
Resolving sets and semi-resolving sets

in finite projective planes
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Abstract

In a graph Γ = (V,E) a vertex v is resolved by a vertex-set S = {v1, . . . , vn} if
its (ordered) distance list with respect to S, (d(v, v1), . . . , d(v, vn)), is unique. A set
A ⊂ V is resolved by S if all its elements are resolved by S. S is a resolving set in
Γ if it resolves V . The metric dimension of Γ is the size of the smallest resolving
set in it. In a bipartite graph a semi-resolving set is a set of vertices in one of the
vertex classes that resolves the other class.

We show that the metric dimension of the incidence graph of a finite projective
plane of order q ⩾ 23 is 4q − 4, and describe all resolving sets of that size. Let τ2
denote the size of the smallest double blocking set in PG(2, q), the Desarguesian
projective plane of order q. We prove that for a semi-resolving set S in the incidence
graph of PG(2, q), |S| ⩾ min{2q + q/4 − 3, τ2 − 2} holds. In particular, if q ⩾ 9 is
a square, then the smallest semi-resolving set in PG(2, q) has size 2q + 2

√
q. As a

corollary, we get that a blocking semioval in PG(2, q), q ⩾ 4, has at least 9q/4 − 3
points.

Keywords: finite projective plane; resolving set; semi-resolving set; Szőnyi-Weiner
Lemma

1 Introduction

For an overview of resolving sets and related topics we refer to the survey of Bailey and
Cameron [3]. Regarding these, we follow the notations of [3, 2]. Throughout the paper,

∗Authors were supported by OTKA grant K 81310. The first author was also supported by ERC
Grant 227701 DISCRETECONT.

the electronic journal of combinatorics 19(4) (2012), #P30 1



Γ = (V,E) denotes a simple connected graph with vertex-set V and edge-set E. For
x, y ∈ V , d(x, y) denotes the distance of x and y (that is, the length of the shortest path
connecting x and y). Π = (P ,L) always denotes a finite projective plane with point-set
P and line-set L, and q denotes the order of Π. Sometimes Πq refers to the projective
plane of order q.

Definition 1. S = {s1, . . . , sk} ⊂ V is a resolving set in Γ = (V,E), if the ordered
distance lists (d(x, s1), . . . , d(x, sk)) are unique for all x ∈ V . The metric dimension of Γ,
denoted by µ(Γ), is the size of the smallest resolving set in it.

Equivalently, S is a resolving set in Γ = (V,E) if and only if for all x, y ∈ V , there
exists a point z ∈ S such that d(x, z) ̸= d(y, z). In other words, the vertices of Γ can be
distinguished by their distances from the elements of a resolving set. We say that a vertex
v is resolved by S if its distance list with respect to S is unique. A set A ⊂ V is resolved
by S if all its elements are resolved by S. If the context allows, we omit the reference to
S. Note that the distance list is ordered (with respect to an arbitrary fixed ordering of
S), the (multi)set of distances is not sufficient.

Take a projective plane Π = (P ,L). The incidence graph Γ(Π) of Π is a bipartite
graph with vertex classes P and L, where P ∈ P and ℓ ∈ L are adjacent in Γ if and only
if P and ℓ are incident in Π. By a resolving set or the metric dimension of Π we mean that
of its incidence graph. In [2], Bailey asked for the metric dimension of a finite projective
plane of order q. In Section 2 we prove the following theorem using purely combinatorial
tools.

Theorem 2. The metric dimension of a projective plane of order q ⩾ 23 is 4q − 4.

It follows that the highly symmetric incidence graph of a Desarguesian projective plane
attains a relatively large dimension jump (for definitions and details see the end of Section
2).

Section 3 is devoted to the description of all resolving sets of a projective plane Π of
size 4q − 4 (q ⩾ 23).

One may also try to construct a resolving set for Π = (P ,L) the following way: take
a point-set PS ⊂ P that resolves L, and take a line-set LS ⊂ L that resolves P . Then
S = PS ∪ LS is clearly a resolving set. Such a resolving set S is called a split resolving
set, and PS and LS are called semi-resolving sets. By µ∗(Π) we denote the size of the
smallest split resolving set of Π (see [2]). As we will see in Section 4, semi-resolving sets
are in tight connection with double blocking sets.

Definition 3. A set B of points is a double blocking set in a projective plane Π, if every
line intersects B in at least two points. τ2 = τ2(Π) denotes the size of the smallest double
blocking set in Π.

Let PG(2, q) denote the Desarguesian projective plane of order q. In Section 4 we use
the polynomial method and the Szőnyi-Weiner Lemma to prove that if a semi-resolving
set S is small enough, then one can extend it into a double blocking set by adding at most
two points to S. This yields the following results.
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Theorem 4. Let S be a semi-resolving set in PG(2, q), q ⩾ 3. Then |S| ⩾ min{2q +
q/4− 3, τ2(PG(2, q))− 2}. If q ⩾ 121 is a square prime power, then |S| ⩾ 2q + 2

√
q.

Corollary 5. Let q ⩾ 3. Then µ∗(PG(2, q)) ⩾ min{4q + q/2 − 6, 2τ2(PG(2, q)) − 4}. If
q ⩾ 121 is a square prime power, then µ∗(PG(2, q)) = 4q + 4

√
q.

A Baer subplane in Πq, q square, is a set of q +
√
q + 1 points that intersects every

line in either one or
√
q + 1 points. It is well known that for a square prime power q, the

point-set of PG(2, q) can be partitioned into q−√
q+1 mutually disjoint Baer subplanes.

When we refer to duality, we simply mean that as the axioms of projective planes
are symmetric in points and lines, we may interchange the role of points and lines (e.g.,
consider a set of lines as a set of points), and if we have a result regarding points, then
we have the same (dual) result regarding lines. A finite projective plane is not necessarily
isomorphic to its dual, however, PG(2, q) is.

Finally, let us fix the notation and terminology we use regarding PG(2, q). Let GF(q)
denote the finite field of q elements. For the standard representation of PG(2, q) as
homogeneous triplets, we refer to [7]. The representatives of a point or a line are denoted
by a triplet in round or square brackets, respectively. Let AG(2, q) denote the desarguesian
affine plane of order q. If we consider AG(2, q) embedded into PG(2, q), then we call the
line in PG(2, q) outside AG(2, q) the line at infinity, denote it by ℓ∞, and we call its points
ideal points. We choose the co-ordinate system so that ℓ∞ = [0 : 0 : 1], and we denote
the point (1 : m : 0) ∈ ℓ∞ (m ∈ GF(q)) by (m), and (0 : 1 : 0) ∈ ℓ∞ by (∞). A line
[m : −1 : 1] with affine equation y = mx+ b is said to have slope m. The common (ideal)
point of vertical lines or lines of slope m is (∞) and (m), respectively. The points of ℓ∞
are also called directions, and, with the exception of (∞), they are identified naturally
with the elements of GF(q) by (m) ∈ ℓ∞ ↔ m ∈ GF(q). A point (x : y : 1) ∈ AG(2, q) is
also denoted by (x, y). Considering a set S, a line ℓ is an (⩽ i)-secant, an (⩾ i)-secant, or
an i-secant to S if ℓ intersects S in at most i, at least i, or exactly i points, respectively.

2 Resolving sets in finite projective planes

Note that the distance of two distinct points (lines) is always two, while the distance of a
point P and a line ℓ is 1 or 3, depending on P ∈ ℓ or P /∈ ℓ, respectively. Note that the
elements of a set S are resolved by S trivially, as there is a zero in their distance lists.

Notation.

• For two distinct points P and Q, let PQ denote the line joining P and Q.

• For a point P , let [P ] denote the set of lines through P . Similarly, for a line ℓ, let [ℓ]
denote the set of points on ℓ. Note that we distinguish a line from the set of points
it is incident with.

• Once a subset S of points and lines is fixed, the terms inner point and inner line
refer to the elements of S, while outer points and outer lines refer to those not in
S.
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• For a fixed subset S of points and lines we say a line ℓ is skew or tangent to S if [ℓ]
contains zero or one point from S, respectively. Similarly, we say a point P is not
covered or 1-covered by S if [P ] contains zero or one line from S, respectively.

• For a subset S of points and lines, let PS = S ∩ P , LS = S ∩ L.

Lemma 6. Let S = PS∪LS be a set of vertices in the incidence graph of a finite projective
plane. Then any line ℓ intersecting PS in at least two points (that is, |[ℓ] ∩ PS| ⩾ 2)
is resolved by S. Dually, if a point P is covered by at least two lines of LS (that is,
|[P ] ∩ LS| ⩾ 2), then P is resolved by S.

Proof. Let ℓ be a line, {P,Q} ⊂ [ℓ] ∩ PS, P ̸= Q. Then any line e different from ℓ may
contain at most one point of {P,Q}, hence e.g. P /∈ [e], hence d(P, ℓ) = 1 ̸= d(P, e) = 3.
By duality, this holds for points as well.

Proposition 7. S = PS ∪ LS is a resolving set in a finite projective plane if and only if
the following properties hold for S:

P1 There is at most one outer line skew to PS.

P1’ There is at most one outer point not covered by LS.

P2 Through every inner point there is at most one outer line tangent to PS.

P2’ On every inner line there is at most one outer point that is 1-covered by LS.

Proof. By duality and Lemma 6 it is enough to see that S resolves lines not in LS that
are skew or tangent to PS. Property 1 (P1) assures that skew lines are resolved. Now
take a tangent line ℓ /∈ LS. If there were another line e with the same distance list as ℓ’s
(hence e /∈ LS), both e and ℓ would be tangents to PS through the point [ℓ] ∩ PS, which
is not possible by Property 2 (P2).

We will usually refer to the above alternative definition, but sometimes it is useful to
keep the following in mind.

Proposition 8. S = PS ∪ LS is a resolving set in a finite projective plane if and only if
the following properties hold for S:

PA Through any point P there is at most one outer line not blocked by PS \ {P}.

PA’ On any line ℓ there is at most one outer point not covered by LS \ {ℓ}.

Proof. In other words, the Property A claims that on a point P ∈ PS there may be at
most one tangent from L \ LS, while on a point P /∈ PS there may be at most one skew
line. As the intersection point of two skew lines would validate the latter one, Property
A is equivalent to Properties 1 and 2 of Proposition 7. Dually, the same holds for the
Properties with commas.
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Proposition 9. The metric dimension of a projective plane of order q ⩾ 3 is at most
4q − 4.

Proof. We give a construction refined from Bill Martin’s one of size 4q − 1 (cited in
[2]), see Figure 1. Let P , Q, and R be three arbitrary points in general position. Let
PS = [PQ] ∪ [PR] \ {P,Q,R}, and let LS = [P ] ∪ [R] \ PQ,PR,RQ. We will see that
S = PS ∪ LS is a resolving set by checking the criteria of Proposition 7.
P1: The only outer line skew to PS is RQ.
P1’: The only outer point uncovered by LS is Q.
P2: As q ⩾ 3, |[PQ] ∩ PS| = |[PR] ∩ PS| = q − 1 ⩾ 2. On a point A ∈ [PQ] \ P,Q the
only tangent is AR (which is in LS). On a point A ∈ [PR] \P,R the only tangent is AQ.
P2’: As q ⩾ 3, |[P ] ∩ LS| = |[R] ∩ LS| = q − 1 ⩾ 2. The only point of a line ℓ ∈
[R] \ {PR,RQ} not covered by [P ] is [ℓ] ∩ [PQ] (which is in PS). The only uncovered
point on a line ℓ ∈ [P ] \ {PQ,PR} is [ℓ] ∩RQ.

Hence S is a resolving set of size |PS|+ |LS| = 2q − 2 + 2q − 2 = 4q − 4.

Our aim is to show that the metric dimension of a projective plane of order q ⩾ 23 is
4q − 4, and to describe all resolving sets of that size.

A general assumption: from now on we suppose that S = PS ∪ LS is a resolving
set of size ⩽ 4q − 4.

Proposition 10. 2q − 5 ⩽ |PS| ⩽ 2q + 1, 2q − 5 ⩽ |LS| ⩽ 2q + 1.

Proof. Let t denote the number of tangents that are not in LS. By Property 2, t ⩽ |PS|.
Recall that there may be at most one skew line that is not in LS (Property 1). Then
double counting the pairs of {(P, ℓ) : P ∈ PS, P ∈ [ℓ], |[ℓ]∩PS| ⩾ 2} we get 2(q2 + q+1−
1− t− |LS|) ⩽ |PS|(q + 1)− t, whence

q|PS| ⩾ 2(q2 + q − |LS|)− t− |PS| ⩾ 2(q2 + q − (|LS|+ |PS|)) ⩾ 2(q2 − 3q + 4),

thus |PS| ⩾ 2q− 6+8/q, and as it is an integer, |PS| ⩾ 2q− 5. Dually, |LS| ⩾ 2q− 5 also
holds. From |PS|+ |LS| ⩽ 4q − 4 the upper bounds follow.

This immediately gives |S| ⩾ 4q − 10. We remark that a somewhat more careful
calculation shows 2q − 4 ⩽ |PS| ⩽ 2q and hence |S| ⩾ 4q − 8, provided that q ⩾ 11, but
we don’t need to use it.

Remark 11. The metric dimension of the Fano plane is five.

Proof. Suppose |PS| ⩽ 2. Using the notaions of the proof of Proposition 10, we see
2(7 − 1 − |PS| − |LS|) ⩽ |PS| (as there is at most one two-secant through any point).
This yields |LS| ⩾ 6 − 3|PS|/2, whence |PS| + |LS| ⩾ 6 − |PS|/2 ⩾ 5. Figure 1 shows a
resolving set of size five in the Fano plane.

One more general assumption: by duality we may assume that |PS| ⩽ |LS|. Thus,
as |PS|+ |LS| ⩽ 4q − 4, |PS| ⩽ 2q − 2 follows.

Proposition 12. Let q ⩾ 23. Then any line intersects PS in either ⩽ 4 or ⩾ q−4 points.
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Figure 1: On the left the black points and the thick lines form a resolving set of size five
in the Fano plane. On the right the black points and the continuous lines form a resolving
set of size 4q − 4.

Proof. Suppose that |[ℓ] ∩ PS| = x, 2 ⩽ x ⩽ q. For a point P ∈ [ℓ] \ PS, let s(P )
and t(P ) denote the number of skew or tangent lines to PS through P , respectively;
moreover, denote by s the number of skew lines, and let t denote the total number of
tangents intersecting ℓ outside PS. Then counting the points of PS on ℓ and the other
lines through P we get 2q − 2 ⩾ |PS| ⩾ x + t(P ) + 2(q − t(P ) − s(P )), equivalently,
x ⩽ 2s(P ) + t(P )− 2. Adding up the inequalities for all P ∈ [ℓ] \ PS we obtain

(q + 1− x)x ⩽ 2s+ t− 2(q + 1− x).

Now, Proposition 7 yields that s ⩽ |LS|+1 and s+ t ⩽ (1+ |PS|−x)+ |LS| (here first we
estimate the skew / tangent lines in question that are outside LS, then the rest), whence
2s+ t ⩽ 2|LS|+ |PS| − x+ 2. Combined with the previous inequality we obtain

x2 − qx+ 4q − 3 ⩾ 0.

Assuming q ⩾ 23, the left hand side is negative for x = 5 and x = q − 5, therefore, as x
is an integer, we conclude that x ⩽ 4 or x ⩾ q − 4.

Proposition 13. Let q ⩾ 23. Then there exist two lines intersecting PS in at least q − 4
points.

Proof. By Proposition 12 every line is either a ⩽ 4 or a ⩾ (q − 4)-secant. Suppose to the
contrary that every line intersects PS in at most 4 points except possibly one line ℓ; let
x = |[ℓ]∩PS| ⩾ 2. Note that x ⩽ 4 is also possible. Let ni denote the number of i-secants
to PS different from ℓ. To be convinient, let n0 = s and n1 = t, and let b = |PS|. Then
the standard equations yield

4∑
i=2

ni = q2 + q + 1− s− t− 1,

4∑
i=2

ini = (q + 1)b− t− x,
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4∑
i=2

i(i− 1)ni = b(b− 1)− x(x− 1).

Thus

0 ⩽
4∑

i=2

(i− 2)(4− i)ni = −
4∑

i=2

i(i− 1)ni + 5
4∑

i=2

ini − 8
4∑

i=2

ni =

−b2 + (5q + 6)b+ x(x− 6) + 3(s+ t) + 5s− 8(q2 + q).

Substituting s+ t ⩽ |PS|+ |LS|+1 ⩽ 4q− 3, s ⩽ |LS|+1 ⩽ 2q+2 and x ⩽ q+1, we get

0 ⩽ −b2 + (5q + 6)b− 7q2 + 10q − 4.

By duality we assumed b = |PS| ⩽ 2q − 2. For b = 2q − 2, the right hand side is
−q2+20q−20, which is negative whenever q ⩾ 19. Hence b > 2q−2, a contradiction.

Now we see that there exist two distinct lines e, f such that |[e]∩(PS \[e] ∩ [f ])| = q−l
and |[f ] ∩ (PS \ [e] ∩ [f ])| = q − k with k ⩽ l ⩽ 5.

Let e ∩ f = P and denote the set of points of PS outside e ∪ f by Z.

Proposition 14. Suppose q ⩾ 23. Then k + l ⩽ 3. Moreover, l = 3 is not possible.

Proof. Then there are at least q − 1− |Z| skew or tangent lines through P depending on
P /∈ PS or P ∈ PS, respectively, from which at most one may not be in LS, hence we
found ⩾ q− 2− |Z| lines in [P ]∩LS. Among the k(q− l) lines that connect one of the k
points in [f ]\(PS∪{P}) with one of the q−l points in [e]∩(PS \{P}) at most k|Z| are not
tangents to PS, but through a point in |[e]∩ (PS \ [e] ∩ [f ])| = q− l only one tangent may
not be in LS. Hence we find another ⩾ k(q− l)−k|Z|− (q− l) = (k−1)(q− l)−k|Z| lines
in LS. Interchanging the role of e and f , we find yet another ⩾ (l−1)(q−k)− l|Z| lines in
LS. These three disjoint bunches give |LS| ⩾ (k+ l−1)q−(k+ l+1)|Z|+(k+ l)−2kl−2.

Now as (q − k) + (q − l) + |Z| ⩽ |PS| ⩽ 2q − 2, |Z| ⩽ k + l − 2 holds, whence
|LS| ⩾ (k + l − 1)q − (k2 + l2 + 4kl − 2(k + l)).

We want to use that 2kl − 2(k + l) ⩽ (k + l)2 − 2(k + l)3/2, which is equivalent with

k2 + l2 ⩾ 2(k + l)(
√
k + l − 1). As x 7→ x2 is convex, k2 + l2 ⩾ 2

(
k+l
2

)2
= (k + l)2/2 ⩾

2(k + l)(
√
k + l − 1), where the last inequality follows from (

√
k + l − 2)2 ⩾ 0.

Therefore, k2 + l2 + 4kl− 2(k+ l) = (k+ l)2 + 2kl− 2(k+ l) ⩽ 2(k+ l)2 − 2(k+ l)3/2,
thus 2q + 1 ⩾ |LS| ⩾ (k + l − 1)q − 2(k + l)2 + 2(k + l)3/2, hence

2(k + l)2 − 2(k + l)3/2 + 1

k + l − 3
⩾ q ⩾ 23.

The left hand side as a function of k + l on the closed interval [4, 10] takes its maximum
at k + l = 10, and its value is < 20. Hence k + l < 4, i.e., k + l ⩽ 3.

Now suppose that l = 3 (hence k = 0). Recall that we may assume |PS| ⩽ 2q − 2,
hence |Z| ⩽ 1. Then, as above, the number of lines ∈ LS through P and on the three
points in e \ (PS ∪ {P}) would be at least q − 3 + 2q − 3 = 3q − 6, but |LS| ⩽ 2q + 1, a
contradiction.
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Right now we see that if q ⩾ 23, then there are two lines containing at least q − 1
and q − 2 points (which also implies |PS| ⩾ 2q − 3, hence |LS| ⩽ 2q − 1 as well). Next
we show this dually for lines. The dual arguments of the previous ones would also work,
but we used duality to assume |PS| ⩽ 2q − 2 to keep the technical bound on q as low as
possible, hence we make further considerations. Note that at most one point of PS may
not be covered by e and f , whence Property A yields |[P ] ∩ LS| ⩾ q − 3.

Lemma 15. Let e and f be two distinct lines, {P} = [e] ∩ [f ], {R1, . . . , Rq} = [e] \ {P},
{Q1, . . . , Qq} = [f ] \ {P}, L ⊂ L \ {[P ]}. Let ri = |L ∩ [Ri]|, di = max{|L ∩ [Qi]| − 1, 0},
m = d1 + . . .+ dq. Then for the number C of points in P \ ([e] ∪ [f ]) covered by L,

C ⩽ |L|(q − 1)− ri(|L| − ri) +m ⩽ |L|q − ri(|L| − ri + 1)

holds, where i ∈ {1, . . . , q} is arbitrary.

Proof. Without loss of generality we may assume i = 1. Let d(Rj) (2 ⩽ j ⩽ q) denote the
number of lines in L ∩ [Rj] that intersect a line of [R1] ∩ L on f . Then

∑q
j=2 d(Rj) ⩽ m

(count the lines in question through the points of f). Each line through R1 covers q − 1
points of P \ ([e] ∪ [f ]), while a line h through Rj (2 ⩽ j ⩽ q) covers q − 1− r1 + ε new
points, where ε = 1 or 0 depending on whether h ∩ f is covered by a line of [R1] ∩ L or
not, respectively. Therefore,

C ⩽ r1(q − 1) +

q∑
j=2

(rj(q − 1− r1) + d(Rj)) = (q − 1)

q∑
j=1

rj − r1

q∑
j=2

rj +

q∑
j=2

d(Rj) ⩽

|L|(q − 1)− r1(|L| − r1) +m.

The second inequality follows immediately from m ⩽ |L| − r1.

Proposition 16. There exists a point R ∈ e \ P such that |([R] \ e) ∩ LS| ⩾ q − 1.
Moreover, if l = 2, then R /∈ PS.

Proof. We use the notations of Lemma 15 with L = LS \ [P ]. Let W = P \ [e] ∪ [f ].
Suppose to the contrary that ri < q − 1 for all 1 ⩽ i ⩽ q (⋆) .

Case 1: l = 2, k ∈ {0, 1}. |LS| ⩽ 2q− 1 and |[P ]∩LS| ⩾ q− 3 implies |L| ⩽ q+2.
Keeping in mind that there may be one (but no more) point in PS ∩W , Property A’ for
the lines of [P ]\{e, f} implies that L must cover at least (q−2)(q−1)+(q−2) = q(q−2)
points of W . Then by Lemma 15, q(q−2) ⩽ |L|q−ri(|L|−ri+1) ⩽ (q+2)q−ri(q+3−ri)
(as the right hand side of the first inequality is growing in |L|, since ri < q), which is
equivalent with ri(q+3−ri) ⩽ 4q. As the left hand side takes it minimum on the interval
[5, q − 2] in ri = 5 and ri = q − 2, substituting ri = 5 yields q ⩽ 10, which does not hold.
Hence ri ⩽ 4 or ri ⩾ q − 1, thus by our assumption ri ⩽ 4 for all 1 ⩽ i ⩽ q. Recall that
l = 2. Let R1 and R2 be the corresponding two points on e\PS. According to Property A
and considering the same ideas as in the proof of Proposition 14, we see that at least q−2
lines of [R1] ∪ [R2] must be in L. Thus q − 2 ⩽ r1 + r2 ⩽ 8, a contradiction. Therefore,
without loss of generality we may conclude that r1 ⩾ q − 1.
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Case 2: k = l = 1. In this case PS = ([e] \ P,R) ∪ ([f ] \ P,Q), and |PS| = |LS| =
2q − 2. Note that the role of the lines e and f may be interchanged as they have the
same combinatorial properties, thus we may expand the assumption (⋆) to f as well, and
it is also suitable to find the point R on f . Now W ∩ PS = ∅, thus Property A’ yields
that at least (q − 1)2 points of W must be covered by L, moreover, Property A implies
| ([P ] \ {e, f}) ∩ LS| ⩾ q − 2, whence |L| ⩽ q follows.

Subcase 2.1: [P ] \ (LS ∪ {e, f}) = {ℓ} ̸= ∅. As there may be at most one skew line
outside LS (Property 1’), this implies that the skew line RQ is in LS. Lemma 15 yields
(q−1)2 ⩽ |L|q−ri(|L|−ri+1) ⩽ q2−ri(q+1−ri), equivalently, ri(q+1−ri) ⩽ 2q−1. As in
Case 1, this shows that 3 ⩽ ri ⩽ q−2 is not possible, hence by (⋆) ri ⩽ 2 for all 1 ⩽ i ⩽ q.
Interchanging e and f , we see that on any point in f \P there are at most two lines from
L, hence m ⩽ q/2. Then again by Lemma 15, (q − 1)2 ⩽ |L|(q − 1)− ri(|L| − ri) +m ⩽
|L|(q − 1) − ri(|L| − ri) + q/2, equivalently, ri(q − ri) ⩽ 3q/2 − 1, hence ri ⩽ 1 follows
(1 ⩽ i ⩽ q). Again, this holds for f as well; that is, every point on (e∪f)\{P} is covered
at most once by L. The line RQ is in LS, but then the points R and Q violate Property
2′.

Subcase 2.2: [P ] \ {e, f} ⊂ LS. Then |[P ] ∩ LS| ⩾ q − 1, thus |L| ⩽ q − 1. Let
i ∈ {1, . . . , q}. Recall that m ⩽ |L| − ri. Combined with Lemma 15 we get (q − 1)2 ⩽
(q − 1)2 − ri(q − 1− ri) +m, therefore ri(q − 1− ri) ⩽ m ⩽ q − 1− ri, hence ri ⩽ 1. As
this is valid for the points of f as well, m = 0 follows. But then (under the assumption
(⋆)) ri = 0 would hold for all 1 ⩽ i ⩽ q, which is impossible.

We have seen that | ([P ] \ {e, f}) ∩ LS| ⩾ q − 3. Now we prove that equality can not
hold.

Proposition 17. | ([P ] \ {e, f}) ∩ LS| ⩾ q − 2.

Proof. Suppose to the contrary that there exist two distinct lines, g and h, such that
{g, h} ⊂ [P ] \ {e, f}, {g, h} ∩ LS = ∅. Property A yields that (at least) one of them is
blocked by a point Z ∈ (PS\{[e] ∪ [f ]}). Thus k = 1, l = 2, P /∈ PS and |PS\{[e] ∪ [f ]}| =
1. Let R be the point on e \ {P} found in Proposition 16. Then |LS \ ([P ] ∪ [R])| ⩽ 1,
let ℓ denote this (possibly not existing) line. Take a line r of [R] \ {e} that does not go
through any of the points g ∩ ℓ, h ∩ ℓ, and Z. Such a line exists as q − 3 > 0. The points
r ∩ g and r ∩ h show that r violates Property A’, a contradiction.

Proposition 18. If |PS| = 2q − 3, then |LS| ⩾ 2q − 1.

Proof. |PS| = 2q − 3 means that k + l = 3. Let R be the point on e \ {P} found in
Proposition 16, and denote by R′ the point e \ {PS} ∪ {P,R}. We count the lines in S:

• By Proposition 17 | ([P ] \ {e, f}) ∩ LS| ⩾ q − 2;

• By Property 2 in Proposition 7, through any point F ∈ f \ {P,Q} at least one of
the lines FR,FR′ has to be in LS as both are tangents to PS (at least q − 1 lines);

• By Property 1 in Proposition 7, at least two of the three skew lines (ℓ0, RQ,R′Q)
has to be in LS.
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Altogether there are at least 2q − 1 lines in LS.

Thus, due to the assumption |PS| ⩽ |LS|, either |PS| = 2q − 3 and |LS| ⩾ 2q − 1 or
2q − 2 ⩽ |PS| ⩽ |LS|. This completes the proof of Theorem 2.

Some lower bound on q is necessary in Theorem 2. As we have seen, the theorem fails
for q = 2 (Remark 11), since µ(PG(2, 2)) = 5. By Proposition 9 we have µ(PG(2, q)) ⩽
4q−4 for q ⩾ 3. We have checked that µ(PG(2, q)) = 4q−4 for q = 3 as well; however, the
upper bound is not always tight. For q = 4, a computer search showed µ(PG(2, 4)) = 10,
and PG(2, 5) ⩽ 15. We show a nice construction of size ten in PG(2, 4). For basic
facts about hyperovals see [7]. A hyperoval O in PG(2, 4) has six points, no tangents,
6 · 5/2 = 15 secants and six skew lines. Through any point P /∈ O there pass at most
two skew lines, otherwise counting the points of O on the lines through P we obtained
|O| ⩽ 4. Thus the set OD of skew lines form a dual hyperoval. Now let P ∈ O and
ℓ ∈ OD be arbitrary, and let PS = O \ {P}, LS = OD \ {ℓ}, S = PS ∪ LS. Clearly, ℓ is
the only skew line to PS, and there is precisely one tangent line on every point R ∈ PS

(namely PR). Thus P1 and P2 hold. Dually, P1’ and P2’ also hold, thus S is a resolving
set of size ten.

We remark that projective planes show an interesting example of highly symmetric
graphs with large dimension jump. We follow the notations of [3]. A vertex-set B in
a graph Γ is called a base, if the only automorphism of Γ that fixes B pointwise is the
identity. The size of the smallest base of Γ is called the base size of Γ, and it is denoted by
b(Γ). As a resolving set of Γ is a base, b(Γ) ⩽ µ(Γ) always holds. A repeatedly investigated
question asks how large the gap δ(Γ) = µ(Γ)−b(Γ) may be between these two parameters,
referred to as the dimension jump of Γ (see [3] and the references therein). Let Γ be the
incidence graph of PG(2, q). Then Γ has order n = 2(q2 + q + 1). It is well known that
(the automorphism group of) Γ is distance-transitive (that is, any pair (u, v) of vertices
can be transferred into any other pair (u′, v′) of vertices by an automorphism of Γ unless
d(u, v) ̸= d(u′, v′).) It is easy to see that b(Γ) ⩽ 5 (four points are enough to fix the
linear part of the collineation, and one more point forces the field automorphism to be
the identity). Thus δ(Γ) ⩾ 4q− 9, which is quite large in terms of the order of Γ, roughly
2
√
2n.

3 Constructions

Now we describe all resolving sets of size 4q − 4. Observing the nice symmetry and
self-duality of the shown construction in Proposition 9, one might think that it is the
only construction. However, this could not be further from the truth. In our somehow
arbitrarily chosen system, there are 32 different constructions. Recall that we assume
|PS| ⩽ |LS|.

By Propositions 14, 16 and 17, we know that any resolving set S = PS∪LS of size 4q−4
must contain the following structure S∗ = P∗

S ∪L∗
S of size 4q−6 (see Figure 2): two lines,

e, f , where [e]∩ [f ] = {P}, such that |P∗
S ∩ ([e] \ {P})| = q− 2, |P∗

S ∩ ([f ] \ {P})| = q− 1,
|L∗

S ∩ ([P ] \ {e, f})| = q− 2, and for one of the points in [e] \ (P∗
S ∪ {P}), denote it by R,
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|L∗
S ∩ ([R] \ {e})| = q− 1. We denote by R′ the other point in [e] \ (P∗

S ∪ {P,R}), and let
{Q} = [f ] \ (P∗

S ∪ {P}), {ℓ0} = [P ] \ (L∗
S ∪ {e, f}), {ℓ1} = [R] \ (L∗

S ∪ {e}). If Q /∈ ℓ1,
then let T = f ∩ ℓ1.

P

R′

R

Qf

e

ℓ0

ℓ1

Figure 2: The structure S∗ of size 4q − 6 that is contained in any resolving set of size
4q − 4.

We have to complete this structure S∗ by adding two more objects to get a resolving
set S. Assuming |PS| ⩽ |LS|, we have to add two lines or one line and one point, and
then check the criteria of Proposition 7.

The problems of S∗ compared to the properties in Proposition 7 are the following:

• P1 (outer skew lines to P∗
S): ℓ0, R

′Q, and if Q ∈ ℓ1, then ℓ1.

• P1’ (outer points not covered by L∗
S): R

′, ℓ0 ∩ ℓ1 and if Q ∈ ℓ1, then Q.

• P2 (outer tangent lines through an inner point): if Q /∈ ℓ1, then through T = f ∩ ℓ1
the lines ℓ1 = RT and R′T are tangents. Furthermore, if we add the intersection
point of two outer skew lines (listed at P1), those will be two outer tangents through
it.

• P2’ (outer 1-covered points on an inner line): if Q /∈ ℓ1, then on RQ the points Q
and ℓ0 ∩ RQ are 1-covered. Furthermore, if we add the line connecting two outer
uncovered points (listed at P1’), those will be two outer one-covered points on it.

These problems must be resolved after adding the two objects. By the letter “C”
and a number we refer to the respective part of Figure 3 at the end of the article. We
distinguish the cases whether we add ℓ1 into S or not, and whether Q ∈ ℓ1 or not.

I. ℓ1 ∈ LS (see Figure 3 (a)).
Now the problems of this construction compared to the properties are the following:

• P1: ℓ0, R
′Q.

• P1’: solved automatically, as the only outer not covered point is R′.
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• P2: if we add ℓ0 ∩R′Q, then ℓ0 and R′Q are tangents through it.

• P2’: on RQ the points Q and ℓ0 ∩RQ are 1-covered.

Note that in this case it does not matter whether Q was on ℓ1 or not (see constructions
C1-C4 on Figure 3). We can add one more line or one point to S to solve these problems.

1.a) Adding ℓ1 and one more line: in this case P2 is also solved automatically. To
solve P1, we have to add one of the skew lines ℓ0 and R′Q. This automatically solves P2’
as one of these lines covers one of the 1-covered points on RQ (Q, ℓ0 ∩ RQ). So we get
two constructions: we can add ℓ0 and ℓ1 (C1), or R′Q and ℓ1 (C2).

1.b) Adding ℓ1 and a point: because of P2, we cannot add the point ℓ0 ∩R′Q, so P2
is solved. To solve P1, we have to add a point on ℓ0 or R

′Q. To solve P2’, we have to add
Q (C3) or ℓ0 ∩RQ (C4). Both choices will solve P1.

From now on we do not add ℓ1 to LS. We distinguish the cases whether Q ∈ ℓ1 or not.
II. ℓ1 /∈ LS, Q ∈ ℓ1 (see Figure 3 (b)).
Now the problems are the following:

• P1: ℓ0, R
′Q and ℓ1.

• P1’: R′, ℓ0 ∩ ℓ1 and Q.

• P2: we have to be careful if we add the intersection of two skew lines (listed at P1).

• P2’: we have to take care if we add the line joining two of the uncovered points
(listed at P1’).

2.a) Adding two lines: to solve P1, we have to add the skew lines ℓ0 and R′Q. But
then we cannot solve P2’, because Q and R′ are two 1-covered points on R′Q. So there
are no such constructions.

2.b) Adding a point and a line: to solve P1’, we have to add or cover at least two of
the points Q, R′ and ℓ0 ∩ ℓ1. We cannot do this only by covering two points with a line,
because then we cannot solve P2’. So we have to add one of these points.

1. Adding the point Q: P1 is solved automatically, as the only outer skew line is ℓ0.
To solve P2, we have to add R′Q, since R′Q and ℓ1 = RQ are outer tangent lines
through Q. This solves P1’ by covering R′. P2’ is solved, as the only outer point
on R′Q is R′.

2. Adding the point R′: to solve P1, we have to add ℓ0. This solves P1’, as ℓ0 covers
ℓ0 ∩ ℓ1. P2 and P2’ are solved automatically. (This construction was the original
example in the proof of Proposition 9.)

3. Adding the point ℓ0 ∩ ℓ1: to solve P1’, we have to cover R′ or Q. To solve P2, we
have to add ℓ0, as ℓ0 and ℓ1 are outer tangent lines through the intersection point.
But ℓ0 does not cover either R′ or Q, so there is no such a construction.
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So we get two constructions: we can add Q and R′Q (C5) or R′ and ℓ0 (C6).
Remark. We already have two constructions such that S contains Q. In fact if we

add Q to PS these are the only possibilities. To solve P2, we have to add ℓ1 or R′T , and
these are the constructions in 1.b) and 2.b), respectively. So from now on we do not add
Q to PS, and suppose that Q /∈ ℓ1.

III. ℓ1 /∈ LS, Q /∈ ℓ1, Q /∈ PS (see Figure 3 (c)).
The problems of this construction compared to the properties are the following:

• P1: ℓ0 and R′Q.

• P1’: R′ and ℓ0 ∩ ℓ1.

• P2: (i) through T = f ∩ℓ1 the lines ℓ1 = RT and R′T are tangents; (ii) furthermore,
we have to be careful if we add ℓ0 ∩R′Q.

• P2’: (i) on RQ the points Q and ℓ0 ∩ RQ are 1-covered; (ii) furthermore, we have
to take care if we add the line joining R′ and ℓ0 ∩ ℓ1.

3. Adding two lines (ℓ1 /∈ LS, Q /∈ PS, Q /∈ ℓ1): to solve P1, we have to add ℓ0 or
R′Q. This automatically solves P1’ by covering ℓ0 ∩ ℓ1 or R′; and also solves P2’(i) by
covering ℓ0 ∩ RQ or Q. To solve P2, we have to add R′T . P2’(ii) could be a problem if
we add R′Q and (ℓ0 ∩ ℓ1) ∈ R′Q, but adding R′T solves it as well by covering R′. So we
get two new constructions: we can add ℓ0 and R′T (C7) or R′Q and R′T (C8).

From now on we have to add a point and a line to S.
Notation. Let U be an arbitrary point in {[e]\{P,R,R′}}, and V in {[f ]\{P,Q, T}}.

Note that U, V ∈ P∗
S.

Since most of the problems are caused by R′, we distinguish the cases whether we add
R′ to PS or not.

4. Adding R′ to PS (ℓ1 /∈ LS, Q /∈ PS, Q /∈ ℓ1): P1 is solved as the only outer skew
line to PS is ℓ0. P1’ is solved as the only outer point not covered by LS is ℓ0 ∩ ℓ1. P2 is
solved as through T the only outer tangent line is ℓ1. The new line cannot cause problem
compared to P2’(ii) as R′ is an inner point now. The only problem we have to solve is
P2’(i): on RQ we have to cover Q or ℓ0 ∩RQ with a line.

1. Q: We can cover it by f (C9) or UQ (C10), both choices solve P2’.

2. ℓ0 ∩RQ: We can cover it by ℓ0 (C11) or the line connecting U and ℓ0 ∩RQ (C12),
both choices solve P2’.

From now on we suppose that R′ /∈ PS.
IV. ℓ1 /∈ LS, Q /∈ ℓ1, Q /∈ PS, R

′ /∈ PS (see Figure 3 (b)), we add one point and one
line.

As we have to add a point and a line to S, we will go through sistematically the
possible addable lines keeping in mind the assumptions. First we check the line e, and
then the lines which go through the points of [e]. We have to distinguish the points P ,
U ∈ [e] ∩ P∗

S and R′ (as we have already seen the case adding ℓ1, the only outer line
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through R). We continue to refer to the problems listed in the case III. Note that P2’(ii)
causes problem only in the last case (when adding a line through R′).

5. Adding e to LS: P1’ is solved as e covers R′. To solve P2’(i), we have to add
ℓ0 ∩RQ (as we do not add Q); this also solves P1. ℓ0 ∩ ℓ1 /∈ RQ so this solves P2 only if
ℓ0 ∩RQ ∈ R′T (C13).

6. Adding a line through P :
6. a) Adding f : P2’(i) is solved as f covers Q. To solve P1’, we have to add ℓ0∩ℓ1 (as

we do not add R′); this also solves P1 and P2(i). By P2(ii), this works only if ℓ0∩ℓ1 /∈ R′Q
(C14).

6. b) Adding ℓ0: P1 and P1’ are solved as the only outer skew line and outer not
covered point are R′Q and R′. P2’(i) is solved as ℓ0 covers ℓ0 ∩RQ. To solve P2, we have
to add an arbitrary point Z on one of the lines ℓ1 (C15) and R′T (C16). Note that in the
former case we may add the point R as well.

7. Adding a line through U : we have to distinguish whether the added line meets f in
a point V ∈ {[f ] \ {P,Q}} or in Q. (Here we do not have to take care of T , the problems
are the same for UV and UT .)

7. a) Adding UV : as UV does not cover R′ and Q, and we do not add these points
to S, to solve P1’ and P2’, one of the points ℓ0 ∩ ℓ1 and ℓ0 ∩ RQ has to be covered by
UV , and the other one has to be added to S. If UV contains ℓ0 ∩ ℓ1 and we add ℓ0 ∩RQ,
then P1’ and P2’ are solved, as well as P1. This solves P2 only if ℓ0 ∩ RQ ∈ R′T (C17).
If UV contains ℓ0 ∩ RQ and we add ℓ0 ∩ ℓ1, then P1’, P2’, P1 and P2(i) are solved. By
P2(ii) this works only if ℓ0 ∩ ℓ1 /∈ R′Q (C18).

7. b) Adding UQ: P2’ is solved. If ℓ0 ∩ ℓ1 /∈ UQ, then we have to add ℓ0 ∩ ℓ1 to solve
P1’, which also solves P1 and P2(i). By P2(ii), this works only if ℓ0 ∩ ℓ1 /∈ R′Q (C19). If
ℓ0 ∩ ℓ1 ∈ UQ, then P1’ is solved. To solve P1, we have to add a point on ℓ0 or on R′Q;
to solve P2, we have to add point on ℓ1 or on R′T . By P2(ii), we cannot add ℓ0 ∩ R′Q.
Thus we may add ℓ0 ∩ ℓ1 (C20), ℓ0 ∩R′T (C21) or ℓ1 ∩R′Q (C22). Each choice will solve
P1 and P2.

Now we check the cases when we add a line through R′. This solves P1’ as R′ will be
covered. Because of P2’(ii), we have to distinguish whether the added line contains ℓ0∩ ℓ1
or not.

8. Adding the line g connecting R′ and ℓ0∩ ℓ1: to solve P2’(ii), we have to add ℓ0∩ ℓ1.
As g cannot contain ℓ0 ∩RQ, it has to contain Q to solve P2’(i). This also solves P1 and
P2. So we get one construction: if ℓ0 ∩ ℓ1 ∈ R′Q, we add R′Q and ℓ0 ∩ ℓ1 (C23).

9. Adding a line through R′ not containing ℓ0 ∩ ℓ1:
We have to distinguish whether the added line meets f in a point V ∈ {[f ]\{P, T,Q}},

in T or in Q.
9. a) Adding R′V : if ℓ0∩RQ is not covered by R′V , we have to add it to S in order to

solve P2’(i). This solves P1, but solves P2 only if ℓ0∩RQ ∈ R′T (C24). If ℓ0∩RQ ∈ R′V ,
then it solves P2’(i). To solve P1, we have to add a point on ℓ0 or R′Q; to solve P2, we
have to add a point on ℓ1 or R′T , but we cannot add ℓ0 ∩R′Q because of P2(ii). Adding
ℓ0 ∩R′T solves P1 and P2 without any further conditions (C25). Adding ℓ0 ∩ ℓ1 (C26) or
ℓ1 ∩R′Q (C27) solves P1, but by P2(ii), it works only if ℓ0 ∩ ℓ1 /∈ R′Q.
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9. b) Adding R′T : P2(i) is solved. As ℓ0∩ℓ1 /∈ R′T , P2’(ii) does not cause a problem.
If ℓ0 ∩RQ /∈ R′T , we have to add it to S to solve P2’(i). This solves P1 as well (C28). If
ℓ0 ∩ RQ ∈ R′T , then P2’(i) is solved. To solve P1, we have to add an arbitrary point Z
on ℓ0 (C29) or on R′Q (C30) except the point ℓ0 ∩R′Q. Note that we may add the point
P ∈ ℓ0 as well.

9. c) Adding R′Q: recall that ℓ0 ∩ ℓ1 /∈ R′Q. P1, P2’ and P2(ii) are solved. To solve
P2(i), we may add an arbitrary point Z on ℓ1 (C31) or on R′T (C32). Note that we may
also add the point R on ℓ1.

These are the all possibilities to get a resolving set of size 4q−4 assuming |PS| ⩽ |LS|.
There are four constructions with |PS| > |LS|, the duals of (C1), (C2), (C7) and (C8).

4 Semi-resolving sets in PG(2, q)

We recall the definition of a semi-resolving set for a projective plane. By duality, it is
enough to discuss the case when a point-set resolves the lines of the plane.

Definition 19. Let Π = (P ,L) be a projective plane. S = {P1, . . . , Pn} ⊂ P is a semi-
resolving set if the ordered distance list (d(ℓ, P1), . . . , d(ℓ, Pn)) is unique for every line
ℓ ∈ L.

As in case of resolving sets, we can give two quick rephrasals of the above definition.

Proposition 20. S ⊂ PS is a semi-resolving set of Π if and only if the following hold:

1. there is at most one skew line to S;

2. through every point of S there is at most one tangent line to S.

Proof. Straightforward.

Recall that τ2(Π) denotes the size of the smallest double blocking set in the plane Π.

Result 21 ([1]). Let q ⩾ 9. Then τ2(PG(2, q)) ⩾ 2(q+
√
q+1), and equality holds if and

only if q is a square.

Let µS(Π) denote the size of the smallest semi-resolving set in Π. The first part of the
next proposition was pointed out by Bailey [2].

Proposition 22.

(i) µS ⩽ τ2 − 1.

(ii) If there is a double blocking set of size τ2 that is the union of two disjoint blocking
sets, then µS ⩽ τ2 − 2.

(iii) In particular, if q is a square prime power, then µS(PG(2, q)) ⩽ 2q + 2
√
q.
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Proof. Let B a double blocking set, and let P ∈ B. Then B \ {P} is clearly a semi-
resolving set [2] (without a skew line). This proves (i).
Let B be a double blocking set of size |B| = τ2 that is the union of two disjoint blocking
sets B1 and B2, and let S = (B1 ∪ B2) \ {P1, P2} for some P1 ∈ B1, P2 ∈ B2. We check
the requirements of Proposition 20. Clearly, there can be at most one skew line, namely
P1P2. Take a point Q, say, from B1 \ {P1}. As B2 intersects every line through Q, the
only possible tangent line to S through Q is QP2. Thus (ii) is proven. If q is a square,
it is well-known that one can find two disjoint Baer subplanes in PG(2, q), so (iii) follows
from (ii).

Proposition 23. Let S be a semi-resolving set of Πq. Then |S| ⩾ 2q − 1.

Proof. Suppose to the contrary that |S| ⩽ 2q − 2. Take a line ℓ tangent to S. Count the
other tangents of S through the points of [ℓ]. As there are at most 2q − 2 tangents to S,
there are at least two points in [ℓ] \ S with at most one tangent through them (besides
ℓ). At least one of them, denote it by P , is not contained in the (possible) skew line. At
least q − 1 lines through P are at least 2-secants to S, one line is at least a 1-secant and
ℓ is a tangent, so |S| ⩾ 2q, contradiction.

If there is no tangent line to S, take a point R outside S. There is at most one skew
line to S through R, the other q lines through R intersect S in at least two points, so
|S| ⩾ 2q, contradiction.

From now on we work in PG(2, q), and S denotes a semi-resolving set in PG(2, q) of
size |S| = 2q + β, β ∈ Z, β ⩾ −1. Almost every line intersects S in at least two points:
at most |S| + 1 lines can be exceptional (that is, a (⩽ 1)-secant). It would be natural
to note how many exceptional lines are on a point P , yet we need a less straightforward
number assigned to the points.

Definition 24. Let S be a semi-resolving set. For a point P , let the ith index of P ,
denoted by indi(P ), be the number of i-secants to S through P . Let the index of P ,
denoted by ind(P ), be 2ind0(P ) + ind1(P ). For the sake of simplicity, denote the index
of the ideal point (m) by ind(m) instead of ind((m)).

Note that if P /∈ S, then ind0(P ) ⩽ 1 (as there is at most one skew line through P ); if
P ∈ S, then ind(P ) ⩽ 1 (as there are no skew lines and at most one tangent through P ).

We will use the following algebraic result. For r ∈ R, let r+ := max{0, r}.

Result 25 (Szőnyi-Weiner Lemma [8, 9]). Let u, v ∈ GF(q)[X,Y ]. Suppose that the
term Xdeg(u) has non-zero coefficient in u(X,Y ) (that is, the degree of u remains un-
changed after substituting an element into the variable Y ). For y ∈ GF(q), let ky :=
deg gcd (u(X, y), v(X, y)), where gcd denotes the greatest common divisor of the two poly-
nomials in GF(q)[X]. Then for any y ∈ GF(q),∑

y′∈GF(q)

(ky′ − ky)
+ ⩽ (deg u− ky)(deg v − ky).
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Proposition 26. Let P ∈ P \ S. Assume ind(P ) ⩽ q − 2, and β ⩽ 2q − 4. Let t be the
number of tangents to S plus twice the number of skew lines to S. Then

ind(P )2 − (q − β)ind(P ) + t ⩾ 0, (1)

and

ind(P )2 − (q − β)ind(P ) + 2q + β ⩾ 0. (2)

Proof. As ind0(P ) + ind1(P ) ⩽ ind(P ) ⩽ q − 2, there are at least three lines through P
intersecting S in at least two points, and all other lines intersect S in at least one point
except possibly the unique skew line. Among these three (⩾ 2)-secants, there must be
one intersecting S in s ⩽ q − 1 points, otherwise |S| ⩾ 3q + q − 3 = 4q − 3 would hold,
contradicting β ⩽ 2q − 4.

Choose a coordinate system such that this s-secant line is the line at infinity ℓ∞,
(∞) /∈ S and P ̸= (∞). This can be done as s ⩽ q − 1. Let the set of the |S| − s

affine points of S be {(xi, yi)}|S|−s
i=1 . Denote by D the set of non-vertical directions that

are outside S, D ⊂ GF(q). As (∞) /∈ S, |D| = q − s.
Let

R(B,M) =

|S|−s∏
i=1

(Mxi +B − yi) ∈ GF(q)[B,M ]

be the Rédei polynomial of S ∩AG(2, q). If we substitute M = m (m ∈ GF(q)), then the
multiplicity of the root b of the one-variable polynomial R(m,B) is the number of affine
points of S on the line Y = mX+ b. Fix m ∈ GF(q), and recall that ℓ∞ is a (⩾ 2)-secant.
Define km as km = deg gcd(R(m,B), (Bq − B)2). Thus km equals the number of single
roots plus twice the number of roots of multiplicity at least two.

If m ∈ D, then the number of lines with slope (m) that intersect S ∩ AG(2, q) in
at least one point or in at least two points is q − ind0(m) and q − (ind0(m) + ind1(m)),
respectively, thus km = q − ind0(m) + (q − ind0(m)− ind1(m)) = 2q − ind(m).

We use the Szőnyi-Weiner Lemma with u(B,M) = R(B,M) and v(B,M) = (Bq−B)2.
Note that the leading coefficient of both polynomials in B is one, so Result 25 applies.
Let P = (p) be our point on ℓ∞ whose index shall be estimated. By the Lemma,

∑
m∈D

(km − kp) ⩽
∑

m∈GF(q)

(km − kp)
+ ⩽ (|S| − s− kp)(2q − kp) = (ind(P ) + β − s)ind(P ).

On the other hand, let δ =
∑

m∈D ind(m); that is, we count the tangents and the skew
line intersecting ℓ∞ in D with multiplicity one and two, respectively. Then

∑
m∈D(km −

kp) =
∑

m∈D(ind(P )−ind(m)) = (q−s)ind(P )−δ. Combined with the previous inequality
we get

ind(P )2 − (q − β)ind(P ) + δ ⩾ 0. (3)
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As δ ⩽ t, we obtain inequality (1). Furthermore, as the (possibly not existing) skew line
(counted with multiplicity two) may have a slope in D, and the (possibly not existing)
tangents through the s (s ⩾ 2) points in [ℓ∞]∩S are not counted in δ, then δ ⩽ |S|−s+2 ⩽
|S| = 2q + β. This gives inequality (2).

Proposition 27. Suppose β ⩽ q/4 − 5/2. Let P /∈ S. Then ind(P ) ⩽ 2 or ind(P ) ⩾
q − β − 2.

Proof. Suppose that P /∈ S and ind(P ) ⩽ q − 2 (in order to use the inequality (2)
in Proposition 26). Substituting ind(P ) = 3 or ind(P ) = q − β − 3 into (2), we get
β ⩾ (q − 9)/4, a contradiction. Thus either ind(P ) ⩽ 2, or ind(P ) ⩾ q − β − 2.

Hence, if β ⩽ q/4− 5/2, we may call the index of a point large or small, according to
the two possibilities above.

Proposition 28. Assume β ⩽ q/4− 5/2 and q ⩾ 4. Then on every tangent to S there is
at least one point with large index, and on the (possibly not existing) skew line there are
at least two points with large index.

Proof. Let ℓ be a skew line. A tangent line intersects ℓ in a point with index at least
three, hence in a point with large index. If there were at most one point with large index
on ℓ, then there would be at most q tangents to S, whence the parameter t in Proposition
26 would be at most q + 2. A point P on ℓ with small index has index two, while by
inequality (1) we have ind(P )2 − (q− β)ind(P ) + q+2 = 2β +6− q ⩾ 0, in contradiction
with β ⩽ q/4− 5/2 under q ⩾ 4.

Suppose that ℓ is tangent to S. Suppose that all indices on ℓ are at most two. Then
there is no skew line to S as the intersection point would have index at least three.
Then we have t ⩽ 1 + q. If there is a point P ∈ [ℓ] \ S with index two, (1) gives
4− 2(q − β) + q + 1 = β + 5− q ⩾ 0, a contradiction. If all points on ℓ have index one,
then t = 1, and (1) yields 2− q + β ⩾ 0, again a contradiction.

Theorem 29. Let S be a semi-resolving set in PG(2, q), q ⩾ 4. If |S| < 2q + q/4 − 3,
then one can add at most two points to S to obtain a double blocking set.

Proof. Proposition 27 works, and by Proposition 28 we see that if there is no point with
large index, then S is a double blocking set, hence |S| ⩾ τ2. Hence we may assume that
there are points with large index.

Suppose that there exists a line ℓ skew to S. Assume that there exist three points
with large index on ℓ. Then the number of tangent lines to S through these points is
at least 3(q − β − 4) > 3(3q/4 − 1) = 9q/4 − 3. On the other hand, there are at most
|S| < 2q+ q/4− 3 of them, a contradiction. Thus there are at most two points with large
index on ℓ.

Suppose that there is a point P with large index not on ℓ. Then the intersection points
of the q − β − 2 > 3q/4 + 1 > 3 tangents through P with ℓ would have index ⩾ 3, hence
a large index, which is not possible. Thus every point with large index is on ℓ, and hence
there are at most two of them.
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If there is no skew line to S, then the number of points with large index is also at most
two, as on three points with large index we would see at least 3(q − β − 2) − 3 > 9q/4
tangents to S, again a contradiction.

Recall that the points with large index are not in S. Add the points with large index
to S. Then, by Proposition 28, we obtain a double blocking set.

Corollary 30 (Theorem 4). Let S be a semi-resolving set in PG(2, q), q ⩾ 4. Then
|S| ⩾ min{2q + q/4− 3, τ2 − 2}.

Recall that τ2(PG(2, q)) = 2q+2
√
q+2 if q ⩾ 9 is a square (Result 21). Thus if q ⩾ 121

is a square, then τ2−2 < 2q+q/4−3, hence µS(PG(2, q)) ⩾ 2q+2
√
q. Proposition 22 (ii)

shows that equality holds. As PG(2, q) is isomorphic to its dual, Theorem 4 holds for lines
as well, that is, if we want to resolve the point-set of PG(2, q) by a set of lines, the same
bounds apply. Hence the double of the respective bounds are valid for split resolving sets,
so Corollary 5 follows. From the results of [4] it follows that in PG(2, q), q = ph, p prime,
q > 256 if p > 3 and q > 224 if p = 2, 3, any double blocking set of size 2(q +

√
q + 1) is

the union of two disjoint Baer subplanes. Consequently, assuming the respective bounds
on q, all semi-resolving sets of size 2q + 2

√
q are obtained in Proposition 22 (ii).

We remark that for small values of q, there are semi-resolving sets smaller than τ2−2.
Three points in general position show τ2(PG(2, q)) = 3. A vertexless triangle (the union
of the pointset of three lines in general position without their three intersection points) is
easily seen to be a semi-resolving set of size 3q − 3 for q ⩾ 3. If q ⩾ 4, we may take out
one more (arbitrary) point to obtain a semi-resolving set of size 3q−4. (In fact, there are
no smaller semi-resolving sets than the previous ones for q = 2, 3, 4.) On the other hand,
τ2(PG(2, q)) = 3q for q = 2, 3, 4, 5, 7, 8 (mentioned in [1]; this result is due to various
authors).

Finally, let us mention an immediate consequence of Theorem 29 on the size of a
blocking semioval. For more information on semiovals, we refer to [6].

Definition 31. A point-set S in a finite projective plane is a semioval, if for all P ∈ S,
there is exactly one tangent to S through P . A semioval S is a blocking semioval, if there
are no skew lines to S.

Lower bounds on the size of blocking semiovals are of interest. Up to our knowledge,
the following is the best bound known.

Result 32 (Dover [5]). Let S be a blocking semioval in an arbitrary projective plane of
order q. If q ⩾ 7, then |S| ⩾ 2q + 2. If q ⩾ 3 and there is a line intersecting S in q − k
points, 1 ⩽ k ⩽ q − 1, then |S| ⩾ 3q − 2q/(k + 2)− k.

Corollary 33. Let S be a blocking semioval in PG(2, q), q ⩾ 4. Then |S| ⩾ 9q/4− 3.

Proof. By Proposition 20, S is clearly a semi-resolving set. Suppose to the contrary that
|S| < 9q/4− 3. Then by Theorem 29, we find two points, P and Q, such that S ∪ {P,Q}
is a double blocking set, that is, P and Q block all the |S| tangents to S. On the other
hand, |S| ⩾ τ2 − 2 > 2q + 1 (here we use q ⩾ 4 and τ2 = 3q for q ⩽ 8, τ2 ⩾ 2q + 2

√
q + 2

for q ⩾ 9.) Hence S has more than 2q+1 tangents. However, P and Q can block at most
2q + 1 of them, a contradiction.
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Note that Dover’s result is better than Corollary 33 if there is a line intersecting the
blocking semioval in more than q/4 points (roughly).
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Figure 3: The 32 types of resolving sets of size 4q − 4.
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Clarifications and minor corrections regarding the 32 types of

smallest resolving sets in finite projective planes of order q ⩾ 23
as appeared in

Tamás Héger, Marcella Takáts: Resolving sets and semi-resolving sets in finite
projective planes. Electronic J. Comb. 19:4 #P30 (2012)

January 31, 2017

Aim and scope of the corrigendum

The original paper contains no major errors, all main results are valid; we only wish to
clarify here a few subtle details due to incoherent emphases in the list of the 32 types of
resolving sets of size 4q− 4 in Section 3 and in the corresponding Figure 3, and to fix one
minor inaccuracy. All these corrections have significance only if one needs the complete
list of resolving sets of size 4q − 4, in particular when relying on Figure 3; some subcases
may easily be missed if one studies the original figure. The upcoming additions and the
upgraded version of Figure 3 found on the next page and appearing as Figure 4 clear up
these problems.

Clarifications and corrections

Regarding Section 3, the following remarks should be taken into account.

• 4. In this case, U = R′ may also occur. Thus

1. in (C10) (p13, l -10), we may add R′Q as well to solve P2’;

2. in (C12) (p13, l -9), we may add the line connecting R′ and ℓ0 ∩ RQ to solve
P2’.

• 9. b) To be coherent, it is worth emphasising that Z = ℓ0 ∩ R′Q is forbidden in
(C29) as well, and that Z = Q is also possible in (C30) (p14, l4).

Parts (C10), (C12), (C15), (C29), (C30), (C31), (C32) and the legend of Figure 3
have been updated accordingly. These changes mostly clarify special cases; e.g., in (C29),
Z ∈ ℓ0 may be P or ℓ0 ∩ R′T as well, and thus, not to suggest the contrary, these points
are not depicted as outer points anymore but as possibly added points. So a possibly
added point W is in PS if and only if we choose Z = W . Another type of correction
regards the added lines; e.g., in (C10), the added line may intersect e in any point of PS

including the added point R′; hence we have not depicted the intersection as a point of
S∗. Furthermore, some subtle aesthetical changes have been made without mention.
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Figure 4: The 32 types of resolving sets of size 4q − 4 with |PS| ⩽ |LS|.
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