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Abstract

For a fixed integer m, we consider edge colorings of complete graphs which

contain no properly edge colored cycle Cm as a subgraph. Within colorings free of

these subgraphs, we establish a global structure by bounding the number of colors

that can induce a spanning and connected subgraph. In the case of small cycles,

namely C4, C5, and C6, we show that our bounds are sharp.

Keywords: proper coloring; forbidden subgraph; monochromatic subgraph

1 Introduction

This work considers edge colorings of complete graphs Kn on n vertices which contain
no properly edge colored cycle of length m as a subgraph, where m > 3 is an integer.
Within edge colorings free of a properly colored Cm, we establish a global structure on
the coloring by bounding the number of colors that can induce a spanning and connected
subgraph. For small m, namely for C4, C5, and C6, we show that our bounds are the best
possible. We tacitly assume that by coloring, we mean a partition of E(Kn) into parts
called color classes. A subgraph is called rainbow if all of its edges are colored distinctly
while a subgraph is called proper (elsewhere called “alternating” [1]) if no two adjacent
edges receive the same color.
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This project is primarily motivated by the following result of Gyárfás et al, who
translated the work of Gallai, recasting his work on oriented graphs to be sensible in the
context of graph coloring (see [6] and [7]).

Theorem 1 (Gallai [6], Gyárfás et al. [7]). A coloring of Kn is rainbow triangle free if

and only if there exists a partition of the vertices into at least two non-empty parts such

that between each pair of parts, all edges have a single color, between the parts in general,

the edges come from only two colors and within each part, the edges are colored to avoid

rainbow triangles.

This theorem is a strong structural result demonstrating how restricted the structure
of an edge colored complete graph Kn is if its coloring is known to be rainbow triangle
free. Theorem 1 has naturally led to an investigation of the structure of colorings of Kn

which are free of rainbow subgraphs other than triangles (see [2] and [3]).
In this work, we generalize the rainbow triangle free results, but do so by investigating

colorings of Kn which are free of proper cycles of length longer than three. For a coloring
G of Kn, we let G

i denote the subgraph of G induced on color i, and we say that color i is
spanning and connected if Gi is a spanning and connected subgraph of Kn. The following
theorem suggests the form of the structural results that we seek.

Theorem 2 (Gallai [6], Gyárfás et al. [7]). If a coloring of Kn is rainbow triangle free,

then there are at most two colors which are spanning and connected.

This theorem shows that a coloring of Kn with three or more spanning and connected
colors contains a rainbow triangle. In the translation of Gallai’s results, Theorem 2 was
the main tool in the proof of Theorem 1. Along these lines, our goal is to obtain analogs of
Theorem 2 for proper-Cm free colorings of Kn so as to find structural results as strong as
Theorem 1 for such graphs. In Sections 2, 3, and 4, we determine the number of spanning
and connected colors which respectively force the existence of a proper C4, C5, or C6.
In Section 5, we obtain more general results by finding upper and lower bounds for the
number of spanning and connected colors required to ensure the existence of a proper Cm,
for m > 4.

Note that a survey of Gallai’s results, as well as many others related to rainbow
subgraphs of complete graphs, can be found in [4] with an updated version maintained
at [5].

When it is convenient, we use names of colors like “red” or “green”.

2 Proper-C4 free Colorings

The first result of this section provides some structure to colorings of Kn that are free of
proper even cycles C2m. When m = 2, this result provides a first insight into the structure
of proper-C4 free colorings.

Theorem 3. For m > 2, if G is a proper-C2m free coloring of Kn, then the sum of the

diameters of the components of Gi is at most 2(m− 1). In particular, when m = 2, if G
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is a proper-C4 free coloring of Kn, then with the exception of isolated vertices, each color

in G is connected with diameter at most two.

Proof. This proof is by contradiction. Consider a coloring of Kn with no proper C2m

and suppose that G1 is spanning and connected but that there exist vertices a and b at
distance at least 2m − 1 in G1. Without loss of generality, choose a and b so that the
distance between them is exactly 2m − 1. Let P be a shortest path from a to b. Since
the path P is a shortest a− b path in color 1, all chords of this path must not have color
1. Label the vertices of P in order as a = a1, a2, . . . , a2m = b. Indices will be considered
modulo 2k.

Now, suppose m is even. Let C be a proper cycle constructed from P as follows:
For i > 0, consider the segment a4i+1a4i+2a4i+3a4i+4a4i+5. This segment is replaced by
the path segment Pi = a4i+1a4i+2a4i+4a4i+3a4i+5. By construction, this path segment Pi

is proper. If this process is repeated for all i 6 m/2 − 1, it produces a proper C2m for
a contradiction. Note that the case when i = m/2 − 1 produces the proper segment
a2m−3a2m−2a2ma2m−1a1.

If m is odd, we employ a similar process: For i 6 (m − 1)/2 − 1, we make the same
switches. For the final segment, when i = (m− 1)/2, we use is a2m−1a2ma1 to complete a
proper C2m for a contradiction.

A similar argument within and between components shows the result holds when Gi is
disconnected but the sum of the diameters of the components is greater than 2(m−1).

Note that a result like Theorem 3 does not hold in general for proper-C2m+1 free
colorings of Kn. Consider a red path on n− 2 vertices and a single isolated edge colored
in green. Color all other edges in this graph blue to yield a coloring of Kn. This coloring
contains no properly colored odd cycle of any length since every other edge in any proper
cycle C must be blue and thus C must be even. On the other hand, the subgraph induced
on the red edges in this coloring has diameter n − 3, thus demonstrating that we can
find colorings of Kn with no proper cycles of odd length and with at least one color with
large diameter. Applying Theorem 3, we obtain the analog of Theorem 2 for proper-C4

free colorings of Kn. The next theorem implies that any coloring containing two or more
spanning and connected colors forces the existence of a proper C4.

Theorem 4. For n > 4, if G is a proper-C4 free coloring of Kn, then G has at most one

spanning and connected color.

Proof. The proof is by induction on n. First, suppose n = 4. The only way for two colors
to be spanning and connected in a colored K4 is to have a P4 in color 1 and a P4 (the
complement of the first P4) in color 2. Then neither color induces a graph of diameter at
most two, contradicting Theorem 3.

Now, suppose the result holds for colorings of Kn−1, and let G be a coloring of Kn.
Suppose colors 1 and 2 are both spanning and connected in G. By induction, if we remove
any vertex v, we are left with at most one spanning and connected color, say color 1. Then,
in G2, the vertex v is a cut vertex. Since the diameter of G2 is at most two by Theorem 3,
the vertex v must be adjacent to all of G \ {v} in color 2. This means that color 2 is the
only spanning and connected color in G.
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This theorem establishes that, in a proper-C4 free coloring of a complete graph, there
is at most one spanning and connected color. On the other hand, there may not even be
one such color, as seen in the following example: Consider three sets A1, A2, and A3, each
of order n/3 (see Figure 1). Color all edges contained in each set Ai with color i and all
edges from Ai to Ai+1 with color i where indices are taken modulo 3. This example is
proper-C4 free but has no spanning and connected color.

1 2

3

1

23

Figure 1: Coloring with no proper C4 and no spanning and connected color

3 Proper-C5 free Colorings

We now obtain the analog of Theorem 2 for proper-C5 free colorings of Kn. Theorem 5
shows that any coloring containing three or more spanning and connected colors forces
the existence of a proper C5.

Theorem 5. For n > 5, if G is a proper-C5 free coloring of Kn, then G has at most two

spanning and connected colors.

Proof. The proof is by induction on n. Suppose G is a proper-C5 free coloring of Kn for
n > 5 in which at least 3 colors, say colors 1, 2, and 3, are spanning and connected. For
a base case, if n = 5, each spanning and connected color needs at least n − 1 = 4 edges
so there cannot be three spanning and connected colors on e(K5) = 10 edges. Thus, we
may assume n > 6. First, we show that the graph induced on each of colors 1, 2, and 3
has small diameter.

Claim 6. The diameter of Gi is at most three for all i.

Proof. This proof is by contradiction. Suppose the diameter of G1 is at least four. Then
there exists an induced path P = v1v2 . . . v5 on 5 vertices where the distance, in G1,
between v1 and v5 is four. By combining colors, we may assume that there are at most
two other colors, suppose 2 and 3, on the edges. Our first goal is to show that there is
only one color on the remaining edges in G′ = G[V (P )].
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First, suppose color 3 has only one edge e in G′ and all remaining edges within G[V (P )]
have color 2. Regardless of the position of e, it is easy to construct a proper C5 in this
structure so each color 2 and 3 must have at least two edges in G′. At least one of
these colors, say color 2, must be present on two disjoint edges. Suppose v1v3 and v2v4
both have color 2. The case where v1v3 and v2v5 have color 2 is similar and all other
cases can be argued similarly. Now, the edge v1v5 must also have color 2 since otherwise
v1v3v2v4v5v1 forms a proper C5. Also v3v5 must have color 2 since otherwise v1v2v4v3v5v1
gives a proper C5. Finally, if c(v1v4) = c(v2v5) = 3, then v1v4v5v2v3v1 yields a proper C5

(here c(e) denotes the color of the edge e). Hence, there is at most one edge of color 3,
for a contradiction. Thus, there are only two colors, say 1 and 2, on the edges of G′.

Since color 3 is spanning and connected, there exists a vertex v ∈ G \ P such that
c(vv1) = 3. It is easy to see that in order to avoid a proper C5, all edges from v to P
must have color 3. Now since color 1 is spanning and connected, there is an edge of color
1 from v to a vertex w ∈ G \ P . In particular, this means n must be at least 7. In order
to avoid easily constructing a proper C5, all edges from w to P must have color 1, but
this contradicts the assumption that the distance from v1 to v5 in G1 is four.

Continuing with the proof of Theorem 5, suppose there exists a vertex v such that
G \ {v} still has three spanning and connected colors. Then, by induction on n, there
exists a proper C5 in G \ {v} and so also in G. Thus, every vertex of G is a cut vertex of
Gi, for some 1 6 i 6 3. Let Si be the set of cut vertices of Gi for all i. For all i, since Gi

has diameter at most 3 by Claim 6, it can be shown that Si induces a complete graph in
color i.

Suppose for a moment that n > 7. Then |Si| > 3 for some i, and without loss of
generality, suppose i = 1. Let S1 = {s1, s2, s3, . . . } and let Vi be the set of vertices in
G \ S1 with only one edge in color 1 to S1, to si, for all i. Note that Vi 6= ∅ for all i since
every vertex of S1 must be a cut vertex of G1. The subgraph H induced by S1∪V1∪V2∪. . .
is shown Figure 2.

Claim 7. All edges in H have color 1 or color c 6= 1.

Proof. This proof is also by contradiction. In this proof, vi indicates any vertex in Vi.
Let i, j, k be distinct indices. Edges sivj and vjvk have the same color because otherwise,
sivjvkskvisi is a proper C5. This forces that all edges between si, Vj, and Vk have the
same color but this color may depend on i, j, k. Call this Fact (1). To show all edges
between si, Vj, and Vk have the same color c regardless of i, j, k, it suffices to show all
edges between Vi and Vj and between Vj and Vk have the same color. Assume this is not
true. There there are edges vivj and vjvk which have different colors. Then by Fact (1),
sivj and vjsk have different colors as well and so visivjskvkvi is a proper C5. Thus, all
edges between Vi and Vj and between Vj and Vk have the same color c and we have just
shown that all edges which are not color 1 and are not contained in some Vi have the same
color c. Finally, we show all edges within Vi have colors 1 or c as well. Assume some edge
xy within Vi has a color that is not 1 or c. Then for any sj where j 6= i and vjsjxysivj is
a proper C5, a contradiction.

the electronic journal of combinatorics 19(4) (2012), #P33 5



si

sj

sk

Vi

Vj

Vk

Figure 2: Graphs induced by each color

Again continuing with the proof of Theorem 5, assume, without loss of generality, that
c = 2. Now, let v1 ∈ V1. We know that v1 has an edge of color 3 to a vertex u but by
Claim 7, we must have u ∈ G \ H . Since G1 has diameter at most 3, u has an edge in
color 1 to S1 but since u /∈ Vi for any i, u must have at least two edges in color 1 to S1.
That means u must have at least one edge in color 1 to si where i 6= 1. Without loss of
generality, suppose i = 2. Then v1us2v3s3v1 is a proper C5 for some vertex v3 ∈ V3, a
contradiction. This completes the proof for the case when n > 7.

Finally, suppose n = 6. In a coloring of K6 with three spanning and connected colors,
each color must use exactly five edges and form a tree. By Claim 6, we know that each
color has diameter at most three. If one color has diameter 2, then since it is also a tree,
it is a spanning star and no other color is connected to the center of this star. Thus, we
may assume each color induces a tree of diameter exactly three. This means that each
color induces one of the graphs in Figure 3.

v1 v2 v3 v4

v5 v6

T1 T2

Figure 3: Graphs induced by each color
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In fact, since each vertex of K6 has degree five and all three colors are spanning, every
color must induce precisely the tree T1. Without loss of generality, we may assume color
1 induces the tree T1 shown and that v1v5 has color 2. Then v3v5 also has color 2 or else
v1v2v4v3v5v1 forms a proper C5. Furthermore, v1v3 must also have color 2 since otherwise
v1v5v2v6v3v1 gives a proper C5. Now there is a triangle in color 2, contradicting the fact
that it must induce a copy of T1. This completes the proof of Theorem 5.

4 Proper-C6 free Colorings

In this section, we establish an analog of Theorem 2 for proper-C6 free colorings of Kn.
As in the case of proper-C5 free colorings, Theorem 8 similarly shows that any coloring
with three or more spanning and connected colors forces the existence of a proper C6.

Theorem 8. For n > 6, if G is a proper-C6 free coloring of Kn, then G has at most two

spanning and connected colors.

Proof. We show the claim is true for n = 6 at the end of our proof. For n > 6, our proof
uses a minimal counterexample but we first need some claims that will be extremely
important in the proof. Let G be a proper-C6 free coloring of Kn with n > 6 and suppose,
for a contradiction, that G has at least three colors which induce spanning and connected
graphs but the result holds for smaller complete graphs. This leads to the following
immediate fact.

Fact 9. For every vertex v ∈ G, G \ {v} contains at most two spanning and connected

colors.

In particular if G has ℓ > 3 spanning and connected colors, this means that every
vertex is a cut vertex of at least ℓ− 2 > 1 colors.

Claim 10. Within the subgraph induced on each spanning and connected color, the graph

induced on the cut vertices must be connected.

Proof. The proof is by contradiction. Suppose a monochromatic subgraph, say red, is
spanning and connected and contains two cut vertices u and v that are not adjacent in
red (and not connected by a sequence of cut vertices). Then the red subgraph, after
removal of these two vertices, must have at least three components A, B, and C. One
such component, say B, must have at least one edge to both u and v while at least one
other component, say A, must be adjacent to u and another, say C, adjacent to v. Since
n > 7, at least one of these components must contain at least two vertices and so an
edge e. Suppose, without loss of generality, that e ∈ A (the case where e ∈ B is handled
identically). Then let f be an edge from B to u and let g be an edge from C to v. Then
using the edges e, f, g, it is easy to produce a properly colored C6 for a contradiction.

For the statement of the next claim, we define a slim caterpillar to be a graph consisting
of two vertex disjoint stars each containing at least one edge with the addition of a single
vertex adjacent only to the centers of the two stars. The centers of the stars along with
the added vertex are called the body of the caterpillar.
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Claim 11. The graph induced on each spanning and connected color has at most three cut

vertices. Moreover, if the graph induced on a color has three cut vertices, it must induce

a slim caterpillar.

Proof. Suppose the red subgraph has at least three cut vertices. Within the red subgraph,
by Claim 10, the cut vertices must induce a connected graph. If there is a set T of three
cut vertices which induce a red connected graph, each with at least one red edge to a
vertex that is not in T (since vertices in T are cut vertices, these neighbors must all be
distinct), then using these three disjoint red edges, one may easily produce a proper C6.
Thus, if there are three cut vertices of the red subgraph, one must only have red edges to
the other two, thereby forcing the graph induced on the red edges to be a slim caterpillar.

Next suppose that there are at least four cut vertices of the subgraph induced on the
red edges. Let C = {u, v, w, x} be four of the cut vertices which themselves induce a
red connected graph. Thus, we may assume two of the vertices, say v and w, only have
edges to u and/or x. Since each of these vertices is a cut vertex of the red subgraph and
they induce a connected subgraph themselves, this means C must induce a red path, say
uvwx. Let e be an edge from u to G \ C and f be an edge from x to G \ C. Such edges
exist since these are cut vertices. Then using e, f , and the edge vw we may again easily
produce the desired properly colored C6.

First, suppose n > 10. By Fact 9, every vertex of G is a cut vertex of some spanning
and connected color but by Claim 11, each spanning and connected color has at most three
cut vertices. This means that there must be at least

⌈

n
3

⌉

> 4 spanning and connected
colors in G. By Fact 9 again, every vertex of G is a cut vertex for at least

⌈

n
3

⌉

− 2 colors
but since each color still has at most three cut vertices, there must be at least

⌈

n
(⌈

n
3

⌉

− 2
)

3

⌉

>
2n

3

spanning and connected colors. This is clearly a contradiction since each spanning and
connected color requires at least n − 1 edges to be connected. This concludes the proof
when n > 10 so it remains to show that the result holds for 6 6 n 6 9.

If 7 6 n 6 9 and there are at least four spanning and connected colors, then the above
argument holds for a contradiction. Since each color has at most three cut vertices and
every vertex is a cut, there must then be exactly three spanning and connected colors.

We break the remainder of the proof into cases based on the value of n.

Case 1. 8 6 n 6 9.

By Claim 11, two of these colors induce body-disjoint slim caterpillars. Up to re-
labeling, these must induce the graph in Figure 4 where {v1, v2, v3} is the body of the
caterpillar on the thin edges representing color 1, and {v4, v5, v6} is the body of the cater-
pillar on the thick edges representing color 2. Note that the dotted edges may not all be
the same color but certainly must not be either color 1 or 2. Regardless of the colors of
the dotted edges, the cycle v5v6v4v1v3v2v5 must be a proper C6 for a contradiction.
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v1

v2

v3

v4

v5

v6

Figure 4: If there are two slim caterpillars

Case 2. n = 7.

This case is proven by case analysis similar to classical forbidden subgraph arguments.
As observed above, there can only be three colors that are spanning and connected and
one of these colors, say red, must induce a slim caterpillar. Then suppose blue and green
are the other two spanning and connected colors, each having at least two cut vertices.
Let v1, v2, v3 be the body of the red caterpillar.

First, suppose each of v1 and v3 has exactly two red neighbors other than v2. Let v4, v5
be the red neighbors of v1 and let v6, v7 be the red neighbors of v2. Since we have assumed
the cycle v1v3vavbvivjv1 where {a, b} = {6, 7} and {i, j} = {4, 5} is not proper, we may
assume that the edge vbvi must be the same color as either vavb or vivj . On the other
hand, if all edges within {v4, v5, v6, v7} have the same color, say blue, then by Claim 10, it
is impossible for two of these vertices to be cut vertices of the subgraph induced on green
edges. Thus, we may assume, without loss of generality, that v4v5 is green and that v5v6
and v6v7 are both blue.

By looking at the cycle v4v5v6v3v1v2v4, the edge v2v4 must be green to avoid a proper
C6. Also using the cycle v4v5v1v3v7v2v4, the edge v7v2 must be green. From the cycle
v6v7v2v3v5v1v6, the edge v1v6 must be blue. From the cycle v4v1v3v3v7v5v4, we get v7v5
must be green. Finally, from the cycle v6v8v5v1v3v2v6, the edge v2v6 is blue so, since green
is spanning and connected, v4v6 must be green. This gives a proper C6 on the vertices
v4v1v3v2v7v6v4 for a contradiction.

Thus, we may assume one of v1 or v3, say v1, has three red neighbors, say v4, v5, v6.
Since three colors are spanning and connected, v1 must also have a blue edge and a green
edge so suppose v1v3 is blue and v1v7 is green. The vertex v3 must have another blue
edge since the blue graph is spanning and connected so, without loss of generality, say
v3v5 is blue. Also v3 needs a green edge so say v3v6 is green. By considering the cycle
v1v4v2v3v6v7v1, we see that v6v7 must be green to avoid a proper C6.

Suppose first that the edge v5v7 is blue. Then the cycle v1v5v7v6v2v3v1 must not be
proper so v2v6 must be green. Also the cycle v1v4v3v2v5v7v1 must not be proper so v2v5 is
blue. If v4v6 is blue, then the cycle v1v4v6v5v3v7v1 implies v6v5 is blue and since green is
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spanning and connected, v5v4 must be green so v1v4v5v6v7v3v1 is a proper C6. Thus, v4v6
must be green. Since blue is spanning and connected, v5v6 must be blue which means
v5v4 must be green - again making v1v4v5v6v7v3v1 a proper C6.

Finally, suppose the edge v5v7 is green. First, we will also assume v4v6 is green. The
cycle v1v4v6v5v7v3v1 cannot be proper so v5v6 must also be green. Since v6 must have a
blue edge, v6v2 must be blue. Since the cycle v1v3v7v2v6v5v1 is not proper, this shows that
v7v2 must be blue but the cycle v1v4v2v6v7v3v1 must also not be proper, showing that v4v2
must also be blue. This implies that v5v2 must be green for v2 to have a green edge but
then v1v5v2v6v7v3v1 is a proper C6.

Thus, we may also assume v4v6 is blue. The cycle v1v4v6v7v2v3v1 shows that v2v7 must
be green which immediately implies v7v4 is blue since v7 needs a blue edge. The cycle
v1v4v7v5v2v3v1 implies v5v2 must be green while the cycle v1v4v7v6v2v3v1 implies v6v2 is
also green. Since v2 needs a blue edge, v4v2 must be blue. Then v1v4v2v5v3v7v1 is a proper
C6 to complete the proof in this case.

Case 3. n = 6.

As in the previous cases, there must be three colors that are spanning and connected.
By Theorem 3, the diameter of each color can be at most four. Recall that in the base
case of Theorem 5, we argue that each Gi has exactly five edges and that if each Gi has a
diameter of at most three, then each Gi is a T1. Thus, if no color has diameter four, then
up to relabeling of colors, there is exactly one coloring of G in which each color induces
a T1. This coloring is shown in Figure 5 below.

v1

v2

v3

v4

v5

v6

Figure 5: Coloring of K6

In Figure 5, we see that v5v6v4v2v3v1v5 is a proper C6. We now assume that there is
a color, say color 1, with diameter exactly four. For the duration of the proof, we rely on
the following claim.

Claim 12. In any coloring G of K6 with three spanning and connected colors, G does not

contain a monochromatic triangle.
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Proof. This proof is by contradiction. Assume G has a monochromatic triangle in color
i. Since G has three spanning and connected colors, Gi has exactly five edges. Since Gi

contains a triangle v1v2v3, G
i has exactly two other edges that must connect the remaining

three vertices v4v5v6 to the triangle, a contradiction.

Since color 1 has diameter exactly four, G1 has a path v1v2v3v4v5 with no chords of
color 1. If edge v3v6 is color 1, then G1 has three disjoint color 1 edges and we can easily
find a C6 in G. Since G1 is spanning, this forces that either edge v2v6 or v4v6 is color 1.
Without loss of generality, assume v2v6 is color 1. We also know that edges v1v6 and v5v6
are not color 1 because otherwise the diameter of G1 is not four. We now consider two
subcases.

Subcase 3.1. v1v6 and v5v6 have the same color.

Assume v1v6 and v5v6 have color 2. Then v1v5 must be color 3 or triangle v1v5v6
forms a monochromatic triangle, thus contradicting Claim 12. If v3v5 is color 2, then
v1v6v2v4v3v5v1 is a proper C6, so assume v3v5 is instead color 3. If v1v3 is color 3, then
triangle v1v3v5 is a monochromatic triangle, again contradicting Claim 12. Thus, v1v3 is
color 2. Finally, this implies that v3v6 must be color 3 or otherwise v1v3v6 is a monochro-
matic triangle in color 2, another contradiction of Claim 12. In this structure, we see that
v1v2v4v5v6v3v1 is a proper C6.

Subcase 3.2. v1v6 and v5v6 have different colors.

If edge v1v3 also has a different color from edge v1v6, then v1v6v5v4v2v3v1 is a proper C6.
Thus, v1v3 and v1v6 have the same color and similarly v3v5 and v5v6 have the same color.
This forces either v1v3v6 or v3v5v6 to be a monochromatic triangle, which contradicts
Claim 12.

5 Proper-Cm free Colorings

The results contained in the previous sections establish that two or more spanning and
connected colors imply the existence of a proper C4, while three or more spanning and
connected colors imply the existence of a proper C5 and a proper C6. The next result
shows that as the desired cycle length gets longer, we need more and more spanning and
connected colors to force the existence of a properly colored cycle. Specifically, Theorem 13
ensures that we need at least k + 1 spanning and connected colors to force the existence
of a proper Cm, for m > 2k.

Theorem 13. For n > 2k, there exists a coloring of Kn which contains k spanning and

connected colors but no proper cycles of length greater than 2k.

Proof. The construction is by induction on n. Suppose there exists a coloring G of Kn−2k

which contains no proper cycle of length greater than 2k. If n 6 4k, this is trivial so we
may suppose n > 4k. Add 2k new vertices {u1, . . . , uk, v1, . . . , vk} to G. For all i > j,
color the edges uivj and viuj with color j. For i < j, color the edges uiuj and vivj with
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color j. This provides a coloring of all the edges among pairs of the added vertices. All
edges between ui and G and between vi and G receive color i. In this coloring of Kn,
colors 1, 2, . . . , k are spanning and connected.

Suppose there exists a properly colored cycle C = Cm in this graph for some m > 2k.
Since G was assumed to have no properly colored Cm, we know C * G. Conversely, since
|C| = m > 2k, we also know that C * {u1, . . . , uk, v1, . . . , vk}. Consider an edge e of C
from G to ui (or identically vi). By construction, e has color i. Following C from ui, we
cannot take an edge of color i, so must take an edge of color j to a vertex uj for j > i or
vj for j < i. Similar statements hold when leaving uj or vj , and we see that we can never
return to G. This is a contradiction. Note that all colors are spanning and connected.

Theorem 13 yields a lower bound for the number of spanning and connected colors
required to force the existence of a properly colored cycle. Theorem 14 yields a general
upper bound and shows that any coloring with 2m− 1 or more spanning and connected
colors forces the existence of a proper Cm, for m > 3.

Theorem 14. Let m > 3 and n > m. If G is a proper-Cm free coloring of Kn, then G
has at most 2m− 2 spanning and connected colors.

Proof. This proof is by induction onm. Ifm 6 6, the result follows from Theorems 2, 4, 5,
and 8 so suppose m > 7. Let G be a coloring of Kn with at least 2m− 1 colors spanning
connected graphs and suppose G contains no proper Cm. Note that this implies n > 2m.
By induction, we may assume there is a properly colored Cm−1 in G. Call this cycle C.
We now prove a sequence of claims which lead to the construction of a proper Cm.

Claim 15. If w ∈ G \ C has an edge e to C of color i where i is not used in C, then w
has only edges in color i to C.

Proof. Let c1 be the vertex of C contained in e and let c2, c3, . . . , cm−1 be the remaining
vertices of C in order around C. Let i1, i2, . . . , im−1 be the colors of the edges in C such
that the color of cjcj+1 is ij (where the indices are taken modulo m − 1). In order to
avoid creating a properly colored Cm, the edge wc2 must either have color i or i2. Let
j2 ∈ {i, i2} be the color of wc2. Similarly, the edge wc3 must either have color j2 or i3.
Let j3 ∈ {j2, i3} be the color of wc3. Following this pattern, let jt denote the color of the
edge wct where jt ∈ {jt−1, it} for all 2 6 t 6 m − 1. Since the edge wc1 has color i, it
must be that i is in the set {jm−1, i1}. Since i is unused in C, we must have jm−1 = i.
This, in turn, implies that i ∈ {jm−2, im−1}, so again jm−2 = i. This argument can be
repeated all the way around C to conclude that the color of wcj is i for all j.

Without loss of generality, suppose C uses colors m + 1, m + 2, . . . , m + s where
s 6 m − 1. Since 2m − 1 colors are spanning and connected, we may assume colors
1, 2, . . . , m are all spanning and connected and not present in C. For all i > 1, let Vi be
the set of vertices in G \ C with all edges to C in color i. Since colors 1, 2, . . . , m are all
spanning and connected, applying Claim 15, we see that Vi 6= ∅ for all i 6 m.

Claim 16. If w ∈ G \ (∪i>1Vi) and v ∈ Vi, then wv has color i.
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Proof. This proof is by contradiction. By the definition of Vi, all edges between Vi and C
have color i so if H = C, we’re finished. Thus, we may assume H \C 6= ∅. Let w ∈ H \C
and suppose v ∈ Vi and vw has color j 6= i where j is not used in C. Since w /∈ ∪Vi, there
exists an edge wc1 with color k 6= j for some c1 ∈ C. Again let ci denote the vertices
of C in order around the cycle. Since either cm−1c1 or c1c2 has a color other than k, we
will assume the color of cm−1c1 is ℓ 6= k (see Figure 6). Now, by considering the cycle
wc1cm−1 · · · c3vw, we see that the color of c3c4 must be i since otherwise this produces a
proper Cm, a contradiction.

c3

c2

c1

cm−1

w

v

Vi

i

jk

ℓ 6= k

Figure 6: Structure of G

Continuing with the proof of Theorem 14, consider edges between sets Vi and Vj for
1 6 i, j 6 m. Suppose vi ∈ Vi and vj ∈ Vj and the color of vivj is k /∈ {i, j}. Then
vic1c2 · · · cm−2vjvi is the desired proper Cm. Note that this holds even if i = j. The next
fact is immediate.

Fact 17. Let vi ∈ Vi and vj ∈ Vj for some 1 6 i, j 6 m. Then the color of vivj is either

i or j.

Note that if i = j, this means that the color of vivj is i.
Suppose 1 6 i, j 6 m with i 6= j. By Fact 17 and Claim 16, in order for a vertex in Vi

to have an edge of color j, it must have an edge in color j to a vertex of Vj. Since each
of these colors is spanning and connected, we get the following easy fact.

Fact 18. Every vertex in Vi must have an edge of color j to a vertex of Vj for all i and
j with 1 6 i, j 6 m.

Let v1,1 ∈ V1. By Fact 18, there exists a vertex v2,1 ∈ V2 such that the color of the
edge v1,1v2,1 is 2. Similarly, there exists a vertex v3,1 ∈ V3 such that the color of the edge
v2,1v3,1 is 3. This process can be continued to create vertices vi,1 for all 1 6 i 6 m. Then
there exists a vertex v1,2 ∈ V1 such that vm,1v1,2 has color 1. Note that v1,2 6= v1,1 since
otherwise we would have created a proper (in fact rainbow) Cm. Thus, we may continue
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to create a long proper path using vertices vi,j ∈ Vi where j denotes the number of times
we pass through set Vi. Since G is finite, this path must repeat a vertex at some point,
creating a proper cycle of order a multiple of m. Let C ′ be the shortest such cycle created
by this process which has order a multiple of m. Without loss of generality, suppose
C ′ = v1,1v2,1 · · · vm,rv1,1.

Now for all i, let Wi ⊆ Vi denote the vertices of Vi which are also in C ′. Without
loss of generality, consider consecutive sets W1 and W2. The edges v1,kv2,k must all have
color 2 by construction but all other edges between W1 and W2 must have color 1 since
otherwise we could create a shorter proper cycle which still has length a multiple of m,
contradicting the choice of C ′ (see Figure 7). Using the edges between Wi and Wi+1 which
are not in C ′, we may easily construct a proper Cm unless r = 2. In this case, the cycle
must look like v1,1v2,2v3,1v4,2 · · · vm,1v1,1 but this works only when m is odd. Thus, we may
assume r = 2 and m is even. Consider the edge v1,1v4,1. If this edge has color 4, then
C ′′ = v1,1v4,1v3,2v4,2 · · · vm,2v1,1 is a proper Cm. By this argument, all edges of the form
vi,1vi+3,1 and vi,2vi+3,2 have color i. Then we can create all even cycles with length 2t a
multiple of four from length eight up to 2m as follows. The cycle

v1,1v2,1 · · · vt,1vt−1,2vt,2vt−3,2vt−2,2vt−5,2vt−4,2 · · · v1,2v2,2v1,1

is properly colored and has length 2t.

v1,1

v2,1

v3,1

vm−1,1

vm,1

2

3

m

2

3

m

1

2

m− 1

m m

1

v1,2

v2,2

v3,2

vm−1,2

vm,2

Figure 7: Structure of C ′

Finally, it remains to produce a proper C2t when t is odd. If v1,1v3,1 has color 3 and
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v3,1v5,1 has color 5, then

v1,1v3,1v5,1v6,1 · · · vt+1,1vt,2vt+1,2vt−2,2vt−1,2vt−4,2vt−3,2 · · · v1,2v2,2v1,1

is a properly colored C2t for t > 5 while v1,1v3,1v5,1v4,2v1,2v2,2v1,1 suffices when t = 3. By
symmetry, we cannot have both v1,1v3,1 in color 1 and v3,1v5,1 in color 3 (by considering
the relabeling v′1,1 = v7,1, v

′

2,1 = v6,2, v
′

3,1 = v5,1, v
′

4,1 = v4,2, . . ., v
′

7,1 = v1,1, v
′

8,1 = vm,1,
v′9,1 = vm−1,2, . . . and so on). By the same argument, we cannot have both vi,jvi+2,j in
color i (or i+ 2) and vi+2,jvi+4,j in color i+ 2 (or respectively, i+ 4). Thus, if m > 8, we
get, either v1,1v3,1 in color 3 and v5,1v7,1 in color 7 or v1,1v3,1 in color 1 and v5,1v7,1 in color
5. In the first case, the desired proper Cm is

v1,1v3,1v4,1v5,1v7,1v8,1 · · · vm/2+1,1vm/2,2vm/2+1,2vm/2−2,2vm/2−1,2vm/2−4,2 · · · v1,2v2,2v1,1

while, in the second case, we use

v′1,1v
′

3,1v
′

4,1v
′

5,1v
′

7,1v
′

8,1 · · · v
′

m/2+1,1v
′

m/2,2v
′

m/2+1,2v
′

m/2−2,2v
′

m/2−1,2v
′

m/2−4,2 · · · v
′

1,2v
′

2,2v
′

1,1.

This completes the proof of Theorem 14.

We end this section with a corollary summarizing the lower and upper bounds given
by Theorems 13 and 14.

Corollary 19. Given integers m and n with n > m, let M(m,n) be the maximum number

of spanning and connected colors in a coloring of Kn containing no proper Cm. Then
m−1

2
6 M(m,n) 6 2m− 2.

6 Conclusion

Future work in the area of proper-cycle free colorings includes tightening the gap between
the upper and lower bounds given in Corollary 19. The results of Theorems 4, 5, and 8
indicate that the lower bound of Corollary 19 may be sharp, but in general, this may
be difficult to show. The proofs of Theorems 4, 5, and 8 do not suggest a way to easily
extend the results of proper-C4 free, C5 free, and C6 free colorings to general Cm free
colorings. Since we believe the lower bound in Corollary 19 is sharp (see Conjecture 20),
this indicates that the sharp results for even cycles Cm may be more difficult to prove
since the cycle is longer than the corresponding odd cycle Cm−1. Even so, we conjecture
the result is the same.

Conjecture 20. Given integers m and n with n > m, the maximum number of spanning
and connected colors in a coloring of Kn containing no proper Cm is

⌊

m−1

2

⌋

.

Finding analogs to Theorem 1 would also be a welcome addition to the literature;
in particular, proving partition results as described in Problem 21 for proper-Cm free
colorings of complete graphs. We pose the following problem.
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Problem 21. Given an integer m, find the smallest number λ(m) such that every proper-
Cm free coloring of a complete graph has a non-trivial partition with at most λ(m) colors
on the edges between the parts.

Some other related results concerning colorings free of proper cycles bear mentioning.
Many such results are contained in [1]. In particular, the following important structural
result of Yeo [8].

Theorem 22 (Yeo [8]). If G is a proper cycle free coloring of a (not necessarily complete)
graph, then there is a vertex z ∈ G such that no connected component of G \ {z} is joined

to z by more than one color.

Note that if G is a coloring of Kn, Theorem 22 yields the following corollary almost
immediately.

Corollary 23. If G is a rainbow triangle free and proper-C4 free coloring of Kn, then

there is a vertex z ∈ G incident only to edges of a single color.

Therefore, to gain more structural information about proper-C4 free colorings, one
may assume the existence of a rainbow triangle.
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