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Abstract

An identifying vertex cover in a graph G is a subset T of vertices in G that has
a nonempty intersection with every edge of G such that T distinguishes the edges,
that is, e∩T 6= ∅ for every edge e in G and e∩T 6= f ∩T for every two distinct edges
e and f in G. The identifying vertex cover number τD(G) of G is the minimum size
of an identifying vertex cover in G. We observe that τD(G) + ρ(G) = |V (G)|, where
ρ(G) denotes the packing number of G. We conjecture that if G is a graph of order n

and size m with maximum degree ∆, then τD(G) 6
(

∆(∆−1)
∆2+1

)
n +

(
2

∆2+1

)
m. If

the conjecture is true, then the bound is best possible for all ∆ > 1. We prove this
conjecture when ∆ > 1 and G is a ∆-regular graph. The three known Moore graphs
of diameter 2, namely the 5-cycle, the Petersen graph and the Hoffman-Singleton
graph, are examples of regular graphs that achieves equality in the upper bound.
We also prove this conjecture when ∆ ∈ {2, 3}.

Keywords: Vertex cover, Identifying vertex cover, Transversal.

1 Introduction

For notation and graph theory terminology, we in general follow [2]. Specifically, let
G = (V,E) be a graph with vertex set V = V (G), edge set E = E(G), order n(G) = |V |
and size m(G) = |E|. The open neighborhood of a vertex v ∈ V is NG(v) = {u ∈ V |uv ∈
E(G)} and its closed neighborhood is the set NG[v] = NG(v) ∪ {v}. The degree of v is
dG(v) = |NG(v)|. If the graph G is clear from the context, we simply write n, m, N(v),
N [v] and d(v) rather than n(G), m(G), NG(v), NG[v] and dG(v), respectively. The set of
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vertices at distance 2 from a vertex v in G we denote by N2(G; v), or simply by N2(v)
is the graph G is clear from the context. A subcubic graph is a graph with maximum
degree 3. A path and a cycle on n vertices are denoted by Pn and Cn, respectively.

For a set S ⊆ V , its open neighborhood is the set N(S) = ∪v∈SN(v) and its closed
neighborhood is the set N [S] = N(S) ∪ S. A set S of vertices in G is a packing if the
vertices of S are pairwise at distance at least 3 apart in G; that is, for distinct vertices u
and v in S, we have dG(u, v) > 3 or, equivalently, N [u] ∩N [v] = ∅. The packing number
ρ(G) of G is the maximum cardinality of a packing in G. A packing of cardinality ρ(G)
in G is called a ρ(G)-packing.

A vertex and an edge are said to cover each other in a graph G if they are incident in
G. A (vertex) cover in G is a set of vertices that covers all the edges of G. We remark
that a cover is also called a transversal or hitting set in the literature. Thus a cover T has
a nonempty intersection with every edge of G. The (vertex) covering number τ(G) of G
is the minimum cardinality of a cover in G. A cover of size τ(G) is called a τ(G)-cover.
We say that an edge e in G is covered by a set T if e ∩ T 6= ∅. In particular, if T is a
cover in G, then T covers every edge of G.

We define a subset T of vertices in G to be an identifying vertex cover, abbreviated
id -cover, if T is a cover in G that distinguishes the edges, that is, e∩ T 6= f ∩ T for every
two distinct edges e and f in G. We remark that every graph has an id-cover since V (G)
is such a set. The identifying vertex covering number, abbreviated id -covering number,
τD(G) of G is the minimum size of an id-cover in G. An id-cover of size τD(G) is called a
τD(G)-cover.

Julien Moncel1 in his PhD thesis (in French) was the first to observe that an id-cover
is precisely the complement of a packing.

Observation 1. ([9]) A set of vertices in a graph is an id-cover if and only if it is the
complement of a packing.

As an immediate consequence of Observation 1, we have the following relationship
between the id-covering number and the packing number of a graph.

Corollary 2. ([9]) For every graph G, we have τD(G) + ρ(G) = |V (G)|.
Covers in graphs and more generally, transversals in hypergraphs, are very well studied

in the literature. Identifying vertex covers in graphs and hypergraphs have applications,
for example, in identifying open codes (also called open-locating-dominating sets or a
strong identifying codes in the literature (see, for example, [3, 7, 11, 12]). Identification
of edges of a graph have been studied, for example, in [5, 6] and elsewhere. We remark
that there is a strong link between id-covers in graphs and test covers, which are studied
for example in [10]. An id-cover is both a set cover and a test cover of a 2-regular
hypergraph. The dual case of test covers of graphs was studied in [1]. Recently the
authors [3] obtained results on identifying open codes in cubic graphs using distinguishing
transversal in hypergraphs. A bibliography of papers concerned with identifying codes,
currently listing over 170 papers, is maintained by Lobstein [8].

1We remark that Moncel used slightly different terminology to the authors and viewed a packing as
an error-correcting code.
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2 Main Results

Our aim in this paper is to establish an upper bound on the identifying vertex covering
number of a graph in terms of its order, size and maximum degree. In particular, we
establish upper bounds on the id-covering number of a regular graph in terms of its order
and size and of a subcubic graph in terms of its order and size. The results we present in
this paper on id-covers in graphs give support for the following conjecture.

Conjecture 3. If G is a graph of order n and size m with maximum degree ∆, then

τD(G) 6

(
∆(∆− 1)

∆2 + 1

)
n+

(
2

∆2 + 1

)
m.

When ∆ = 1, the bound in Conjecture 3 simplifies to τD(G) 6 m, which is trivially
true since in this case G consists of a disjoint union of copies of K1 and K2.

In this paper, we prove the following results. Proofs of Theorem 4, Theorem 5 and
Theorem 6 are given in Section 3, Section 4 and Section 5, respectively.

Theorem 4. Conjecture 3 is true when ∆ > 1 and G is a ∆-regular graph.

Theorem 5. Conjecture 3 is true when ∆ = 2.

Theorem 6. Conjecture 3 is true when ∆ = 3.

Recall (or see [4, 13]) that the Moore graphs of diameter 2 are ∆-regular graphs (of
girth 5) and order n = ∆2 + 1 and exist for ∆ = 2, 3, 7 and possibly 57, but for no other
degrees. The Moore graphs for the first three values of ∆ are unique, namely

• The 5-cycle (2-regular graph on n = 5 vertices)
• The Petersen graph (3-regular graph on n = 10 vertices)
• The Hoffman-Singleton graph (7-regular graph on n = 50 vertices).

Since these graphs G have diameter 2, their packing number ρ(G) = 1, implying
by Corollary 2 that τD(G) = n − 1. However in this case the conjectured bound in
Conjecture 3 simplifies to precisely n − 1. Hence the bound in Conjecture 3 is achieved
by the three known Moore graphs of diameter 2.

We remark that if Conjecture 3 is true, then the bound is best possible due to the star
G = K1,∆, where ∆ > 1, which has order n = ∆ + 1, size m = ∆, maximum degree ∆
and τD(G) = ∆, implying that

τD(G) = ∆ =
∆(∆− 1)(∆ + 1)

∆2 + 1
+

2∆

∆2 + 1
=

(
∆(∆− 1)

∆2 + 1

)
n+

(
2

∆2 + 1

)
m.

Although we have yet to find a family of connected graphs with arbitrary large order
relative to the maximum degree that achieve equality in the bound of Conjecture 3, there
are such graphs with id-covering number arbitrarily close to the conjectured bound. For
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example, for s < ∆ if we take s disjoint copies of a star K1,∆ and add s − 1 edges by
joining a leaf from one of the stars to a leaf from each of the other stars, and denote the
resulting connected graph by G and its order by n, then τD(G) = n− s, while the upper
bound in Conjecture 3 simplifies to n−s+2(s−1)/(∆2 +1) which can be made arbitrarily
close to τD(G) by letting s� ∆.

3 Proof of Theorem 4

In this section, we give a proof of Theorem 4. We first present the following theorem.

Theorem 7. If G is a graph of order n with maximum degree ∆, then

τD(G) 6

(
∆2

∆2 + 1

)
n.

Proof. Let S be a ρ(G)-packing. Then, N(v) ∪ N2(v) ⊆ V \ S for every vertex v ∈ S.
Further if u /∈ S, then, by the maximality of S, we must have that d(u, v) 6 2 for some
vertex v ∈ S, implying that

V \ S =
⋃
v∈S

(N(v) ∪N2(v)).

Hence since |N(v)| 6 ∆ and |N2(v)| 6 |N(v)|(∆− 1) for each v ∈ S, we have that

n− |S| = |V \ S| 6
∑
v∈S

(|N(v)|+ |N2(v)|) 6 ∆2 · |S|,

and so, ρ(G) = |S| > n/(∆2 + 1). The desired result now follows from Corollary 2.

As a consequence of Theorem 7, we can readily deduce Theorem 4. Recall its state-
ment.

Theorem 4. If G is a ∆-regular graph of order n and size m, then

τD(G) 6

(
∆(∆− 1)

∆2 + 1

)
n+

(
2

∆2 + 1

)
m.

Proof. Since G is a ∆-regular graph, 2m = ∆n. Hence by Theorem 7, we have

τD(G) 6

(
∆2

∆2 + 1

)
n

=

(
∆2 −∆

∆2 + 1

)
n+

(
∆

∆2 + 1

)
n

=

(
∆2 −∆

∆2 + 1

)
n+

(
2

∆2 + 1

)
m.
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As observed earlier, the 5-cycle (2-regular graph on n = 5 vertices), the Petersen graph
(3-regular graph on n = 10 vertices) and the Hoffman-Singleton graph (7-regular graph
on n = 50 vertices) are examples of regular graphs that achieve equality in the bound of
Theorem 4.

4 Proof of Theorem 5

The packing number of a path and a cycle is well-known. Hence using the relationship
between the id-covering number and the packing number of a graph in Corollary 2, we
have the following result.

Proposition 8. The following holds.
(a) For n > 1, τD(Pn) = b2n/3c.
(b) For n > 3, τD(Cn) = d2n/3e.

As a consequence of Proposition 8, we have that if G is a path on n vertices and m
edges, then τD(G) 6 2(2n − 1)/5 = 2(n + m)/5 with equality if and only if G = P3.
Further if G is a cycle on n vertices and m edges, then τD(G) 6 4n/5 = 2(n + m)/5
with equality if and only if G = C5. Hence we have the following result, which proves
Theorem 5.

Theorem 9. If G is a graph of order n and size m with maximum degree 2, then τD(G) 6
2(n+m)/5 with equality if and only if every component of G is a path P3 or a cycle C5.

5 Proof of Theorem 6

In order to prove Theorem 6, we prove a stronger result. For this purpose, we shall need
the following notation. Let G = (V,E) be a graph.

We call P = (E2, F2) a 2-edge-partition of E if P is a weak partition of E (that is,
some of the subsets of the partition may be empty) such that E2 ∪ F2 = E. Let T be a
cover in G such that the edges in F2 are distinguished, i.e., if e, f ∈ F2 and e 6= f , then
e ∩ T 6= f ∩ T . We call T a P-cover of G. We call an edge in E2 an E2-edge and an
edge in F2 an F2-edge. We define the P-covering number of G, denoted τP(G), to be the
minimum cardinality of a P-cover in G.

Let X be a subset of vertices in G (possibly, X = ∅). For a given 2-edge-partition P
of E, let T be chosen to be a P-cover of G such that X ⊆ T . We call such a P-cover T a
(P , X)-cover of G and we define the (P , X)-covering number of G, denoted τ(G;P , X) to
be the minimum size of a (P , X)-cover in G. If X = ∅, a (P , X)-cover of G is a P-cover
of G and we write τ(G;P) rather than τ(G;P , X).

In order to prove Theorem 6, we need to prove the following stronger result.
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Theorem 10. Let G = (V,E) be a graph with ∆(G) 6 3 and let P = (E2, F2) be a
2-edge-partition of E and let X ⊆ V . Then,

10τ(G;P , X) 6 6n(G) + 2|F2|+ |E2|+ 4|X|.

Proof. Define ξ(G;P , X) = 6n(G) + 2|F2|+ |E2|+ 4|X| for all graphs G with associated
2-edge-partition P and subset X ⊆ V . We wish to prove that 10τ(G;P , X) 6 ξ(G;P , X)
when ∆(G) 6 3. Assume that the theorem is false. Among all counterexamples, let
G = (V,E) with associated 2-edge-partition P and subset X ⊆ V be chosen so that

(1) G has minimum order n(G).
(2) Subject to (1), |F2| is a minimum.

Since G is a counterexample to the theorem, 10τ(G;P , X) > ξ(G;P , X). Clearly,
|E| > 1, for otherwise 10τ(G;P , X) = 10|X| 6 6n(G) + 4|X| = ξ(G;P , X), a contra-
diction. Further, n(G) > 3, for otherwise 10τ(G;P , X) = 10 < ξ(G;P , X) if |X| < 2
and 10τ(G;P , X) = 20 < ξ(G;P , X) if |X| = 2, a contradiction. If G is not connected,
then by the minimality of the order of G the theorem holds for all components of G
and therefore for G. This is a contradiction to G being a counterexample. Hence, G is
connected.

We will now prove a number of claims. In these claims we shall adopt the following
notation. Let G′ = (E ′, V ′) be a graph with ∆(G′) 6 3 and let P ′ = (E ′2, F

′
2) be a

2-edge-partition of E ′ and let X ′ ⊆ V ′. We now define

ξ∆(G′;P ′, X ′) = ξ(G;P , X)− ξ(G′;P ′, X ′)
τ∆(G′;P ′, X ′) = τ(G;P , X)− τ(G′;P ′, X ′).

The usefulness of these definitions will become clear in Lemma 11 and the following
claims. We shall invoke Lemma 11 throughout the proof of Theorem 10. The essential
idea when applying Lemma 11 is to prove properties on the structure of G = (V,E)
with associated 2-edge-partition P and subset X ⊆ V by extending a cover of a modified
instance G′ = (V ′, E ′) with associated 2-edge-partition P ′ and subset X ′ ⊆ V ′ that is
smaller than G in terms of the order defined by conditions (a) and (b) in Lemma 11 and
deriving a contradiction.

Lemma 11. If G′ = (E ′, V ′) is a graph, X ′ ⊆ V ′, and P ′ = (E ′2, F
′
2) a 2-edge-partition

of E ′ such that ξ∆(G′;P ′, X ′) > 10τ∆(G′;P ′, X ′), then the following hold.
(a) n(G′) > n(G).
(b) If equality holds in (a), then |F ′2| > |F2|.

Proof. Suppose to the contrary that such a graph G′, subset X ′, and associated 2-
edge-partition P ′ exists such that (a) or (b) do not hold. By the minimality of G we
have 10τ(G′;P ′, X ′) 6 ξ(G′;P ′, X ′). By assumption, ξ∆(G′;P ′, X ′) > 10τ∆(G′;P ′, X ′).
Hence, ξ(G;P , X) − ξ(G′;P ′, X ′) = ξ∆(G′;P ′, X ′) > 10τ∆(G′;P ′, X ′) = 10τ(G;P , X) −
10τ(G′;P ′, X ′) > 10τ(G;P , X) − ξ(G′;P ′, X ′), and so, ξ(G;P , X) > 10τ(G;P , X), a
contradiction.
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Claim A: X = ∅.

Proof. Suppose that X 6= ∅. Suppose that there exist distinct edges e1, e2 ∈ F2 that
intersect X such that e1 ∩ X = e2 ∩ X. Then, |e1 ∩ X| = 1. Let e1 = {v, v1} and
e2 = {v, v2}. Let G′ be obtained from G−{e1, e2} by adding the edge e′ = {v1, v2} if this
edge does not already exist. Let P ′ = (E ′2, F

′
2), where E ′2 = E2∪{e′} and F ′2 = F2\{e1, e2}.

Let X ′ = X. Then, n(G′) = n(G), |E ′2| 6 |E2| + 1, |F ′2| = |F2| − 2 and |X ′| = |X|,
implying that ξ∆(G′;P ′, X ′) > 4 − 1 = 3. Every (P ′, X ′)-cover in G′ is a (P , X)-cover
in G, implying that τ(G;P , X) 6 τ(G′;P ′, X ′) and therefore τ∆(G′;P ′, X ′) 6 0. Hence,
ξ∆(G′;P ′, X ′) > 3 > 10τ∆(G′;P ′, X ′), contradicting Lemma 11. Hence if e1, e2 ∈ F2 are
distinct edges that intersect X, then e1 ∩X 6= e2 ∩X.

If X = V , then 10τ(G;P , X) = 10n(G) < ξ(G;P , X), a contradiction. Hence, X 6= V .
Let G′ = G −X (and so, the vertices in X and the edges incident with X are deleted).
Let P ′ = (E ′2, F

′
2), where E ′2 = E2 ∩ E(G′) and F ′2 = F2 ∩ E(G′). Let X ′ = ∅. Since

distinct edges in F2 have distinct intersections with X, every τ(G′;P ′, X ′)-cover can be
extended to a τ(G;P , X)-cover by adding to it the set X, implying that τ(G;P , X) 6
τ(G′;P ′, X ′)+ |X|, and so τ∆(G′;P ′, X ′) 6 |X|. We note that n(G′) = n(G)−|X|, and so
ξ∆(G′;P ′, X ′) > 6|X|+ 4|X| = 10|X| > 10τ∆(G′;P ′, X ′), contradicting Lemma 11.

Claim B: Every degree-3 vertex is incident with three E2-edges or three F2-edges.

Proof. Suppose that some vertex v of degree 3 is not incident with three E2-edges or
three F2-edges. Then either v is incident with one E2-edge and two F2-edges or with
one F2-edge and two E2-edges. Suppose that v is incident with exactly two F2-edges,
say e1 = {v, v1} and e2 = {v, v2}, and with one E2-edge, say e3. Let G′ be obtained
from G − {e1, e2, e3} by deleting the isolated vertex v and adding the edge e′ = {v1, v2}
if this edge does not already exist. Let P ′ = (E ′2, F

′
2), where E ′2 = (E2 \ {e3}) ∪ {e′} and

F ′2 = F2 \{e1, e2}. Let X ′ = X. Recall that by Claim A, X = ∅. Then, n(G′) = n(G)−1,
|E ′2| 6 |E2| and |F ′2| = |F2| − 2, implying that ξ∆(G′;P ′, X ′) > 6 + 4 = 10. Every
(P ′, X ′)-cover in G′ can be extended to a (P , X)-cover in G by adding to it the vertex
v, implying that τ(G;P , X) 6 τ(G′;P ′, X ′) + 1 and therefore τ∆(G′;P ′, X ′) 6 1. Hence,
ξ∆(G′;P ′, X ′) > 10 > 10τ∆(G′;P ′, X ′), contradicting Lemma 11.

Hence, v is incident with exactly two E2-edges, say f1 and f2, and with one F2-edge,
say f3. Let G′ be obtained from G− {f1, f2, f3} by deleting the resulting isolated vertex
v. Let P ′ = (E ′2, F

′
2), where E ′2 = E2 \ {f1, f2} and F ′2 = F2 \ {f3}. Let X ′ = X. Then,

n(G′) = n(G) − 1, |E ′2| = |E2| − 2 and |F ′2| = |F2| − 1, implying that ξ∆(G′;P ′, X ′) >
6 + 2 + 2 = 10. Every (P ′, X ′)-cover in G′ can be extended to a (P , X)-cover in G by
adding to it the vertex v, implying that τ∆(G′;P ′, X ′) 6 1. Hence, ξ∆(G′;P ′, X ′) > 10 >
10τ∆(G′;P ′, X ′), contradicting Lemma 11.

Claim C: δ(G) > 2.
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Proof. Suppose that δ(G) < 2. As observed earlier, n(G) > 3. The connectivity of G
implies that δ(G) = 1. Let u be a vertex of degree 1 in G and let e1 = {u, v} be the edge
incident with u.

Suppose that e1 ∈ E2. Let G′ = G − u and let P ′ = (E ′2, F
′
2), where E ′2 = E2 \ {e1}

and F ′2 = F2. Let X ′ = X ∪ {v} = {v} (recall that by Claim C, X = ∅). Then,
ξ∆(G′;P ′, X ′) > 6+1−4 = 3. Every (P ′, X ′)-cover in G′ is a (P , X)-cover in G, implying
that τ(G;P , X) 6 τ(G′;P ′, X ′) and therefore τ∆(G′;P ′, X ′) 6 0. Hence, ξ∆(G′;P ′, X ′) =
3 > τ∆(G′;P ′, X ′), contradicting Lemma 11. Therefore, e1 ∈ F2.

Now let G∗ = G − {u, v} and let P∗ = (E∗2 , F
∗
2 ), where E∗2 = E2 ∩ E(G∗) and

F ∗2 = F2 ∩ E(G∗). Let X∗ = {w | {v, w} ∈ F2 \ {e1}}. In other words, X∗ contains all
vertices different from u that are joined to v by an edge in F2. Then, ξ∆(G∗;P∗, X∗) >
12 + 2 + 2|X∗| − 4|X∗| = 14 − 2|X∗| > 10, since |X∗| 6 d(v) − 1 6 2. Every (P∗, X∗)-
cover in G∗ can be extended to a (P , X)-cover in G by adding to it the vertex v, im-
plying that τ(G;P , X) 6 τ(G∗;P∗, X∗) + 1 and therefore τ∆(G∗;P∗, X∗) 6 1. Hence,
ξ∆(G∗;P∗, X∗) > 10 > 10τ∆(G∗;P∗, X∗), contradicting Lemma 11. This completes the
proof of Claim C.

Claim D: Every vertex is incident with at least one F2-edge.

Proof. Suppose that some vertex v is incident with no F2-edge.

Claim D.1: dG(v) = 3.

Proof. Suppose that dG(v) = 2. Let e1 = {v, v1} and e2 = {v, v2} be the two edges
incident with v. Let G′ = G−v. Let P ′ = (E ′2, F

′
2), where E ′2 = E2 \{e1, e2} and F ′2 = F2.

Let X ′ = X ∪ {v1, v2}. Then, n(G′) = n(G) − 1, |E ′2| = |E2| − 2, |F ′2| = |F2| and |X ′| =
|X|+2, implying that ξ∆(G′;P ′, X ′) > 6+2−8 = 0. Every (P ′, X ′)-cover in G′ is a (P , X)-
cover in G, implying that τ(G;P , X) 6 τ(G′;P ′, X ′) and therefore τ∆(G′;P ′, X ′) 6 0.
Hence, ξ∆(G′;P ′, X ′) > 0 > 10τ∆(G′;P ′, X ′), contradicting Lemma 11.

By Claim D.1, dG(v) = 3. Let e1 = {v, v1}, e2 = {v, v2} and e3 = {v, v3} be the
three edges incident with v. Let G′ = G − {v, v1, v2, v3}. Let P ′ = (E ′2, F

′
2), where E ′2

is obtained from E2 by deleting all E2-edges incident with v1, v2 or v3 and where F ′2 is
obtained from F2 by deleting all F2-edges incident with with v1, v2 or v3. Let X ′ = X.
Then, n(G′) = n(G)− 4. If a neighbor of v is incident with no F2-edge, then as shown in
the proof of Claim D.1 such a vertex is incident with three E2-edges. If a neighbor of v
is incident with an F2-edge, then by Claim B, such a vertex is incident with exactly one
F2-edge (and one E2-edge, namely the edge joining it to v). In particular, if no neighbor
of v is incident with an F2-edge, then we note that at least six E2-edges are deleted when
constructing G′, implying that ξ∆(G′;P ′, X ′) > 24+6 = 30. If only one F2-edge is deleted
when constructing G′, we note that at least five E2-edges were deleted, implying that
ξ∆(G′;P ′, X ′) > 24 + 2 + 5 = 31. If at least two F2-edges are deleted when constructing
G′, we note that at least three E2-edges were deleted, implying that ξ∆(G′;P ′, X ′) >
24 + 4 + 3 = 31. In all three cases, we have ξ∆(G′;P ′, X ′) > 30. Every (P ′, X ′)-cover
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in G′ can be extended to a (P , X)-cover in G by adding to it the three vertices v1, v2

and v3, implying that τ(G;P , X) 6 τ(G′;P ′, X ′) + 3 and therefore τ∆(G′;P ′, X ′) 6 3.
Hence, ξ∆(G′;P ′, X ′) > 30 > 10τ∆(G′;P ′, X ′), contradicting Lemma 11. This completes
the proof of Claim D.

Claim E: For all F2-edges {u, v}, we have d(u) = 2 or d(v) = 2 (or both)

Proof. Suppose that there is an F2-edge e = {u, v} with d(u) = d(v) = 3. Let e1 = {u, u1},
e2 = {u, u2}, f1 = {v, v1} and f2 = {v, v2} be the edges in G adjacent with e. By Claim B,
all these edges are F2-edges. Let G′ be obtained from G−{u, v} by adding the two edges
{u1, u2} and {v1, v2}, and let P ′ = (E ′2, F

′
2), where E ′2 = E2 ∪ {{u1, u2}, {v1, v2}} and

F ′2 = F2 \ {e, e1, e2, f1, f2}. Let X ′ = X = ∅. Then, n(G′) = n(G) − 2, |E ′2| 6 |E2| + 2,
|F ′2| = |F2|−5 and |X ′| = |X| = 0, implying that ξ∆(G′;P ′, X ′) > 12+10−2 = 20. Every
(P ′, X ′)-cover in G′ can be extended to a (P , X)-cover in G by adding to it the two vertices
u and v, implying that τ(G;P , X) 6 τ(G′;P ′, X ′) + 2 and therefore τ∆(G′;P ′, X ′) 6 2.
Hence, ξ∆(G′;P ′, X ′) > 20 > 10τ∆(G′;P ′, X ′), contradicting Lemma 11.

Claim F: Every edge is an F2-edge.

Proof. Suppose that there is an E2-edge e = {v1, v2}. By Claims D, E, and F, every vertex
that is incident with an E2-edge has degree exactly 2 and is incident with an F2-edge.
In particular, d(v1) = d(v2) = 2. Let e1 and e2 be the F2-edges incident with v1 and v2,
respectively.

Claim F.1: The vertices v1 and v2 do not have a common neighbor.

Proof. Suppose that v1 and v2 have a common neighbor, v3 say. Hence, e1 = {v1, v3} and
e2 = {v2, v3}. Since ∆(G) = 3 and G is connected, we have that d(v3) = 3. Let e3 = v3v4

be the third edge incident with v3 that is distinct from e1 and e2. By Claim B, e3 is
an F2-edge. We now consider the graph G′ = G − {v1, v2, v3}. Let P ′ = (E ′2, F

′
2), where

E ′2 = E2\{e} and F ′2 = F2\{e1, e2, e3}. LetX ′ = X∪{v4} = {v4}. Then, n(G′) = n(G)−3,
|E ′2| = |E2| − 1, |F ′2| = |F2| − 3 and |X ′| = |X| + 1, implying that ξ∆(G′;P ′, X ′) >
18 + 6 + 1 − 4 = 21. Every (P ′, X ′)-cover in G′ can be extended to a (P , X)-cover in
G by adding to it the vertices v1 and v3, implying that τ(G;P , X) 6 τ(G′;P ′, X ′) +
2 and therefore τ∆(G′;P ′, X ′) 6 2. Hence, ξ∆(G′;P ′, X ′) > 21 > 10τ∆(G′;P ′, X ′),
contradicting Lemma 11.

Let e1 = {v1, w1} and e2 = {v2, w2}. By Claim F.1, w1 6= w2.

Claim F.2: d(w1) = d(w2) = 3.

Proof. Suppose that d(w1) = 2. Let e3 = {w1, w3} be the edge incident with w1 that
is distinct from e1. Suppose that e3 ∈ E2. Let G′ be obtained from G by deleting the
four edges e, e1, e2, e3 and the resulting isolated vertices v1, v2 and w1. Let P ′ = (E ′2, F

′
2),

where E ′2 = E2\{e, e3} and F ′2 = F2\{e1, e2}. Let X ′ = X∪{w2} = {w2}. Then, n(G′) =
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n(G)−3, |E ′2| = |E2|−2, |F ′2| = |F2|−2 and |X ′| = |X|+1, implying that ξ∆(G′;P ′, X ′) >
18 + 4 + 2 − 4 = 20. Every (P ′, X ′)-cover in G′ can be extended to a (P , X)-cover in
G by adding to it the vertices v2 and w1, implying that τ(G;P , X) 6 τ(G′;P ′, X ′) +
2 and therefore τ∆(G′;P ′, X ′) 6 2. Hence, ξ∆(G′;P ′, X ′) > 20 > 10τ∆(G′;P ′, X ′),
contradicting Lemma 11. Therefore, e3 ∈ F2.

We now let G′ = G − {v1, v2, w1}. Let P ′ = (E ′2, F
′
2), where E ′2 = E2 \ {e} and

F ′2 = F2\{e1, e2, e3}. Let X ′ = X∪{w3} = {w3}. Then, n(G′) = n(G)−3, |E ′2| = |E2|−1,
|F ′2| = |F2|−3 and |X ′| = |X|+1, implying that ξ∆(G′;P ′, X ′) > 18+6+1−4 = 21. Every
(P ′, X ′)-cover in G′ can be extended to a (P , X)-cover in G by adding to it the vertices
v2 and w1, implying that τ(G;P , X) 6 τ(G′;P ′, X ′) + 2 and therefore τ∆(G′;P ′, X ′) 6 2.
Hence, ξ∆(G′;P ′, X ′) > 20 > 10τ∆(G′;P ′, X ′), contradicting Lemma 11. Therefore,
d(w1) = 3. Analogously, d(w2) = 3.

By Claim F.2, d(w1) = d(w2) = 3. By Claim B, all three edges incident with w1

(respectively, w2) are F2-edges. Let N(w1) = {v1, x1, y1} and let f1 = {w1, x1} and
g1 = {w1, y1} be the two edges incident with w1 that are distinct from e1 (note that
w2 ∈ {x1, y1} is possible). Renaming x1 and y1, if necessary, we may assume that x1 6= w2.

Let G∗ = G − {v1, v2, w1, x1, y1}. Let P∗ = (E∗2 , F
∗
2 ), where E∗2 = E2 ∩ E(G∗) and

F ∗2 = F2 ∩ E(G∗). Let X∗ = X = ∅. Then, n(G∗) = n(G) − 5 and |X∗| = |X|. Since
x1 6= w2, we note that apart from the edges e, e1, e2, f1, g1 we also delete at least one
further edge which is incident to x1. On the one hand, if such an edge is an E2-edge, then
|E∗2 | 6 |E2| − 2 and |F ∗2 | 6 |F2| − 4, implying that ξ∆(G∗;P∗, X∗) > 30 + 8 + 2 = 40. On
the other hand, if such an edge is an F2-edge, then |E∗2 | 6 |E2| − 1 and |F ∗2 | 6 |F2| − 5,
implying that ξ∆(G∗;P∗, X∗) > 30 + 10 + 1 = 41. In both cases, ξ∆(G∗;P∗, X∗) > 40.
By Claim C and Claim E, we note that d(x1) = d(y1) = 2. Hence every (P∗, X∗)-cover
in G∗ can be extended to a (P , X)-cover in G by adding to it the vertices v2, w1, x1

and y1, and so τ(G;P , X) 6 τ(G′;P ′, X ′) + 4 and therefore τ∆(G′;P ′, X ′) 6 4. Hence,
ξ∆(G′;P ′, X ′) > 40 > 10τ∆(G′;P ′, X ′), contradicting Lemma 11.

Claim G: G is triangle-free.

Proof. Suppose that there is a triangle T : v1v2v3v1 in G. By Claim C and Claim E, at least
two of the vertices in T have degree 2 inG. Renaming vertices, if necessary, we may assume
that d(v1) = d(v2) = 2. Since ∆(G) = 3 and G is connected, we have that d(v3) = 3.
Let w be the neighbor of v3 not in T . Let G′ = G − {v1, v2, v3} and let P ′ = (E ′2, F

′
2),

where E ′2 = E2 = ∅ and where F ′2 is obtained from F2 by deleting the four edges incident
with vertices in {v1, v2, v3}. Let X ′ = X ∪ {w}. Then, ξ∆(G′;P ′, X ′) = 18 + 8− 4 = 22.
Every (P ′, X ′)-cover in G′ can be extended to a (P , X)-cover in G by adding to it the
set {v2, v3}, implying that τ∆(G′;P ′, X ′) 6 2 and ξ∆(G′;P ′, X ′) > 20 > 10τ∆(G′;P ′, X ′),
contradicting Lemma 11.

Claim H: G contains no 5-cycle.

the electronic journal of combinatorics 19(4) (2012), #P32 10



Proof. Suppose that there is a 5-cycle C : v1v2v3v4v5v1 in G. By Claim G, G is triangle-
free, and so C is an induced cycle in G. Since ∆(G) = 3 and G is connected, we may
assume, renaming vertices of C if necessary, that d(v1) = 3. Let v6 be the neighbor of v1

not on C. By Claim C and Claim E, d(v2) = d(v5) = d(v6) = 2. By Claim E, at least
one of v3 and v4 has degree 2 in G. Renaming vertices if necessary, we may assume that
d(v3) = 2. Let G′ = G− V (C) and let P ′ = (E ′2, F

′
2), where E ′2 = E2 = ∅ and where F ′2 is

obtained from F2 by deleting all edges incident with vertices in V (C). On the one hand,
if d(v4) = 2, let X ′ = X = ∅. On the other hand, if d(v4) = 3, let w be the neighbor of
v4 not in C and let X ′ = X ∪ {w}. Therefore if d(v4) = 2, we have that ξ∆(G′;P ′, X ′) =
30 + 12 = 42, while if d(v4) = 3, we have that ξ∆(G′;P ′, X ′) = 30 + 14 − 4 = 40. In
both cases, ξ∆(G′;P ′, X ′) > 40. Every (P ′, X ′)-cover in G′ can be extended to a (P , X)-
cover in G by adding to it the set {v1, v2, v4, v5}, implying that τ∆(G′;P ′, X ′) 6 4 and
ξ∆(G′;P ′, X ′) > 40 > 10τ∆(G′;P ′, X ′), contradicting Lemma 11.

Claim I: G contains no 4-cycle.

Proof. Suppose that there is a 4-cycle C : w1w2w3w4w1 in G. By Claim G, G is triangle-
free, and so C is an induced cycle in G. Since ∆(G) = 3 and G is connected we may
assume, renaming vertices of C if necessary, that d(w1) = 3. Let w5 be the neighbor of w1

not in C. By Claim C and Claim E, d(w2) = d(w4) = d(w5) = 2. Let w6 be the neighbor
of w5 different from w1. If w3 = w6, then G = K2,3 and 10τ(G;P , X) = 40 < 30 + 12 =
ξ(G;P , X), a contradiction. Hence, w3 6= w6. Let W = {w1, w2, . . . , w6}. By Claim H,
w3 is not adjacent to w6, and so the vertex w5 is the only neighbor of w6 that belongs to
the set W .

On the one hand, if d(w6) = 2, let G′ = G−W . On the other hand if d(w6) = 3, then
let G′ be obtained from G−W by adding an E2-edge e′ joining the two neighbors of w6

not in W . Let P ′ = (E ′2, F
′
2), where E ′2 = ∅ if d(w6) = 2 and E ′2 = {e′} if d(w6) = 3,

and where F ′2 is obtained from F2 by deleting all edges incident with vertices in W . Let
X ′ = X = ∅. Then, n(G′) = n(G)− 6 and |X ′| = |X| = 0.

If d(w6) = 2, then |E ′2| = |E2| = 0 and |F ′2| = |F2| − 5 − d(w3) 6 |F2| − 7, implying
that ξ∆(G′;P ′, X ′) > 36 + 14 = 50. If d(w6) = 3, then |E ′2| = |E2| + 1 = 1 and
|F ′2| = |F2| − 6 − d(w3) 6 |F2| − 8, implying that ξ∆(G′;P ′, X ′) > 36 + 16 − 1 = 51. In
both cases, ξ∆(G′;P ′, X ′) > 50. Every (P ′, X ′)-cover in G′ can be extended to a (P , X)-
cover in G by adding to it the set W \ {w1}, implying that τ(G;P , X) 6 τ(G′;P ′, X ′) +
5 and therefore τ∆(G′;P ′, X ′) 6 5. Hence, ξ∆(G′;P ′, X ′) > 50 > 10τ∆(G′;P ′, X ′),
contradicting Lemma 11.

We now return to the proof of Theorem 10. Let u be any vertex of degree 3 in G and
let N(u) = {u1, u2, u3}. Further let e1 = {u, u1}, e2 = {u, u2} and e3 = {u, u3} be the
three edges incident with u in G. By Claim C and Claim E, we note that d(u1) = d(u2) =
d(u3) = 2. For i ∈ {1, 2, 3}, let fi = {ui, vi} be the edge incident with ui that is different
from ei. By Claim G, the set N(u) is an independent set. By Claim I, no two vertices in
N(u) have a common neighbor other than the vertex u; that is, vi 6= vj for 1 6 i < j 6 3.
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By Claim H, the set {v1, v2, v3} is an independent set. Let W be the set of all vertices
within distance 2 from u, and so W = {u, u1, u2, u3, v1, v2, v3}. As observed earlier, for
i ∈ {1, 2, 3}, the vertex ui is the only neighbor of vi that belongs to the set W .

Let G′ be obtained from G−W as follows: For each vertex vi, 1 6 i 6 3, of degree 3
in G, add an E2-edge containing the two neighbors of vi not in W . Hence if d(vi) = 2,
then we delete two F2-edges incident with vi when constructing G′, while if d(vi) = 3,
we delete three F2-edges incident with vi when construction G′ but add an E2-edge. Let
P ′ = (E ′2, F

′
2), where E ′2 consists of the added E2-edges, if any, and where F ′2 is obtained

from F2 by deleting all edges incident with vertices in W . Hence if ` denotes the number
of vertices in {v1, v2, v3} of degree 3 in G, then |E ′2| = |E2|+ ` = ` and |F ′2| = |F2| − 9− `.
Let X ′ = X = ∅. Then, n(G′) = n(G) − 7 and |X ′| = |X| = 0. Hence, ξ∆(G′;P ′, X ′) >
42 + 18 + 2`− ` = 60 + ` > 60. Every (P ′, X ′)-cover in G′ can be extended to a (P , X)-
cover in G by adding to it the set W \ {u}, implying that τ(G;P , X) 6 τ(G′;P ′, X ′) +
6 and therefore τ∆(G′;P ′, X ′) 6 6. Hence, ξ∆(G′;P ′, X ′) > 60 > 10τ∆(G′;P ′, X ′),
contradicting Lemma 11. This completes the proof of Theorem 10.
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