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Abstract

Generate a bipartite graph on a partitioned set of vertices by randomly assigning
to each vertex v some weight w(v) ∈ [0, 1] and adding an edge between vertices u
and v (in distinct parts) if and only if w(u)+w(v) > 1; the results of such processes
are known as difference graphs.

Random difference graphs of a given size can be produced either by uniformly
random generation of weights or by choosing a graph uniformly at random from
the set of all such graphs. We prove that these two methods give rise to the same
distribution, and use this equivalence to find exact results for the likelihood of
connectivity and Hamiltonicity. We also find the distribution of other properties,
such as matching number and degeneracy.

1 Introduction

We say that a bipartite graph is a difference graph if we can assign weights to the vertices
such that two vertices in distinct parts are adjacent if and only if the sum of their weights
exceeds some fixed threshold value. Without loss of generality, we can restrict these
weights to the interval [0, 1] and set the threshold to 1.

To generate a random difference graph of a particular size, there are two natural
options. The simplest is to choose a difference graph uniformly at random from the set
of all difference graphs with the appropriate number of vertices. The alternative is to
determine the vertex weights according to some distribution, and let the weights generate
the difference graph. We shall show that, for certain weight distributions, both of these
methods are equivalent, and then use this equivalence to determine the distribution of
such properties as connectivity, matching number, and the length of the longest cycle.

Difference graphs were formally defined by Hammer, Peled, and Sun [5] in 1990, al-
though they had been independently explored prior to that point [3], a result of the
multiple equivalent characterizations for this class of graphs [6]. They are closely related
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to threshold graphs, which can be viewed as difference graphs without the bipartitioning;
this similarity enables us to adapt the techniques used in the study of random threshold
graphs, notably those of Reilly and Scheinerman [7]. Here, we focus on difference graphs
with a specified bipartition, also known as bipartite threshold graphs (Diaconis, Holmes,
Janson [4]).

2 Fundamentals

Before showing the equivalence of models, we introduce some essential information and
known results about difference graphs.

Definition 1. A bipartite graph G with vertex parts Z and U is a difference graph if and
only if there exists a function w : V (G)→ [0, 1] such that for all x ∈ Z and y ∈ U ,

{x, y} ∈ E(G) ⇐⇒ w(x) + w(y) > 1

An equivalent formulation assigns negative weights to vertices in one of the parts, in
which case adjacency depends upon the difference of the weights, motivating the name.
The choice to label the parts Z and U - for “zero” and “one”, respectively - will shortly
become more clear. As a consequence of this definition, all difference graphs exhibit
certain structural similarities:

Proposition 2. Let G be a difference graph on at least one vertex, with vertex sets Z and
U . Then exactly one of the following must be true: either U has a vertex that dominates
all of Z, or Z has an isolated vertex.

Proof. We can assume that Z is non-empty, as otherwise U has a vertex which (trivially)
dominates all of Z. Similarly, if U is empty, then all vertices of Z are isolated.

Suppose that |Z|, |U | > 1. Let zmin be a vertex of Z such that for all z ∈ Z,
w(zmin) 6 w(z), and let umax be a vertex of U such that for all u ∈ U , w(u) 6 w(umax).
We consider two disjoint cases:

If w(zmin)+w(umax) > 1, then there exists an edge between zmin and umax. Moreover,
for any z ∈ Z, we have

w(umax) + w(z) > w(umax) + w(zmin) > 1

Therefore, umax dominates every vertex of Z.
On the other hand, if w(zmin)+w(umax) 6 1, then there does not exist an edge between

zmin and umax. So for any u ∈ U ,

w(u) + w(zmin) 6 w(umax) + w(zmin) 6 1

Therefore, zmin is an isolated vertex of Z.
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This property, coupled with the fact that any induced subgraph of a difference graph is
another difference graph, allows us to encode such graphs as binary strings. These strings,
known as creation sequences, completely describe the structure of a difference graph, and
allow a convenient way to reference particular graphs.

Specifically, for a difference graphG on n vertices, the corresponding creation sequence,
denoted seq(G), is a binary string of length n that is constructed from right to left as
follows: from Proposition 2, there exists some vertex v of G such that v is either an isolated
vertex of Z or a vertex of U that dominates all of Z. We remove this vertex, and add
a single corresponding digit to our sequence: in the former case, the digit corresponding
to v is 0, whereas in the latter case it is 1. We then remove v from G and repeat this
process, continuing until all n vertices have been removed.

More formally, we can recursively construct seq(G) by defining the creation sequence
of the empty graph as the empty sequence. Then taking vertex v to be the vertex of G
necessitated by Proposition 2,

seq(G) = seq(G \ {v}) d, where d =

{
0 if v ∈ Z
1 if v ∈ U ,

and seq(G \ {v}) d represents the appending of digit d to the creation sequence of the
subgraph induced by the removal of vertex v.

To recreate the graph, we read the sequence from left to right. Every time we encounter
a zero, we add a vertex to Z. On the other hand, every time we encounter a one, we add
a vertex to U as well as edges from that new vertex to all existing vertices of Z. In this
fashion we reverse the process, at each step adding either an isolated vertex of Z or a
vertex of U that dominates all of Z.

There are several immediate consequences of this construction. First, if G is a differ-
ence graph with vertex parts Z and U , then seq(G) has exactly |Z| zeroes and |U | ones.
Furthermore, two vertices zi and uj are adjacent in G if and only if the digit corresponding
to zi lies to the left of uj’s in seq(G).

To prove that this process forms a bijection, it remains to show surjectivity. But it is
actually simpler to prove a slight strengthening:

Proposition 3. Let S be a binary sequence of length k. Then there exists a difference
graph G such that seq(G) = S and for all v ∈ G,

2−k 6 w(v) 6 1− 2−k

Proof. If S is the empty sequence of length zero, then we let G be the empty graph on
zero vertices. We then proceed by induction, supposing that S has length k > 1. Let S ′

be the sequence consisting of the first k − 1 digits of S, and d the final digit, such that
S = S ′d. By induction, there exists some graph G′, with vertex parts Z ′ and U ′, such
that seq(G′) = S ′.

If d = 0, then let Z be formed by adding a new vertex to Z ′ of weight 2−k. By
induction, all vertices of G′ have weight at most 1− 2−k+1, so no edges are formed by this
addition. Thus, the difference graph G with parts Z and U ′ has creation sequence S.
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If d = 1, then let U be formed by adding a new vertex to U ′ of weight 1 − 2−k. By
induction, all vertices of Z ′ have weight at least 2−k+1, so all of them are adjacent to this
new addition. Thus, the difference graph G with parts Z ′ and U has creation sequence
S.

(Please note that the above process will produce a difference graph where each of the
vertices has a distinct weight, and furthermore no pair of vertices has weights that add
to exactly 1.)

Thus, we have a bijection between the set of k-long binary sequences and the set of

difference graphs on k vertices. In particular, this shows that there are exactly

(
n0 + n1

n0

)
difference graphs with part sizes |Z| = n0 and |U | = n1.

3 Comparison of Models

The previous section suggests two models for the random generation of difference graphs
with fixed part sizes n0 and n1:

First, the continuous model, or weighting model, starts with an empty bipartite graph,
whose parts we shall denote as Z = {z1, . . . , zn0} and U = {u1, . . . , un1}, and a random
weighting vector ~w, where

~w = 〈X1, . . . , Xn0 , Y1, . . . , Yn1〉,

each random variable Xi and Yj being independent and identically uniform on [0, 1].
We add an edge {zi, uj} if and only if Xi + Yj > 1. We then let G(~w) denote the
unlabeled random graph resulting from this process. (Equivalently, we can view G(~w) as
the isomorphism class of the graph on vertex set Z ∪ U .) Thus, for any difference graph
G of appropriate size, the probability of generating G under this model is the measure of
the set {~w ∈ [0, 1]n0+n1 : G(~w) = G}.

Second, the discrete model, or creation sequence model, begins by selecting some
sequence Cn0,n1 uniformly at random from Cn0,n1 , the set of all binary sequences with
exactly n0 zeroes and n1 ones. We start with an empty bipartite graph, with neither
vertices nor edges, but with the parts denoted U and Z. We then begin reading Cn0,n1

from left to right. Every time we encounter a zero, we add an isolated vertex to part Z.
Every time we encounter a one, we add a vertex to part U and edges from that vertex to
every vertex in Z. Let G(Cn0,n1) denote the unique graph resulting from this process. So
for any difference graph G, the probability of generating G under this model is exactly(
n0 + n1

n0

)−1
.

We shall show that these two methods are equivalent. That is, for a given difference
graph G, the probability of a randomly-chosen weighting vector generating G is equal to
the probability of a randomly-chosen creation sequence generating G. To do this, we have
to examine those ~w such that G(~w) = G.
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3.1 Defining the Regions

Let ~w denote the weighting vector used in the first model:

~w = 〈x1, . . . , xn0 , y1, . . . , yn1〉 ∈ [0, 1]n0+n1

We then divide the space of possible vectors with the following hyperplanes:

• ∀i, j ∈ [n0] with i < j, αi,j = {~v ∈ Rn0+n1 : xi = xj}

• ∀i, j ∈ [n1] with i < j, βi,j = {~v ∈ Rn0+n1 : yi = yj}

• ∀i ∈ [n0],∀j ∈ [n1], γi,j = {~v ∈ Rn0+n1 : xi + yj = 1}

Let Pn0,n1 denote the space (0, 1)n0+n1 without the above hyperplanes, and be called the
space of proper representations. Then for all ~w ∈ Pn0,n1 , the first n0 coordinates are all
distinct, as are the last n1. As only a set of measure zero was removed, it suffices, for
probabilistic purposes, to consider Pn0,n1 instead of [0, 1]n0+n1 . Let R denote the set of
connected regions of Pn0,n1 .

We now show that for any given region R, all of the weight vectors within give rise to
the same difference graph.

Proposition 4. For any R ∈ R and any ~w, ~w′ ∈ R, G(~w) = G(~w′).

Proof. As both ~w and ~w′ are on the same side of all hyperplanes of the form γ, we see
that xi + yj > 1 if and only if x′i + y′j > 1. As such, there is an edge between the vertices
corresponding to weights xi and yj exactly when there exists an edge between the vertices
corresponding to x′i and y′j. So the two graphs lie in the same isomorphism class, under
the function that maps the vertex corresponding to xi to the vertex corresponding to x′i.
Therefore G(~w) = G(~w′).

Thus, for any Cn0,n1 , the set of ~w ∈ Pn0,n1 such that G(Cn0,n1) = G(~w) is a union of
connected regions of Pn0,n1 , and therefore a subset of R.

3.2 Counting the Regions

To count the regions, we establish a bijection between R and Sn0 × Sn1 × Cn0,n1 , where
Sk is the set of all permutations on [k] = {1, . . . , k}.

Let R be an element of R, and let ~w be an element of R. Let σR be the permutation
of [n0] such that

xσR(1) < xσR(2) < · · · < xσR(n0)

That is, σR is the permutation that sorts the first n0 coordinates of ~w into increasing order.
Note that the α-hyperplanes cause this permutation to be well-defined and constant over
R. Similarly, let τR ∈ Sn1 be the permutation that increasingly sorts the last n1 elements
of ~w, such that

yτR(1) < yτR(2) < · · · < yτR(n1)
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Finally, let seq(R) ∈ Cn0,n1 be the creation sequence such that G(seq(R)) = G(~w). By
Proposition 4, above, this sequence is uniquely defined and independent of the choice of
~w ∈ R.

Thus, we can define a mapping

f : R → Sn0 × Sn1 × Cn0,n1 by f : R 7→ (σR, τR, seq(R)).

Proposition 5. The mapping f is a bijection.

Proof. To see that f is injective, take R,R′ ∈ R such that R 6= R′. Then there must exist
some hyperplane φ, where φ is of the form αi,j, βi,j, or γi,j, such that R and R′ are on
opposite sides of φ.

If φ = αi,j, for appropriate choice of i and j, then R and R′ have a different ordering
of the first n0 coordinates of their elements. In particular, either xi > xj for all ~w ∈ R
and x′i < x′j for all ~w′ ∈ R′, or vice-versa. Thus, σR and σR′ are different permutations,
and f(R) and f(R′) differ in the first coordinate.

Similarly, if φ is of the form βi,j, then f(R) and f(R′) differ in the second coordinate,
as τR 6= τR′ . Finally, if φ is of the form γi,j and there exist no separating planes of the
form α or β, then elements of R and elements of R′ give rise to different graphs, and thus
f(R) and f(R′) differ in the third coordinate.

To show that f is surjective, we take an arbitrary (σ, τ, Cn0,n1) ∈ Sn0 × Sn1 × Cn0,n1 .
Since G(Cn0,n1) is a difference graph, there must exist some weight vector ~w such that
G(~w) = G(Cn0,n1) by Proposition 3. (The methods in that proof construct a weight vector
that does not intersect any of the hyperplanes, and is therefore in Pn0,n1 .)

Now let us define σw ∈ Sn0 and τw ∈ Sn1 to be the permutations that sort the first n0

and last n1 coordinates of ~w, respectively. That is,

xσw(1) < · · · < xσw(n0) and yτw(1) < · · · < yτw(n1)

Using ~w, as well as all four permutations, we define a final weight vector ~w2 by per-
muting the coordinates of ~w. Specifically,

~w2 = 〈xσ−1(σw(1)), . . . , xσ−1(σw(n0)), yτ−1(τw(1)), . . . , yτ−1(τw(n1))〉 ∈ Pn0,n1

Let R be the element of R that contains ~w2. Then, since the permutations σ and τ
sort the coordinates of ~w2, they must be the first and second coordinates of f(R). And
since the resulting sorted vector produces a difference graph whose creation sequence is
Cn0,n1 , we have f(R) = (σ, τ, Cn0,n1).

Corollary 6. There are (n0 + n1)! connected regions of Pn0,n1.

Proof. From the above,

|R| = |Sn0 × Sn1 × Cn0,n1| = n0!n1!

(
n0 + n1

n0

)
= (n0 + n1)!
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3.3 Congruence of the Regions

Having found the number of connected regions of Pn0,n1 , we now show that these re-
gions are congruent. Since the weight vectors are drawn uniformly from [0, 1]n0+n1 , this
congruence will prove that each has the same measure in the probability space.

Proposition 7. For any region R ∈ R, any reflection of R across a hyperplane of type
α, β, or γ produces another element of R.

Proof. Since every such reflection φ is a continuous mapping, the image of any connected
set is connected. Furthermore, since φ is an involution and

φ
(
(0, 1)n0+n1

)
= (0, 1)n0+n1 ,

we need only check that φ(R) does not intersect any of the excluded hyperplanes.
Take some R ∈ R and ~w ∈ R, where

~w = 〈x1, . . . , xn0 , y1, . . . , yn1〉

By definition of R, we know that all of the xi are distinct, as are all of the yj, and for
any i and j, xi + yj 6= 1.

As reflections of the α and β types only transpose two coordinates, the resulting α(~w)
and β(~w) also lie in Pn0,n1 . Now consider the effect of γi,j:

γi,j(~w) = 〈x1, . . . , xi−1, 1− yj, xi+1, . . . , xn0 , y1, . . . , yj−1, 1− xi, yj+1, . . . , yn1〉

The first n0 coordinates are all distinct, as xk = 1− yj implies that ~w ∈ γk,j, a contradic-
tion. Similarly, the last n1 coordinates are distinct. And the sum of any of the first n0

with any of the last n1 cannot equal 1, as such would also imply that ~w /∈ Pn0,n1 .
Thus, by connectedness of φ(R), we have φ(R) ∈ R.

Having shown that these reflections act as maps of R to itself, we now demonstrate
how to map any region to any other.

Proposition 8. Let 1n0 and 1n1 denote the identity permutations on [n0] and [n1], re-
spectively, and S0 the creation sequence of the empty difference graph on parts of size n0

and n1:
S0 = 1 · · · 1︸ ︷︷ ︸

n1

0 · · · 0︸ ︷︷ ︸
n0

Then for any R ∈ R, there exists a composition of reflections of the form α, β, and γ
that maps R to f−1(1n0 ,1n1 , S0).

Proof. Specifically, we produce an algorithm that constructs the mapping. Take any
region R ∈ R, and any ~w ∈ R. Then apply the following process to ~w:

1. Apply a composition of α-reflections to (increasingly) sort the first n0 coordinates.
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2. If there exists some index j such that xn0 + yj > 1, then reflect about γn0,j and
return to Step 1. (This replaces xn0 with 1 − yj and yj with 1 − xn0 , decreasing
both.) Otherwise, proceed to Step 3.

3. Apply a composition of β-reflections to (increasingly) sort the last n1 coordinates.

The resulting vector has all xi and yj listed in increasing order, and thus its region
corresponds to the identity permutations 1n0 and 1n1 . As for the corresponding difference
graph, due to the sorting and Step 2, for any i ∈ [n0], j ∈ [n1],

xi + yj < xn0 + yn1 < 1,

and therefore there are no edges in the graph.
Thus, the resulting vector lies in f−1(1n0 ,1n1 , S0), so applying the same composition

of reflections to R will produce f−1(1n0 ,1n1 , S0).

Since every region can be mapped onto this “base region” by some composition of
invertible rigid transformations, all of the regions are congruent.

3.4 Conclusion

Having shown that P, which has measure 1, consists of (n0 + n1)! congruent regions, we
see that each individual region has measure ((n0 + n1)!)

−1.
Now let us fix an arbitrary difference graph G with part sizes n0 and n1, and consider

the probability of generating that particular graph via each of the two random models.

First, when using the creation sequence model G(Cn0,n1), each of the

(
n0 + n1

n0

)
se-

quences is equally likely. So the probability of generating seq(G) is:

P (G(Cn0,n1) = G) =

(
n0 + n1

n0

)−1
=

n0!n1!

(n0 + n1)!

On the other hand, when using the random weighting model G(~w), a random vector
~w generates G if and only if it lies in a region R such that the third coordinate of f(R)
is the creation sequence of G. Thus,

P (G(~w) = G) = n0!n1!P (~w ∈ f−1(1n0 ,1n1 , seq(G))) =
n0!n1!

(n0 + n1)!

Therefore, the two models of generating difference graphs have the exact same distri-
bution.
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4 Applications

The power of the previous section is that we can now discard the continuous variables
of the traditional difference graph model. Instead, we need only consider the creation
sequence.

For each graph property, we begin by determining those characteristics of the creation
sequence which are necessary and sufficient for the resulting difference graph to have
said property. There are only a finite number of sequences that encode difference graphs
of a given size, so by using combinatorial arguments to enumerate those which fit the
specified characteristics, we can invoke the uniformity of the distribution to determine
the probability of a random difference graph having said property.

4.1 Notation

Let Gn0,n1 be a difference graph with part sizes |Z| = n0 and |U | = n1. Given a bi-
nary sequence S, we let G(S) denote the difference graph whose creation sequence is S.
Conversely, given a difference graph G, let seq(G) denote the creation sequence of G.

Please note that although we are dealing with unlabeled graphs, it is nevertheless
useful to refer to specific vertices in the course of a proof. Thus, the name zi is used
instead of the more unwieldy “vertex in Z corresponding to the i-th zero from the left in
the creation sequence”. In this manner, Z = {z1, . . . , zn0}, with each zi lying to the left
of zi+1 in the creation sequence. Similarly, U = {u1, . . . , un1}, again counting from left to
right. The important distinction is that the assignment of these labels is a consequence
of the structure of the graph, rather than being an independent property.

Given a vertex in Gn0,n1 , we will often refer to its index, which is its position in the
creation sequence. Indices run from 1 to n0+n1 and increase from left to right. As a result
of this enumeration and the vertex labels, note that if there exists an edge {zi+1, uj}, then
there exist edges {zi+1, uj+1} and {zi, uj}. This follows because zi has lower index than
zi+1, so any one-vertex adjacent to zi+1 is also adjacent to zi.

It will also prove useful to analyze the “tail” of a sequence S, which consists of the
subsequence of S that includes all digits after a certain position. In particular, if S is the
n-long sequence of the form

S = s1s2 . . . sn−1sn,

then the i-th tail of S is the sequence sisi+1 . . . sn. In the same vein, let tzi (S) and tui (S)
denote the number of zeroes and ones, respectively, in the i-th tail of S. Then for any i
such that 1 6 i 6 n0 + n1 + 1, tui (Cn0,n1) + tzi (Cn0,n1) = n0 + n1 − i+ 1.

4.2 Connectivity and Degrees

Proposition 9. Let G be a difference graph with at least two vertices. Then G is connected
if and only if no vertex of G is isolated.

Proof. By Proposition 2, we know that Z lacks isolated vertices if and only if U has a
vertex that dominates all of Z. A similar argument shows that U lacks isolated vertices
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if and only if some vertex of Z dominates all of U . Thus, we have two mutually exclusive
possibilities: either there exists an isolated vertex of G, or U and Z each contain a vertex
that dominates the other.

In this second case, let u ∈ U and z ∈ Z denote the dominating vertices. Then for
any two vertices of G, there exists a path between them through u or z, and therefore G
is connected.

With this, we can use the uniform distribution on the set of creation sequences to
determine the probability of connectivity:

Proposition 10. Let Gn0,n1 be a random difference graph such that n0 + n1 > 2. Then

P (G is connected) =
n0n1

(n0 + n1)(n0 + n1 − 1)

Proof. By Proposition 9, G is connected if and only if no vertex is isolated. By the
construction of the creation sequence, a zero-vertex is isolated when there are no one-
vertices of higher index; that is, there are no ones lying to the right of the corresponding
zero in the creation sequence. Similarly, a one-vertex is isolated when there are no zero-
vertices of lower index.

Thus, to ensure that there are no isolated vertices of either part, we require that a
zero-vertex have the lowest index and a one-vertex have the highest index. The remain-
ing vertices, arranged between these two extremes, can have any configuration without
impacting the connectivity. Therefore,

P (G is connected) =

(
n0 + n1 − 2

n0 − 1

)(
n0 + n1

n0

)−1
=

n0n1

(n0 + n1)(n0 + n1 − 1)

We can generalize the above results to broader statements about the connectivity
of Gn0,n1 , specifically vertex-connectivity. A graph is k-vertex-connected if it remains
connected after the removal of up to k − 1 vertices. (As we will not be concerning
ourselves with edge-connectivity, such a graph is simply said to be k-connected).

Proposition 11. Let Gn0,n1 be a difference graph. For k 6 n0 + n1 − 1, Gn0,n1 is k-
connected if and only if seq(Gn0,n1) begins with at least k consecutive zeroes and ends with
at least k consecutive ones.

Proof. First, suppose that Gn0,n1 is k-connected. Then every vertex v in Gn0,n1 must have
degree at least k. So every zero-vertex must have at least k one-vertices of higher index,
and every one-vertex must have at least k zero-vertices of lower index. Therefore, the
creation sequence must begin with at least k consecutive zeroes, and end with at least k
consecutive ones.

Second, suppose that seq(Gn0,n1) begins with at least k consecutive zeroes and ends
with at least k consecutive ones. Let V = V (Gn0,n1) denote the vertex set of Gn0,n1 , and
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take any A = {a1, . . . , ak−1} ⊂ V ; we shall show that the induced subgraph on V \ A
remains connected.

Since seq(Gn0,n1) begins with k zeroes, every element of {z1, . . . , zk} dominates all of
U . Similarly, every element of {un1−k+1, . . . , un1} dominates all of Z. As A consists of
only k − 1 elements, there must exist some zi ∈ V \ A that dominates all of U \ A and
some uj ∈ V \A that dominates all of Z \A. Thus, the subgraph on V \A is connected,
so Gn0,n1 is k-connected.

Corollary 12. Let Gn0,n1 be a random difference graph. Then for k 6 n0 + n1 − 1,

P (Gn0,n1 is k-vertex-connected) =

(
n0 + n1 − 2k

n0 − k

)(
n0 + n1

n0

)−1
=

(n0)k(n1)k
(n0 + n1)2k

,

where (n)k is the falling factorial (n)(n− 1) · · · (n− k + 1).

This, in turn, enables us to calculate the vertex connectivity κ(Gn0,n1), the maximum
k such that Gn0,n1 is k-vertex-connected.

Corollary 13. Let Gn0,n1 be a random difference graph. Then

P (κ(Gn0,n1) = k) =

(
n0 + n1

n0

)−1((
n0 + n1 − 2k

n0 − k

)
−
(
n0 + n1 − 2k − 2

n0 − k − 1

))
Proof. For the connectivity of Gn0,n1 to equal k, Gn0,n1 must be k-connected but not
(k+ 1)-connected. Since the event of Gn0,n1 being a (k+ 1)-connected graph necessitates
that it is also k-connected,

P (κ(Gn0,n1) = k) = P (Gn0,n1 is k-conn.)− P (Gn0,n1 is (k + 1)-conn.)

Having looked at the connectedness of the vertices, we now turn to their degrees,
starting with the minimum degree, δ(G).

Proposition 14. Let G be a difference graph. Then δ(G) = κ(G).

Proof. By the same argument from the first part of Proposition 11, we see that δ(G) > k
if and only if G both begins with at least k consecutive zeroes and ends with at least k
consecutive ones. As such, δ(G) > k exactly when G is k-connected, so δ(G) = k if and
only if κ(G) = k.

Corollary 15. Let Gn0,n1 be a random difference graph. Then

P (δ(Gn0,n1) = k) =

(
n0 + n1

n0

)−1((
n0 + n1 − 2k

n0 − k

)
−
(
n0 + n1 − 2k − 2

n0 − k − 1

))
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Having found the distribution of the minimum degree δ(Gn0,n1), we continue by finding
the distribution of the maximum degree, denoted ∆(Gn0,n1). This requires us to introduce
a construction which will be used both here and in subsequent sections.

Recall that a difference graph G is connected if and only if seq(G) begins with a 0
and ends with a 1. Consequently, we define the interior of creation sequence S, denoted
int(S), to be the subsequence that lies after the left-most 0 and before the right-most
1. That is, if i is the index of the left-most 0 and j the index of the right-most 1, then
int(S) = ci+1ci+2 . . . cj−2cj−1.

Essentially, int(seq(G)) contains those digits corresponding to the non-trivial con-
nected component of G, with the exception of a single dominating vertex from each part.
Note that there are two cases in which int(seq(G)) is the empty sequence: either G is the
empty graph, or the non-trivial connected component is exactly two vertices.

Since int() removes the right-most one and the left-most zero, int(Cn0,n1) has at most
n0 − 1 zeroes and n1 − 1 ones. Furthermore, for every binary sequence S with i zeroes
and j ones, where 0 6 i 6 n0 − 1 and 0 6 j 6 n1 − 1, there exists a Cn0,n1 such that
int(Cn0,n1) = S. To see this, we define Cn0,n1 as follows:

Cn0,n1 = 1 · · · 1︸ ︷︷ ︸
n1−j−1

0S1 0 · · · 0︸ ︷︷ ︸
n0−i−1

If we attempt to count the number of sequences S that are obtainable as some int(Cn0,n1),
we find that

n0−1∑
i=0

n1−1∑
j=0

(
i+ j

i

)
=

n0−1∑
i=0

(
i+ n1

i+ 1

)
=

(
n0 + n1

n0

)
− 1,

through repeated use of the identity
b∑

a=0

(
c+ a

c

)
=

(
c+ b+ 1

b

)
.

Recalling that there are two distinct creation sequences with empty interior, this shows
that every possible non-empty sequence occurs exactly once as the interior of some Cn0,n1 .

Proposition 16. Let G be a nonempty difference graph. Then for k > 1, ∆(G) = k if
and only if the maximum of the number of zeroes and the number of ones in int(seq(G))
is k − 1.

Proof. First, suppose that ∆(G) = k > 1, and that, without loss of generality, there
exists a zero-vertex z of degree k. Since all non-isolated vertices lie in a single connected
component, said component must include z, exactly k one-vertices, and some number of
other zero-vertices. Because there exists a one-vertex that dominates all zero-vertices in
the component, there can be at most k zero-vertices therein. As the non-trivial component
of G contains k one-vertices and at most k zero-vertices, int(seq(G)) contains k − 1 ones
and at most k − 1 zeroes.

Similarly, if int(seq(G)) should contain exactly k − 1 zeroes and at most k − 1 ones,
then the non-trivial component of G consists of k zero-vertices and at most k one-vertices.
So there exists a one-vertex of degree k, and every other vertex has degree at most k.
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Theorem 17. For a difference graph Gn0,n1 with n0 + n1 > 1, the probability that
∆(Gn0,n1) = k equals, for 0 6 k 6 max(n0, n1),

(
n0 + n1

n0

)−1
k = 0(

n0 + n1

n0

)−1 [(
2k − 2

k − 2

)
+

(
2k − 1

k − 1

)]
1 6 k 6 min(n0, n1)(

n0 + n1

n0

)−1(
min(n0, n1) + k − 1

k

)
min(n0, n1) < k 6 max(n0, n1)

Proof. As Gn0,n1 is bipartite, the maximum degree can never exceed the larger of n0 and
n1. On the other extreme, the only way for the maximum degree to be zero is for Gn0,n1

to be the empty graph, for which there is exactly one configuration, having probability(
n0 + n1

n0

)−1
.

Decomposing the event given in Proposition 16, we see that the corresponding prob-
ability is given by:

P (∆(Gn0,n1) = k) = P (int(seq(Gn0,n1)) has k − 1 zeroes, 6 k − 1 ones)

+ P (int(seq(Gn0,n1)) has k − 1 ones, 6 k − 1 zeroes)

− P (int(seq(Gn0,n1)) has k − 1 zeroes and k − 1 ones)

Depending upon the relationships between k, n0, and n1, one or more of those probabilities
may be zero. (E.g., for n0 < k < n1, it is impossible to have k− 1 zeroes in the interior of
seq(Gn0,n1).) But in the event that k 6 min(n0, n1), the total probability can be written
as:

P (∆(Gn0,n1) = k) =

(
n0 + n1

n0

)−1 [k−1∑
j=0

(
j + k − 1

j

)
+

k−1∑
i=0

(
i+ k − 1

i

)
−
(

2k − 2

k − 1

)]

=

(
n0 + n1

n0

)−1 [
2

(
2k − 1

k − 1

)
−
(

2k − 2

k − 1

)]
=

(
n0 + n1

n0

)−1 [(
2k − 2

k − 2

)
+

(
2k − 1

k − 1

)]
On the other hand, for min(n0, n1) < k 6 max(n0, n1), two of the three components

are zero, and the third is equal to(
n0 + n1

n0

)−1 min(n1,n0)−1∑
j=0

(
j + k − 1

j

)
=

(
n0 + n1

n0

)−1(
min(n1, n0) + k − 1

min(n1, n0)− 1

)
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4.3 Matching Number

Here we find the distribution of the size of the maximum matching of a difference graph,
denoted ν(Gn0,n1).

We define a function h on the set of all finite binary sequences by

h(S) = max
16i6|S|+1

{tzi (S)− tui (S)}

That is, h(S) is the maximum number of excess zeroes across all tails of sequence S. Note
that h is always non-negative, as the tail corresponding to i = |S|+1 is the empty sequence,
with equal numbers of zeroes and ones. Similarly, by taking the tail corresponding to i = 1,
we see that

n0 − n1 6 h(seq(Gn0,n1)) 6 n0

Proposition 18. For a difference graph Gn0,n1 with matching number ν(Gn0,n1),

n0 − ν(Gn0,n1) = h(seq(Gn0,n1))

Proof. First, we interpret the left-hand side as the number of unmatched zero-vertices in
any maximum matching. Let j denote a maximizing index for h such that h(seq(Gn0,n1)) =
tzj(seq(Gn0,n1)) − tuj (seq(Gn0,n1)). Then the tail beginning at j has h(seq(Gn0,n1)) more
zeroes than ones. Since any zero-vertex is adjacent only to one-vertices of higher index,
the zero-vertices in the tail can only be matched to one-vertices in the same tail. So
at least h(seq(Gn0,n1)) of them must remain unmatched in any matching, and therefore
n0 − ν(Gn0,n1) > h(seq(Gn0,n1)).

For the other direction, let us create a new binary sequence S by removing the
right-most h(seq(Gn0,n1)) zeroes from creation sequence seq(Gn0,n1). Then S has n0 −
h(seq(Gn0,n1)) zeroes and n1 ones, and by construction every tail of S contains at least
as many ones as zeroes, so h(S) = 0. Thus within S, for all k such that 1 6 k 6
n0 − h(seq(Gn0,n1)), the k-th zero from the right lies to the left of the k-th one from the
right. (Equivalently, we could say that within G(S), the index of zn0−k+1 is less than the
index of un1−k+1.)

Thus there are n0 − h(seq(Gn0,n1)) mutually disjoint pairs of zeroes and ones in S
where in each pair, the zero lies to the left of the one. Since S was created by removing
digits from seq(Gn0,n1), G(S) is an induced subgraph of Gn0,n1 . Thus the original sequence
must also have at least that many pairs, and ν(Gn0,n1) > n0 − h(seq(Gn0,n1)).

Having found the properties of the creation sequence that correspond to the matching
number ν(Gn0,n1), we can calculate the distribution. In order to do so, we must first find
the distribution of h(seq(Gn0,n1)):

Lemma 19. For a random difference graph Gn0,n1,

P (h(seq(Gn0,n1)) = k) =

(
n0 + n1

n0 − k

)
−
(

n0 + n1

n0 − k − 1

)
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Proof. For h(seq(Gn0,n1)) to equal k, some tail of seq(Gn0,n1) must have exactly k more
zeroes than ones, but in no tail is there ever k + 1 more zeroes than ones.

To count the number of such sequences, we interpret the binary sequences as moves
on an integer lattice. Starting at the origin, we move a single unit upwards whenever we
encounter a zero, and rightwards when we encounter a one; such sequences of moves are
known as “monotonic paths” or “staircase walks”. By reading the creation sequence from
right to left, the number of Gn0,n1 such that h(seq(Gn0,n1)) = k is equal to the number of
staircase walks from (0, 0) to (n1, n0) that touch, but do not cross, the line y = x+ k.

By a reflection argument, we can count the number of walks that touch the line

y = x + k as

(
n0 + n1

n0 − k

)
. We then subtract all of the walks which cross the line, which

are in turn all walks that touch the line y = x+ k + 1.

Theorem 20. For a random difference graph Gn0,n1, the distribution of the matching
number ν(Gn0,n1) is given by

P (ν(Gn0,n1) = k) =
(n0 + n1 − 2k + 1)n0!n1!

k!(n0 + n1 − k + 1)!
,

for 0 6 k 6 min(n0, n1).

Proof. By Proposition 18, ν(Gn0,n1)) = k if and only if h(seq(Gn0,n1)) = n0−k. Therefore,
the probability that ν(Gn0,n1) = k is proportional to the number of binary sequences of
n0 zeroes and n1 ones where some tail contains exactly n0− k more zeroes than ones, but
no tail contains a difference greater than that. From Lemma 19, this number is exactly(

n1 + n0

k

)
−
(
n1 + n0

k − 1

)
Therefore,

P (ν(Gn0,n1) = k) =

(
n0 + n1

n0

)−1((
n1 + n0

n1 + n0 − k

)
−
(

n1 + n0

n1 + n0 − k + 1

))

4.4 Cycles

First, we determine the probability that Gn0,n1 has a cycle.

Proposition 21. For a difference graph G, there exists a cycle in G if and only if the
creation sequence seq(G) contains 0011 as a subsequence.

Proof. Suppose that seq(G) contains a subsequence of the form 0011. Then there are two
zero-vertices and two one-vertices such that each of the former is adjacent to each of the
latter. So G contains K2,2 as a subgraph, and a cycle of length four.
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Next, suppose that G contains a cycle; since G is bipartite, said cycle must contain
at least two vertices from each part. So there exist two zero-vertices, the higher-index
of which has degree at least two. Thus, the digits of seq(G) corresponding to those four
vertices are a subsequence of the form 0011.

With this result,

Theorem 22. For a random difference graph Gn0,n1,

P (Gn0,n1 has a cycle) = 1− n0n1 + 1(
n0+n1

n0

)
Proof. In order for Gn0,n1 to have a cycle, there must be at least two ones that appear
after the second zero in seq(Gn0,n1). So if we let j denote the number of ones that appear
after the second zero, the total number of such sequences is

n1∑
j=2

(
n1 − j + 1

1

)(
n0 + j − 2

j

)
=

(
n0 + n1

n0

)
− (n0n1 + 1)

Now we can turn to finding the length of the longest cycle.

Proposition 23. If Gn0,n1 contains a cycle of length 2k, then it contains a 2k-cycle of
the form

z1 → un1−k+1 → z2 → un1−k+2 → z3 → · · · → zk−1 → un1−1 → zk → un1 → z1

Proof. First, recall that by virtue of the labeling system, if there exists an edge {zi, uj},
then for all i′ 6 i and j′ > j, there must also exist an edge {zi′ , uj′}.

Let us suppose, for the sake of contradiction, that the claim is false. So there exists
some cycle Y of size 2k, but the following cycle, which we shall denote by X, does not
exist:

z1 → un1−k+1 → z2 → un1−k+2 → z3 → · · · → zk−1 → un1−1 → zk → un1 → z1

Notice that within X, each zi (with the exception of z1) is adjacent to both un1−k+i−1 and
un1−k+i.

By the existence of Y , there must exist k one-vertices of positive degree, so vertex
un1−k+1 must be non-isolated. Thus, z1 is adjacent to both u1 and un1−k+1. Since X does
not exist, there must exist some minimum i > 2 such that zi is not adjacent to un1−k+i−1.
(If zi is not adjacent to un1−k+i, then it also cannot be adjacent to un1−k+i−1, as the latter
has lower index.)

Since zi is not adjacent to un1−k+i−1, every possible neighbor of zi must lie in the set
{un1−k+i, . . . , un1}, so zi has at most (k− i+1) neighbors. Furthermore, for all j > i, zj is
also not adjacent to un1−k+i−1; letting A = {zi, . . . , zk}, we see that |N(A)| 6 k− i+ 1 =
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|A|. By Hall’s Marriage Theorem, since the restriction of Y to A ∪ N(A) contains a
matching, |N(A)| > |A|.

Because |A| = |N(A)|, any cycle containing A must have length exactly 2|A| < 2k,
which contradicts the existence of Y . Thus, we see that X must exist.

We now have the infrastructure required to look at ψ(Gn0,n1), the length of the longest
cycle in Gn0,n1 .

Proposition 24. If Gn0,n1 is a difference graph, then for all k > 2, ψ(Gn0,n1) = 2k if and
only if ν(G(int(seq(Gn0,n1)))) = k − 1.

Proof. First, suppose that the longest cycle is of length 2k. Then by Proposition 23, the
following cycle must exist:

z1 → un1−k+1 → z2 → un1−k+2 → z3 → · · · → zk−1 → un1−1 → zk → un1 → z1

As all of the above vertices are non-isolated, their corresponding digits all lie in the interior
of seq(Gn0,n1), with the exception of z1 and un1 . Then for 2 6 m 6 k, edges of the form
{zm, un1−k+m−1} comprise a matching of size k−1, and therefore ν(G(int(seq(Gn0,n1)))) >
k − 1.

Second, to show the converse, suppose that ν(G(int(seq(Gn0,n1)))) = k − 1. Then
there must exist edges in Gn0,n1 of the form

{zσ(1), uτ(1)}, {zσ(2), uτ(2)}, . . . , {zσ(k−1), uτ(k−1)},

where both σ and τ are injective, and for all i, σ(i) > 2 and τ(i) 6 n1 − 1. Furthermore,
there must exist edges

{z2, uπ(2)}, {z3, uπ(3)}, . . . , {zk, uπ(k)},

as the existence of edge {zi+1, uj} implies the existence of edge {zi, uj}. (The function π
obeys the same constraints as τ .) And therefore, the following cycle exists in Gn0,n1 :

z1 → uπ(2) → z2 → uπ(3) → z3 → · · · → uπ(k−1) → zk−1 → uπ(k) → zk → un1 → z1

Thus, ψ(Gn0,n1) > 2k.

Having shown that ψ(Gn0,n1) depends solely on int(seq(Gn0,n1)), we take a deeper look
at the latter.

Theorem 25. If Gn0,n1 is a difference graph, then for k > 2, P (ψ(Gn0,n1) = 2k) is given
by (

n0 + n1

n0

)−1 [(
n0 + n1

k + 1

)
+

(
n0 + k − 1

k

)
+

(
n1 + k − 1

k

)
+

(
2k − 2

k + 1

)
−
(
n0 + n1

k

)
−
(
n0 + k − 1

k + 1

)
−
(
n1 + k − 1

k + 1

)
−
(

2k − 2

k

)]
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Proof. Note that

P (ψ(Gn0,n1) = 2k) =

(
n0 + n1

n0

)−1 ∑
Gn0,n1∈Gn0,n1

1{ψ(Gn0,n1 )=2k}

=

(
n0 + n1

n0

)−1 ∑
Cn0,n1∈Cn0,n1

1{ψ(G(Cn0,n1 ))=2k}

=

(
n0 + n1

n0

)−1 ∑
Cn0,n1∈Cn0,n1

1{ν(G(int(Cn0,n1 )))=k−1}

Recalling that there are two distinct creation sequences with empty interior, and that
every possible non-empty sequence occurs exactly once as the interior of some Cn0,n1 ,

P (ψ(Gn0,n1) = 2k) =

(
n0 + n1

n0

)−1 n0−1∑
i=0

n1−1∑
j=0

∑
Ci,j∈Ci,j

1{ν(G(Ci,j))=k−1}

=

(
n0 + n1

n0

)−1 n0−1∑
i=0

n1−1∑
j=0

(
i+ j

i

)
P (ν(Gi,j) = k − 1)

Using Theorem 20, this can be further simplified to

P (ψ(Gn0,n1) = 2k) =

(
n0 + n1

n0

)−1 n0−1∑
i=k−1

n1−1∑
j=k−1

((
i+ j

k − 1

)
−
(
i+ j

k − 2

))
Through repeated use of the identity

b∑
i=a

(
c+ i

d

)
=

(
c+ b+ 1

d+ 1

)
−
(
c+ a

d+ 1

)
,

we arrive at the desired expansion.

Corollary 26. If Gn,n is a random difference graph with parts of equal size n > 2, then

P (Gn,n is Hamiltonian) =
1

4n− 2

4.5 Degeneracy

The k-core of a graph G is the maximal induced subgraph H ⊆ G such that all vertices of
H have degree at least k, formed by iteratively deleting all vertices with degree less than
k. The degeneracy of a graph G is the largest k such that the k-core of G is non-empty.

An equivalent formulation for degeneracy of G is the maximum, over all induced
subgraphs H ⊆ G, of the minimum degree over H. That is,

degen(G) = max
H⊆G

min
v∈V (H)

deg(v)
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So by measuring the degeneracy, we can analyze the amount of clustering in difference
graphs.

Proposition 27. For a difference graph Gn0,n1, degen(Gn0,n1) > d if and only if Kd,d ⊆
Gn0,n1.

Proof. First, suppose that Kd,d is an induced subgraph of Gn0,n1 . Then there exists a
subgraph of Gn0,n1 in which all degrees are exactly d, and therefore the degeneracy is at
least d.

Next, suppose that the degeneracy of Gn0,n1 is at least d. Then there exists some
subgraph H ⊆ Gn0,n1 such that the degree of every vertex in H is at least d. As Gn0,n1

is bipartite, H must contain at least d vertices from each part. Therefore Gn0,n1 must
contain d zero-vertices and d one-vertices, each with degree at least d.

As every vertex in the sets {z1, . . . , zd} and {un1−d+1, . . . , un1} has degree at least d,
and every vertex in each set is adjacent to all vertices in the other, Kd,d ⊆ Gn0,n1 .

Theorem 28. For a random Gn0,n1,

P (degen(Gn0,n1) = d) =

(
n0 + n1

n0

)−1(
n0

d

)(
n1

d

)
Proof. From the above, we see that

degen(Gn0,n1) = max{d : Kd,d ⊆ Gn0,n1}
Furthermore, Gn0,n1 contains Kd,d if and only if the creation sequence seq(Gn0,n1) contains
0d1d as a subsequence. So in order for degen(Gn0,n1) to equal d, seq(Gn0,n1) must contain
a substring of the form 0d1d, but cannot contain 0d+11d+1.

The requirement that seq(Gn0,n1) contain 0d1d means that there must be at least d
ones after the dth zero; equivalently, there must be at most n1 − d ones before the dth
zero. The requirement that seq(Gn0,n1) not contain 0d+11d+1 can be restated as requiring
that there be at most d ones after the (d+ 1)st zero, or that there be at least n1− d ones
before the (d+ 1)st zero.

Letting i equal the number of ones before the dth zero, we have the range 0 6 i 6 n1−d.
Letting j denote the number of ones between zd and zd+1, the requirement i+ j > n1− d
becomes n1 − d− i 6 j 6 n1 − i. Thus,

P (degen(Gn0,n1) = d) =(
n0 + n1

n0

)−1 n1−d∑
i=0

n1−i∑
j=n1−d−i

(
i+ d− 1

i

)(
n1 − i− j + n0 − d− 1

n1 − i− j

)
,

which simplifies to

P (degen(Gn0,n1) = d) =

(
n0 + n1

n0

)−1 n1−d∑
i=0

(
i+ d− 1

i

)(
n0

d

)
=

(
n0 + n1

n0

)−1(
n0

d

)(
n1

d

)
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