjacency matrix of G with eigenvalues λ1, λ2, . . . such that |λ1| > |λ2| > . . . . Then∣∣∣e(X, Y )−

√
ab√
|U ||V |

|X||Y |
∣∣∣ 6 |λ3|√|X||Y |(1− |X||U | )(1− |Y ||V |).

Proof. Let |X| = m, |Y | = n, |U | = M , |V | = N , and let e1, e2, . . . , eM+N be an
orthonormal basis of eigenvectors of A corresponding to the eigenvalues λ1, λ2, . . . respec-
tively. Since A2 is doubly stochastic with row and column sums equal to ab, we must have
λ1 =

√
ab and as the spectrum of a bipartite graph is symmetric around zero λ2 = −

√
ab,

with corresponding eigenvectors given by (6). Note that the number of edges in G is
aM = bN . Let 1X =

∑
xiei and 1Y =

∑
yiei for some reals xi, yi. Since xi = 〈1X , ei〉

and similarly for every yi, we compute

x1 =
m√
2M

= x2 and y1 =
n√
2N

= −y2. (7)
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It follows using (7) and (6) that

e(X, Y ) = 1tYA1X =
M+N∑
i=1

λixiyi

= λ1x1y1 + λ2x2y2 +
M+N∑
i=3

λixiyi

=

√
abmn√
MN

+
M+N∑
i=3

λixiyi.

By Cauchy-Schwarz,

M+N∑
i=3

λixiyi 6 |λ3|

(
M+N∑
i=3

x2i

)1/2(M+N∑
i=3

y2i

)1/2

.

This gives ∣∣∣e(X, Y )−
√
ab√
MN

mn
∣∣∣ 6 |λ3|√(m− x21 − x22)(n− y21 − y22).

Using (7), the lemma follows.

This lemma is especially applicable when λ3 is small: in this case we are dealing with
a pseudorandom bipartite graph, and the quantity e(X, Y ) is close to

√
ab|X||Y |/

√
MN

for all X, Y which are not too small. For further details on pseudorandom graphs, see
Krivelevich and Sudakov [13]. We now use the lemma to prove Theorems 1 and 4. We
remark that Theorem 3 can also be proved using the lemma in exactly the same way.

3.3 Proof of the upper bound in Theorem 1

We will count the number of paths of length 3 between a point ℘ and a k-space Ω in
PG(n, q). There are two possibilities, depending on whether ℘ is incident with Ω or not.
There are two cases
• If ℘ is incident with Ω we deduce that there are (N0,k − 1)Nk−2,n−2 +

Nk−1,n−1 such paths.
• If ℘ is not incident with Ω we obtain N0,kNk−2,n−2 paths of length 3.

Let A be the adjacency matrix of the point - k-space incidence geometry of PG(n, q),
and let J be N0,n ×Nk,n matrix filled with 1s. We now obtain

A3 = N0,kNk−2,n−2

(
0 J
JT 0

)
+ (Nk−1,n−1 −Nk−2,n−2)A,

or, letting S =

(
0 J
JT 0

)
, we obtain

A3 = N0,kNk−2,n−2S + qkNk−1,n−2A.
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Clearly the only non-zero eigenvalues of S are
√
N0,nNk,n and −

√
N0,nNk,n, and these

eigenvalues correspond to the eigenvalues
√
N0,kNk−1,n−1 and −

√
N0,kNk−1,n−1 of A (this

can be checked through direct computation). Hence, the other eigenvalues λ of A satisfy

λ3 = qkNk−1,n−2λ.

So every other non-zero eigenvalue of A satisfies |λ| =
√
qkNk−1,n−2. Applying Lemma 8

we obtain, using a = Nk−1,n−1 and b = N0,k,

Nk−1,n−1N0,k

N0,nNk,n

|X| |Y | 6 qkNk−1,n−2.

Using Nk,n ∼ q(k+1)(n−k) as q →∞, we obtain the upper bound

α(Π) . q(k+2)(n−k).

This completes the proof of the upper bound in Theorem 1.

3.4 Proof of the upper bound in Theorem 4

Let Π denote a generalized n-gon (see Subsection 1.2) of order q > 2, let A denote the
adjacency matrix of the point-line incidence graph G(Π), and let B = An−1. The entry
Bij is the number of walks of length n − 1 from vertex i to vertex j in the bipartite
graph G(Π). We consider the cases n ∈ {3, 4, 6} separately to prove the upper bounds in
Theorem 4. The case of projective planes, namely n = 3, is covered by Theorem 3, so we
move on to generalized quadrangles and hexagons.

Generalized quadrangles. Consider the case of a generalized quadrangle of order
q. Here we consider the equation

A3 = B =

(
0 J
J 0

)
+ 2qA

which holds since there is a unique path of length three between a non-incident point-line
pair, and there are 2q+ 1 paths of length three between an incident point-line pair. From
the above matrix equation, every eigenvalue λ 6∈ {−(q + 1), q + 1} of A has |λ| 6

√
2q.

Apply Lemma 8,

|e(X, Y )− (q + 1)(q − 1)|X||Y |
q4 − 1

| 6
√

2q
√
|X||Y |.

For there to be no incidences between X and Y , we require

(q + 1)(q − 1)|X||Y |
q4 − 1

6
√

2q|X||Y |

and this proves the upper bound in Theorem 4 for generalized quadrangles.
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Generalized Hexagons. Finally, consider the case of a generalized hexagon of order
q. Here we consider the equation

A5 = B =

(
0 J
J 0

)
+ 4qA3 − 3q2A

which holds since there is a unique path of length five between a non-incident point-line
pair at distance 5, there are 4q + 1 paths of length five between a non-incident point-line
pair at distance 3, and there are 5q2 + 4q + 1 paths of length five between an incident
point-line pair. We obtain that every eigenvalue λ 6∈ {−(q+1), q+1} of A has |λ| 6

√
3q.

Applying Lemma 8,

|e(X, Y )− (q + 1)(q − 1)|X||Y |
q6 − 1

| 6
√

3q|X||Y |.

For there to be no incidences between X and Y , we require e(X, Y ) = 0 and therefore

(q + 1)(q − 1)|X||Y |
q6 − 1

6
√

3q|X||Y |.

This proves the upper bound in Theorem 4 for generalized hexagons.
Remark. The eigenvalues for generalized quadrangles of order q can also be found

on Table 6.4 of [3] and those for generalized hexagons in Table 1 of [8].

4 Constructions

In this section we will establish the lower bounds in Theorem 1 and Theorem 4 by pro-
viding several constructions.

4.1 Construction for point k-space incidences

We construct a set X of points and Y of k-spaces in PG(n, q), n > 2 such that X and Y
have no incidences between them and |X||Y | is within a factor four of the upper bound
in Theorem 1. Pick bq/2c hyperplanes in PG(n, q) through an (n− 2)-space. Then let Y
be the set of k-spaces contained in at least one of these hyperplanes, and let X be the set
of points not in these hyperplanes. Then

|X| = N0,n − b
q

2
c(N0,n−1 −N0,n−2) +N0,n−2 ∼

1

2
N0,n ∼

1

2
qn.

The number of k-spaces is

|Y | = bq
2
c(Nk,n−1 −Nk,n−2) +Nk,n−2 ∼

1

2
q1+(k+1)(n−k−1).

Here we used Nk,n ∼ q(k+1)(n−k) as q →∞. Therefore

|X||Y | ∼ 1

4
q1+(k+1)(n−k−1)+n =

1

4
q(k+2)(n−k).

This gives the first lower bound in Theorem 1.
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4.2 Construction for point-hyperplane incidences

Lemma 9. If in PG(n, q) there exists a point set X and a hyperplane set Y with no
incidences between them, and with |X| = |Y | = k, then there exists a point set X and a
hyperplane set Y in PG(n+ 2, q) with no incidences between them, and with

∣∣X∣∣ =
∣∣Y ∣∣ =

qk.

Proof. Let X be a set of k points and let Y be a set of k hyperplanes in Π := PG(n, q)
having no incidences between them. Embed Π as a hyperplane in Ω := PG(n+ 1, q), and
consider a point ℘ ∈ Ω \ Π. Let Y ′ be the set of all hyperplanes of Ω spanned by ℘ and
an element of Y . Now embed Ω as a hyperplane in PG(n + 2, q). Let X be the set of
all points on the cone ℘X distinct from ℘ (this is in fact a subset of Ω) . Let Y be the
set of all hyperplanes of PG(n + 2, q) intersecting Ω exactly in an element of Y ′. Then∣∣X∣∣ =

∣∣Y ∣∣ = qk, and there are no incidences between X and Y .

Corollary 10. In PG(n, q), n odd, there exists a set of q
n−1
2 b q+1

2
c points and a set of

q
n−1
2 b q+1

2
c hyperplanes having no incidences.

Proof. Consider two disjoint point sets X and Y of size b q+1
2
c in PG(1, q). Now apply

Lemma 9 (repeatedly if n > 5).

Corollary 11. In PG(n, q), n even, there exists a set of at least cq
n+1
2 points and a set of

at least cq
n+1
2 hyperplanes having no incidences. Here c = 1

2
if q is an even power of an

odd prime, c = 120
73
√
73

if q is an odd power of an odd prime, c = 1
2
√
2
if q is an odd power

of 2, and where c = 1− 1√
q

+ 1
q
if q is an even power of 2.

Proof. By Theorem 5 in Mubayi and Williford [14], there exist a set of points X of size at

least cq
3
2 , and a set of lines Y of size at least cq

3
2 in PG(2, q) with no incidences between

them. Now apply Lemma 9 (repeatedly if n > 6).

However, in certain cases we can give more direct constructions. Though the bounds
in Corollaries 12 and 14 are similar to the bound from Corollary 11, the constructions
are somewhat more straightforward since we do not need to care about the existence of a
certain polarity (the Mubayi-Williford constructions are done in the polarity graph).

Corollary 12. In PG(n, q), n even, q an even power of 2, there exists a set of q
n+1
2 −

q
n
2 + q

n−1
2 points and a set of q

n+1
2 − q n

2 + q
n−1
2 hyperplanes having no incidences.

Proof. This follows immediately from the existence of a maximal arc of degree
√
q in

PG(2, q) together with Lemma 9.

Corollary 13. In PG(n, q), n even, q an odd power of 2, there exists a set of 1√
2
q

n+1
2 −

q
n
2 + 1√

2
q

n−1
2 points and a set of 1√

2
q

n+1
2 − q n

2 + 1√
2
q

n−1
2 hyperplanes having no incidences.
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Proof. Consider a maximal arc K1 of degree
√

2q containing a maximal arc K2 of degree√
q/2 in PG(2, q) (such arcs always exist by the results of Denniston [7]). Now let X

be the point set of K2, and let Y be the set of lines exterior to K1. Then |X| = |Y | =
1√
2
q

3
2 − q +

√
q/2, and there are clearly no incidences between X and Y . The result now

follows using Lemma 9.

The lower bound on α(PG(n, q)) arising from the above corollary is a factor 4 larger
than the bound one would obtain using Corollary 11.

Corollary 14. In PG(n, q), n even, q an even power of an odd prime, there exists a set

of 1
2
(q

n+1
2 + q

n−2
2 ) points and a set of 1

2
(q

n+1
2 + q

n−2
2 ) hyperplanes having no incidences.

Proof. Consider a non-degenerate Hermitian curve in PG(2, q). Let X be half of the points
on this curve, and let Y be the tangent lines (1-secants) to the other half of the points.
Now apply Lemma 9.

In fact, the bound in the above lemma can be slightly improved by choosing the points
on the Hermitian curve more carefully. We do not pursue a detailed analysis here of
such construction, but it should be clear that any good example in PG(2, q) (respectively
PG(3, q)) will yield good examples in PG(2n, q) (respectively PG(2n + 1, q)). A more
interesting open problem here may be the question whether the example from Corollary
12 is optimal.

The results obtained in this section finally prove Theorem 1.

4.3 Construction in generalized quadrangles

If A is a set of points in a generalized polygon we write A⊥ for the set of all points
collinear with all points in A, and we write A⊥⊥ for (A⊥)⊥ (here a point is considered to
be collinear with itself). Let Q be a GQ of order q. A point ℘ of Q is called regular if and
only if

∣∣{℘, ℘′}⊥⊥∣∣ = q+ 1 for all points ℘′ 6= ℘. Let Q be a GQ of order q with a regular
point ℘, and let Π be the projective plane naturally arising from ℘ and Q (the points of
Π are ℘ and all points collinear with ℘ in Q, whereas the lines of Π are the lines of Q
through ℘, and the sets {℘, ℘′}⊥ of points collinear with both ℘ and ℘′, where ℘′ ranges
over the points not collinear with ℘). For more on generalized quadrangles and regularity
see Chapter 1 of [15].

Lemma 15. Let Q, ℘ and Π be as above, and suppose that in Π there exists a point set X,
containing ℘, and a line set Y with no incidences between them, and with |X| = |Y | = k.
Then there exists a point set X and a line set Y in Q with no incidences between them,
and with

∣∣X∣∣ = qk and
∣∣Y ∣∣ = qk + 1.

Proof. Define Y to be the set of lines of Q that contain a point of X. Then
∣∣Y ∣∣ = qk+ 1.

Define X to be the set of all points, distinct from ℘, that are collinear with all points
on some element of Y . Then, since ℘ is regular,

∣∣X∣∣ = qk. Furthermore there are no

incidences (in Q) between X and Y . The latter can easily be seen as follows. Assume,
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by way of contradiction, that ℘′ would be a point of X incident with an element of Y .
Clearly ℘′ cannot be a point of X. But then, since X and Y have no incidences, ℘′ would
be collinear with at least q + 2 points of Π, a contradiction.

Remark 16. By duality this construction also works in any generalized quadrangle of order
q that contains a regular line.

One can now for example apply this construction to the GQ W (22h).

Corollary 17. In W (q), with q = 22h, there exist a set of q5/2 − q2 + q3/2 points and a
set of q5/2 − q2 + q3/2 lines, with no incidences between them.

Proof. Fix any point ℘ in W (q). Then ℘ is regular (see e.g. 3.3.1(i) in [15]), and the
resulting plane Π is isomorphic to PG(2, q). Now use Lemma 15 starting with a maximal
arc of degree

√
q in Π.

Remark 18. In fact the result of the previous corollary remains valid in any GQ T2(O) of
Tits of order q = 2h. For a definition of and discussion on T2(O) see Chapter 3 of [15].

This concludes the proof of the lower bound in Theorem 4 for n = 4.

4.4 Construction in generalized hexagons

Here we restrict ourselves to the only known generalized hexagon of order q, the split
Cayley hexagon H(q). For more on this generalized hexagon, and some of its properties
used in the proof of Lemma 19, we refer to Section 2.4 of [18]. It is well known that H(q)
can be embedded in the 6-dimensional quadric Q(6, q), and that the points of H(q) are
all points of Q(6, q), and the lines of H(q) are certain lines of Q(6, q). The following two
properties will be important for us:

(1) The q+1 lines of H(q) through a given point ℘ are contained in a plane
of Q(6, q) (and such plane is isomorphic to PG(2, q)).

(2) Two distinct points on Q(6, q) are collinear in the quadric if and only
if they are at distance 2 or 4 in H(q) (in the incidence graph of H(q)).

Lemma 19. Let X be a point set, and let Y be a line set in PG(2, q) with no incidences
between them, and with |X| = |Y | = k. Then there exists a point set X and a line set Y
in H(q) with no incidences between them, and with

∣∣X∣∣ = q3k and
∣∣Y ∣∣ = kq3 + q2 + q+ 1.

Proof. Consider the classical generalized hexagon H(q) in its natural embedding in the
6-dimensional quadric Q(6, q). Consider any point ℘ of H(q), and let Π be the plane
containing the lines of H(q) through ℘. Let X be a set of k points containing ℘ in Π,
and let Y be a set of k lines in Π, with the property that there are no incidences (in Π)
between X and Y . Now define Y to be the set of all lines of H(q) at distance 1 or 3 from
a point of X (in the incidence graph of H(q)). Furthermore, define X to be the set of
all points not in Π contained in any plane of Q(6, q) intersecting Π exactly in an element
of Y . Then

∣∣Y ∣∣ = (k − 1)q + q + 1 + (k − 1)q3 + (q2 + q + 1 − k)q = kq3 + q2 + q + 1,
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∣∣X∣∣ = kq3, and there are no incidences between X and Y . The latter can be seen as

follows. Assume a point of X would be collinear in Q(6, q) with a point ℘′ of X. Then ℘′

would be collinear with more than q + 1 points of Π (in Q(6, q)), clearly a contradiction.
Hence, the points of X all are at distance 6 (in H(q)) from all points of X. Now, since
the lines of Y are exactly the lines at distance 1 and 3 (in H(q)) from the points of X,
these lines contain only points at distance 2 and 4 (in H(q)) from the points of X. It
follows there are no incidences between X and Y .

Corollary 20. Let c = 120
73
√
73
. Then in H(q) there exist a set of at least cq9/2 points and

a set of at least cq9/2 lines, with no incidences between them.

Proof. Apply Lemma 19 starting with a set X of cq3/2 points and a set Y of cq3/2 lines in
Π, with no incidences between X and Y . Such sets always exist by the results of Theorem
5 in Mubayi and Williford [14].

Corollary 21. In H(q), q = 22h, there exist a set of q9/2 − q4 + q7/2 points and a set of
q9/2 − q4 + q7/2 lines, with no incidences between them.

Proof. Apply Lemma 19 starting with a maximal arc of degree
√
q in Π.

This concludes the proof of the lower bound in Theorem 4 for n = 6.

5 Proof of the upper bound in Theorem 6

A key lemma for Theorem 6 is the following: this lemma shows that most points in a
partial linear space Π = (P,L, I) with |P | = |L| = N are contained in at most about

√
N

lines, and most lines contain at most about
√
N points.

Claim 22. Let ε > 0 and let Π = (P,L, I) be a partial linear space such that |P | = |L| =
N . Then the number of lines containing at least (1 + ε)

√
N points is less than

√
N/ε.

Proof. Let T be the set of lines each containing at least (1 + ε)
√
N points and suppose

|T | = c
√
N – the proof will be similar if T is the set of points contained in at least

(1 + ε)
√
N lines. The number of incidences (℘, `) ∈ I with ` ∈ T is at least (1 + ε)cN .

This shows that a point ℘ ∈ P is contained on average in at least (1 + ε)c lines in T .
Let T (℘) denote the number of ordered pairs of lines in T both containing ℘. Then since
every pair of lines in T determines at most 1 point,∑

℘∈P

T (℘) 6 |T |(|T | − 1) < c2N.

On the other hand, using the average,∑
℘∈P

T (℘) > (1 + ε)cN((1 + ε)c− 1).

It follows that
(2 + ε)εc < 1 + ε

from which c < 1/ε, and the result follows.
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5.1 Random sets of points and lines

Let A1, A2, . . . be a sequence of events in a probability space. Throughout the proof, we
write AN a.a.s (asymptotically almost surely) to denote P(AN)→ 1 as N →∞. Starting
with a partial linear space Π′N with N points and N lines, use Claim 1 to delete points
and lines of Π′N to obtain a partial linear space ΠN = (P,L, I) with |P |, |L| > N −

√
N/ε

such that every point in ΠN is in at most (1 + ε)
√
N lines of ΠN , and every line of ΠN

contains at most (1 + ε)
√
N points of ΠN . Here ε > 0 is a fixed positive constant.

Now pick points of P with probability p = 1/
√
N and let X ⊆ P be the random set

of picked points and let Y = {` ∈ L : X ∩ ` = ∅}. We will show |X||Y | & N3/2/e1+ε a.a.s,
and since ε > 0 is arbitrary, this shows |X||Y | & N3/2/e. First, the expected size of X is

E(|X|) = p|P | >
√
N − 1

ε
.

Now |X| has a binomial distribution with success probability p = 1/
√
N in N trials. By

the Chernoff Bound [4], for any δ ∈ (0, 1), and ε > 2/
√
N ,

P(|X| 6 (1− δ)E(|X|)) 6 e−δ
2E(|X|)/4 < e−δ

2
√
N/8.

We conclude that |X| &
√
N a.a.s.

Now we consider |Y |. For each ` ∈ L, let A` be the event X ∩ ` = ∅; then |Y | is the
number of events A` which occur. As N →∞,

P(A`) = (1− p)|`| >
(

1− 1√
N

)(1+ε)√N
→ e−(1+ε).

Hence E(|Y |) & N/e1+ε. We now estimate var(|Y |). Note that |` ∩ `′| 6 1 for every pair
of distinct lines `, `′ ∈ L, so

P(A` ∩ A`′) 6
1

1− p
P(A`)P(A`′).

It follows that

var(|Y |) 6
( 1

1− p
− 1
)
E(|Y |)2.

By Chebyshev’s Inequality, since 1/(1− p)− 1→ 0 as N →∞,

|Y | & N

e1+ε
a.a.s.

It follows that |X| &
√
N and |Y | & N/e1+ε a.a.s. This proves Theorem 6.
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