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Abstract

It is shown that distance powers of an integral Cayley graph over an abelian
group Γ are again integral Cayley graphs over Γ. Moreover, it is proved that distance
matrices of integral Cayley graphs over abelian groups have integral spectrum.

1 Introduction

Eigenvalues of an undirected graph G are the eigenvalues of an arbitrary adjacency matrix
ofG. General facts about graph spectra can e.g. be found in [7] or [8]. Harary and Schwenk
[10] defined G to be integral if all of its eigenvalues are integers. For a survey of integral
graphs see [4]. In [2] the number of integral graphs on n vertices is estimated. Known
characterizations of integral graphs are restricted to certain graph classes, see e.g. [1],
[13], or [15]. Here we concentrate on integral Cayley graphs over abelian groups and their
distance powers.

Let Γ be a finite, additive group, S ⊆ Γ, − S = {−s : s ∈ S} = S. The undirected
Cayley graph over Γ with shift set (or symbol) S, Cay(Γ, S), has vertex set Γ. Vertices
a, b ∈ Γ are adjacent if and only if a − b ∈ S. For general properties of Cayley graphs
we refer to Godsil and Royle [9] or Biggs [5]. Note that 0 ∈ S generates a loop at every
vertex of Cay(Γ, S). Many definitions of Cayley graphs exclude this case, but its inclusion
saves us from sacrificing clarity of presentation later on.

In our paper [12] we proved for an abelian group Γ that Cay(Γ, S) is integral if S
belongs to the Boolean algebra B(Γ) generated by the subgroups of Γ. Our conjecture
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that the converse is true for all integral Cayley graphs over abelian groups has recently
been proved by Alperin and Peterson [3].

Proposition 1. Let Γ be a finite abelian group, S ⊆ Γ, − S = S. Then G = Cay(Γ, S)
is integral if and only if S ∈ B(Γ).

Let G = (V,E) be an undirected graph with vertex set V and edge set E, D a finite
set of nonnegative integers. The distance power GD of G is an undirected graph with
vertex set V . Vertices x and y are adjacent in GD, if their distance d(x, y) in G belongs
to D. We prove that if G is an integral Cayley graph over the abelian group Γ, then
every distance power GD is also an integral Cayley graph over Γ. Moreover, we show that
in a very general sense distance matrices of integral Cayley graphs over abelian groups
have integral spectrum. This extends an analogous result of Ilić [11] for integral circulant
graphs, which are the integral Cayley graphs over cyclic groups. Finally, we show that
the class of gcd-graphs, another subclass of integral Cayley graphs over abelian groups
(see [13]), is also closed under distance power operations.

2 The Boolean Algebra B(Γ)

Let Γ be an arbitrary finite, additive group. We collect facts about the Boolean algebra
B(Γ) generated by the subgroups of Γ.

2.1 Atoms of B(Γ)

Let us determine the minimal elements of B(Γ). To this end, we consider elements of Γ
to be equivalent, if they generate the same cyclic subgroup. The equivalence classes of
this relation partition Γ into nonempty disjoint subsets. We shall call these sets atoms.
The atom represented by a ∈ Γ, Atom(a), consists of the generating elements of the cyclic
group 〈a〉.

Atom(a) = {b ∈ Γ : 〈a〉 = 〈b〉}
= {ka : k ∈ Z, 1 6 k 6 ordΓ(a), gcd(k, ordΓ(a)) = 1}.

Here, Z stands for the set of all integers. For a positive integer k and a ∈ Γ we denote as
usual by ka the k-fold sum of terms a, (−k)a = −(ka), 0a = 0. By ordΓ(a) we mean the
order of a in Γ.

Each set Atom(a) can be obtained by removing from 〈a〉 all elements of its proper
subgroups. We bear in mind that every set S ∈ B(Γ) can be derived from the cyclic
subgroups of Γ by means of repeated union, intersection and complement (with respect
to Γ). Thus we easily arrive at the following proposition [3].

Proposition 2. For an arbitrary finite group Γ the following statements are true:

1. Atom(a) ∈ B(Γ) for every a ∈ Γ.
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2. For no a ∈ Γ there exists a nonempty proper subset of Atom(a) that belongs to B(Γ).

3. Every nonempty set S ∈ B(Γ) is the union of some sets Atom(a), a ∈ Γ.

2.2 Sums of Sets in B(Γ)

In this subsection Γ denotes a finite, additive, abelian group. We define the sum of
nonempty subsets S, T of Γ:

S + T = {s+ t : s ∈ S, t ∈ T}.

We are going to show that the sum of sets in B(Γ) is again a set in B(Γ).

Lemma 1. If Γ is a finite abelian group and a, b ∈ Γ then

Atom(a) + Atom(b) ∈ B(Γ).

Proof. We know that Γ can be represented (see Cohn [6]) as a direct sum of cyclic groups
of prime power order. This can be grouped as

Γ = Γ1 ⊕ Γ2 ⊕ · · · ⊕ Γr,

where Γi is a direct sum of cyclic groups, the order of which is a power of a prime pi,
|Γi| = pαi

i , αi > 1 for i = 1, . . . , r and pi 6= pj for i 6= j. Hence we can write each element
x ∈ Γ as an r-tuple (xi) with xi ∈ Γi for i = 1, . . . , r.

The order of xi ∈ Γi, ordΓi
(xi), is a divisor of pαi

i . Therefore, integer factors in the
i-th coordinate of x may be reduced modulo pαi

i . The order of x ∈ Γ, ordΓ(x), is the least
common multiple of the orders of its coordinates:

ordΓ(x) = lcm(ordΓ1(x1), . . . , ordΓr(xr)). (1)

This implies that all prime divisors of ordΓ(x) belong to {p1, . . . , pr}.
Let a = (ai), b = (bi) be elements of Γ. The statement of the lemma becomes

trivial for a = 0 or b = 0. So we may assume a 6= 0 and b 6= 0. An arbitrary element
w ∈ Atom(a) + Atom(b) has the following form:

w = λa+ µb,

1 6 λ 6 ordΓ(a), gcd(λ, ordΓ(a)) = 1,

1 6 µ 6 ordΓ(b), gcd(µ, ordΓ(b)) = 1.

(2)

We have to show Atom(w) ⊆ Atom(a) + Atom(b). To this end, we choose the integer ν
with 1 6 ν 6 ordΓ(w), gcd(ν, ordΓ(w)) = 1, and show νw ∈ Atom(a) + Atom(b).

Case 1. (p1p2 · · · pr) | ordΓ(w).
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By gcd(ν, ordΓ(w)) = 1 we know that ν has no prime divisor in {p1, . . . , pr}. On the
other hand all prime divisors of ordΓ(a) and of ordΓ(b) are in {p1, . . . , pr}. This implies
gcd(ν, ordΓ(a)) = 1 and gcd(ν, ordΓ(b)) = 1. Setting λ′ = νλ and µ′ = νµ we achieve

gcd(λ′, ordΓ(a)) = 1, λ′a ∈ Atom(a),

gcd(µ′, ordΓ(b)) = 1, µ′b ∈ Atom(b).

Now we have by (2):

νw = νλa+ νµb = λ′a+ µ′b ∈ Atom(a) + Atom(b).

Case 2. (p1p2 · · · pr) 6 | ordΓ(w).

Trivially, for w = 0 ∈ Atom(a)+Atom(b) we have νw ∈ Atom(a)+Atom(b). Therefore,
we may assume w 6= 0. Without loss of generality let

(p1 · · · pk) | ordΓ(w), gcd(ordΓ(w), pk+1 · · · pr) = 1, 1 6 k < r. (3)

Now (1) and (3) imply

w = λa+ µb = (λa1 + µb1, . . . , λak + µbk, 0, . . . , 0),

λai + µbi 6= 0 for i = 1, . . . , k.
(4)

By gcd(ν, ordΓ(w)) = 1 we know gcd(ν, p1 · · · pk) = 1. If even more gcd(ν, p1 · · · pr) = 1
then we deduce νw ∈ Atom(a) + Atom(b) as in Case 1. So we may assume that ν has at
least one prime divisor in {pk+1, . . . , pr}. Without loss of generality let

gcd(ν, p1 · · · pl) = 1, (pl+1 · · · pr) | ν, k 6 l < r.

We define
ν ′ = ν + pα1

1 · · · p
αl
l . (5)

If we observe that integer factors in the i-th coordinate of w can be reduced modulo
pαi
i , then we see by (4): ν ′w = νw. Moreover, (5) and the properties of ν imply

gcd(ν ′, p1 · · · pr) = 1. As in Case 1 we now conclude νw = ν ′w ∈ Atom(a) +
Atom(b).

Corollary 1. If Γ is a finite abelian group with nonempty subsets S, T ∈ B(Γ) then
S + T ∈ B(Γ).

Proof. According to Proposition 2 the sets S and T are unions of atoms of B(Γ).

S =
k⋃
i=1

Atom(ai), T =
l⋃

j=1

Atom(bj).

Then we have
S + T =

⋃
16i6k,16j6l

(Atom(ai) + Atom(bj)). (6)

According to Lemma 1 the sum Atom(ai) + Atom(bj) is an element of B(Γ). Therefore,
(6) implies S + T ∈ B(Γ).
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3 Distance Powers and Distance Matrices

We repeat the definition of the distance power GD of an undirected graph G = (V,E)
from the Introduction. Let D be a set of nonnegative integers. The distance power GD

has vertex set V . Vertices x, y are adjacent in GD, if their distance in G is d(x, y) ∈ D.
If G is not connected, it makes sense to allow ∞ ∈ D. Clearly, G∅ is the graph without
edges on V . The edge set of G{0} consists of a single loop at every vertex of G. If G has
no loops then G{1} = G.

Theorem 1. If G = Cay(Γ, S) is an integral Cayley graph over the finite abelian group Γ
and if D is a set of nonnegative integers (possibly including ∞), then the distance power
GD is also an integral Cayley graph over Γ.

Proof. If D = ∅ then GD = Cay(Γ, ∅) is an integral Cayley graph over Γ. We now consider
the case, where D has only one element,

D = {d}, d ∈ {0, 1, . . . ,∞}.

In several steps we define S(d) ∈ B(Γ) such that G{d} = Cay(Γ, S(d)) is an integral Cayley
graph over Γ. If d is a distance not attained in G, then the assertion is confirmed by
G{d} = Cay(Γ, S(d)) with S(d) = ∅. If d = 0 then we achieve our goal by S(0) = {0}.
Suppose now that d =∞ and G is disconnected. If U = 〈S〉 is the subgroup generated by
S in Γ, then G consists of disjoint subgraphs on the cosets of U , all of them isomorphic
to Cay(U, S). Vertices x, y in G{∞} are adjacent if and only if they belong to different
cosets of U , and this is true if and only if x− y 6∈ U . Therefore, we have

G{∞} = Cay(Γ, S(∞)) with S(∞) = U = Γ\U ∈ B(Γ).

Assume now that d > 1 is a finite distance attained between vertices x, y in G. The
sequence of vertices in a shortest path P between x and y in G = Cay(Γ, S) has the form

x, x+ s1, x+ s1 + s2, . . . , x+ s1 + . . .+ sd = y, si ∈ S for 1 6 i 6 d.

This implies y − x = s1 + . . . + sd ∈ dS, where dS denotes the d-fold sum of the set S.
To guarantee that there is no shorter path from x to y than P we remove from dS all
multiples kS for 0 6 k < d, 0S = {0}. Setting

S(d) = dS \
⋃

06k<d

kS (7)

we achieve G{d} = Cay(Γ, S(d)). If G = Cay(Γ, S) is integral, then we have S ∈ B(Γ) by
Proposition 1, kS ∈ B(Γ) for every k > 2 by Corollary 1, and trivially 0S = {0} ∈ B(Γ).
By (7) this implies S(d) ∈ B(Γ), so G{d} is an integral Cayley graph over Γ.

To complete our proof, let

D = {d1, . . . , dr} ⊆ {0, 1, . . . ,∞} and S(D) =
r⋃
i=1

S(di).

Then we have S(D) ∈ B(Γ) and GD = Cay(Γ, S(D)) is an integral Cayley graph over Γ by
Proposition 1.
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Let Γ be a finite additive group. A character ψ of Γ is a homomorphism from Γ
into the multiplicative group of complex numbers. An abelian group Γ with n elements
has exactly n distinct characters, which represent an orthogonal basis of Cn consisting of
eigenvectors for every Cayley graph over Γ. More precisely, we have (see e. g. [12] or [14])

Proposition 3. Let ψ1, . . . , ψn be the distinct characters of the additive abelian group
Γ = {v1, . . . , vn}, S ⊆ Γ, − S = S. Assume that A = (ai,j) is the adjacency matrix
of G = Cay(Γ, S) with respect to the given ordering of the vertex set V (G) = Γ. Then
the vectors (ψi(vj))j=1,...,n, 1 6 i 6 n, constitute an orthogonal basis of Cn consisting
of eigenvectors of A. To the eigenvector (ψi(vj))j=1,...,n belongs the eigenvalue ψi(S) =∑

s∈S ψi(s).

Now we define a generalized distance matrix DM(k,G) of a given undirected graph G
with vertex set {v1, . . . , vn} as follows. Let d0 = 0 < d1 < . . . < dr be the sequence of
possible distances between vertices in G, possibly dr =∞. If k = (k0, . . . , kr) is a vector

with integral entries, then we define the entries of DM(k,G) = (d
(k)
i,j ) for i, j ∈ {1, . . . , n}

by
d

(k)
i,j = kt , if d(vi, vj) = dt.

The ordinary distance matrix DM(G) for a connected graph G is established for k =
(0, 1, ..., r), where r is the diameter of G.

Let Γ = {v1, . . . , vn} be an abelian group and consider some integral Cayley graph
G = Cay(Γ, S). Any generalized distance matrix DM(k,G) is an integer weighted sum of
the adjacency matrices of the graphs G{d} with d ∈ {d0, d1, . . . , dr}, assuming v1, . . . , vn
as their common vertex order. To make it more precise, for j = 0, . . . , r we denote by
A(j) the adjacency matrix of the distance power G{dj}, A(0) = In is the n×n unit matrix.
Then we have

DM(k,G) = k0A
(0) + k1A

(1) + . . .+ krA
(r).

By Theorem 1, all matrices A(j), 0 6 j 6 r, are adjacency matrices of integral Cayley
graphs over Γ. According to Proposition 3, all Cayley graphs over Γ have a universal
common basis of complex eigenvectors. As a result, integrality extends to DM(k,G).
This proves the following theorem.

Theorem 2. Let G = Cay(Γ, S) be an integral Cayley graph over the abelian group Γ,
|Γ| = n. Then every distance matrix DM(k,G) as defined above has integral spectrum.
Moreover, the characters ψ1, . . . , ψn of Γ represent an orthogonal basis of Cn consisting
of eigenvectors of DM(k,G).

As we have seen in Theorem 1, the class of integral Cayley graphs over an abelian group
is closed under distance power operations. We shall conclude this section by presenting a
subclass which has the same closure property.

We introduce the class of gcd-graphs as in [13]. To this end, let the finite abelian group
Γ be represented as the direct product of cyclic groups, Γ = Zm1 ⊕ . . .⊕ Zmr , mi > 1 for
i = 1, . . . , r. Hence the elements x ∈ Γ take the form of r-tuples.

x = (xi) = (x1, . . . , xr), xi ∈ Zmi
= {0, 1, . . . ,mi − 1}, 1 6 i 6 r.
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Addition is coordinatewise modulo mi. For x = (x1, . . . , xr) ∈ Γ and m = (m1, . . . ,mr)
we define

gcd(x,m) = (gcd(x1,m1), . . . , gcd(xr,mr)).

Here we agree upon gcd(0,mi) = mi. For a divisor tuple d = (d1, . . . , dr) of m, d | m, we
require di > 1 and di | mi for every i = 1, . . . , r. Every divisor tuple d of m defines an
elementary gcd-set given by

SΓ(d) = {x ∈ Γ : gcd(x,m) = d}.

Clearly, the sets SΓ(d) with d | m form a partition of the elements of Γ. We denote
by EΓ(x) the unique elementary gcd-set that contains x, i.e. EΓ(x) = SΓ(d) with d =
gcd(x,m). A gcd-set is a union of elementary gcd-sets. By construction, the elementary
gcd-sets are the atoms of the Boolean algebra Bgcd(Γ) consisting of all gcd-sets of Γ.
According to Theorem 1 in [13], Bgcd(Γ) is a Boolean sub-algebra of B(Γ). Hence by
Proposition 1, all gcd-graphs Cay(Γ, S), S ∈ Bgcd(Γ), are integral.

Lemma 2. If Γ = Zm1 ⊕ . . .⊕ Zmr and x = (x1, . . . , xr) ∈ Γ then

EΓ(x) = EZm1
(x1)× . . .× EZmr

(xr).

Proof. Let m = (m1, . . . ,mr) and d = (d1, . . . , dr) = gcd(x,m). Then we have y =
(y1, . . . , yr) ∈ EΓ(x) if and only if gcd(yi,mi) = di for i = 1, . . . , r. This is equivalent to
y ∈ SZm1

(d1)× . . .× SZmr
(dr), which is the same as y ∈ EZm1

(x1)× . . .× EZmr
(xr).

Lemma 3. For every finite abelian group Γ, any sum of its gcd-sets is again a gcd-set.

Proof. As in the proof of Corollary 1 it suffices to show that any sum of elementary gcd-
sets is a gcd-set. If Γ is cyclic, then Bgcd(Γ) = B(Γ) (see Theorem 3 in [13]) and the result
follows from Lemma 1.

Now let Γ = Zm1 ⊕ . . .⊕Zmr , m = (m1, . . . ,mr), r > 2. Further let x = (x1, . . . , xr) ∈
Γ, gcd(x,m) = d = (d1, . . . , dr) and let y = (y1, . . . , yr) ∈ Γ, gcd(y,m) = δ = (δ1, . . . , δr).
By Lemma 2 we have

EΓ(x) + EΓ(y) = (EZm1
(x1) + EZm1

(y1))× . . .× (EZmr
(xr) + EZmr

(yr)).

Since the cyclic case is already solved, it follows that EZmi
(xi) + EZmi

(yi) is a gcd-set of
Zmi

for i = 1, . . . , r. Hence EZmi
(xi) +EZmi

(yi) is a disjoint union of elementary gcd-sets

EZmi
(z

(i)
1 ), . . . , EZmi

(z
(i)
%i ), with z

(i)
j ∈ Zmi

for j = 1, . . . , %i. It follows that

EΓ(x) + EΓ(y) =
⋃

16jk6%k, k=1,...,r

(
EZm1

(z
(1)
j1

)× . . .× EZmr
(z

(r)
jr

)
)
.

Writing z(j1,...,jr) = (z
(1)
j1
, . . . , z

(r)
jr

), we get by Lemma 2

EΓ(x) + EΓ(y) =
⋃

16jk6%k, k=1,...,r

EΓ(z(j1,...,jr)) ∈ Bgcd(Γ).
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The following theorem is readily deduced from Lemma 3 applying the same reasoning
as in the proof of Theorem 1.

Theorem 3. If G = Cay(Γ, S) is a gcd-graph over Γ = Zm1 ⊕ . . . ⊕ Zmr and if D is a
set of nonnegative integers (possibly including ∞), then the distance power GD is also a
gcd-graph over Γ.
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