The structure of colored complete graphs free of proper cycles

Vincent Coll
Department of Mathematics
Lehigh University
Bethlehem, PA, U.S.A.
vec208@lehigh.edu

Colton Magnant
Department of Mathematical Sciences
Georgia Southern University
Statesboro, GA, U.S.A.
cmagnant@georgiasouthern.edu

Kathleen Ryan
Department of Mathematics
Lehigh University
Bethlehem, PA, U.S.A.
kmr207@lehigh.edu

Submitted: May 2, 2012; Accepted: Nov 26, 2012; Published: Dec 6, 2012
Mathematics Subject Classifications: 05C15, 05C38

Abstract

For a fixed integer m, we consider edge colorings of complete graphs which contain no properly edge colored cycle C_{m} as a subgraph. Within colorings free of these subgraphs, we establish a global structure by bounding the number of colors that can induce a spanning and connected subgraph. In the case of small cycles, namely C_{4}, C_{5}, and C_{6}, we show that our bounds are sharp.

Keywords: proper coloring; forbidden subgraph; monochromatic subgraph

1 Introduction

This work considers edge colorings of complete graphs K_{n} on n vertices which contain no properly edge colored cycle of length m as a subgraph, where $m \geqslant 3$ is an integer. Within edge colorings free of a properly colored C_{m}, we establish a global structure on the coloring by bounding the number of colors that can induce a spanning and connected subgraph. For small m, namely for C_{4}, C_{5}, and C_{6}, we show that our bounds are the best possible. We tacitly assume that by coloring, we mean a partition of $E\left(K_{n}\right)$ into parts called color classes. A subgraph is called rainbow if all of its edges are colored distinctly while a subgraph is called proper (elsewhere called "alternating" [1]) if no two adjacent edges receive the same color.

This project is primarily motivated by the following result of Gyárfás et al, who translated the work of Gallai, recasting his work on oriented graphs to be sensible in the context of graph coloring (see [6] and [7]).

Theorem 1 (Gallai [6], Gyárfás et al. [7]). A coloring of K_{n} is rainbow triangle free if and only if there exists a partition of the vertices into at least two non-empty parts such that between each pair of parts, all edges have a single color, between the parts in general, the edges come from only two colors and within each part, the edges are colored to avoid rainbow triangles.

This theorem is a strong structural result demonstrating how restricted the structure of an edge colored complete graph K_{n} is if its coloring is known to be rainbow triangle free. Theorem 1 has naturally led to an investigation of the structure of colorings of K_{n} which are free of rainbow subgraphs other than triangles (see [2] and [3]).

In this work, we generalize the rainbow triangle free results, but do so by investigating colorings of K_{n} which are free of proper cycles of length longer than three. For a coloring G of K_{n}, we let G^{i} denote the subgraph of G induced on color i, and we say that color i is spanning and connected if G^{i} is a spanning and connected subgraph of K_{n}. The following theorem suggests the form of the structural results that we seek.

Theorem 2 (Gallai [6], Gyárfás et al. [7]). If a coloring of K_{n} is rainbow triangle free, then there are at most two colors which are spanning and connected.

This theorem shows that a coloring of K_{n} with three or more spanning and connected colors contains a rainbow triangle. In the translation of Gallai's results, Theorem 2 was the main tool in the proof of Theorem 1. Along these lines, our goal is to obtain analogs of Theorem 2 for proper- C_{m} free colorings of K_{n} so as to find structural results as strong as Theorem 1 for such graphs. In Sections 2, 3, and 4, we determine the number of spanning and connected colors which respectively force the existence of a proper C_{4}, C_{5}, or C_{6}. In Section 5, we obtain more general results by finding upper and lower bounds for the number of spanning and connected colors required to ensure the existence of a proper C_{m}, for $m \geqslant 4$.

Note that a survey of Gallai's results, as well as many others related to rainbow subgraphs of complete graphs, can be found in [4] with an updated version maintained at [5].

When it is convenient, we use names of colors like "red" or "green".

2 Proper- C_{4} free Colorings

The first result of this section provides some structure to colorings of K_{n} that are free of proper even cycles $C_{2 m}$. When $m=2$, this result provides a first insight into the structure of proper- C_{4} free colorings.

Theorem 3. For $m \geqslant 2$, if G is a proper $-C_{2 m}$ free coloring of K_{n}, then the sum of the diameters of the components of G^{i} is at most $2(m-1)$. In particular, when $m=2$, if G
is a proper- C_{4} free coloring of K_{n}, then with the exception of isolated vertices, each color in G is connected with diameter at most two.

Proof. This proof is by contradiction. Consider a coloring of K_{n} with no proper $C_{2 m}$ and suppose that G^{1} is spanning and connected but that there exist vertices a and b at distance at least $2 m-1$ in G^{1}. Without loss of generality, choose a and b so that the distance between them is exactly $2 m-1$. Let P be a shortest path from a to b. Since the path P is a shortest $a-b$ path in color 1, all chords of this path must not have color 1. Label the vertices of P in order as $a=a_{1}, a_{2}, \ldots, a_{2 m}=b$. Indices will be considered modulo $2 k$.

Now, suppose m is even. Let C be a proper cycle constructed from P as follows: For $i \geqslant 0$, consider the segment $a_{4 i+1} a_{4 i+2} a_{4 i+3} a_{4 i+4} a_{4 i+5}$. This segment is replaced by the path segment $P_{i}=a_{4 i+1} a_{4 i+2} a_{4 i+4} a_{4 i+3} a_{4 i+5}$. By construction, this path segment P_{i} is proper. If this process is repeated for all $i \leqslant m / 2-1$, it produces a proper $C_{2 m}$ for a contradiction. Note that the case when $i=m / 2-1$ produces the proper segment $a_{2 m-3} a_{2 m-2} a_{2 m} a_{2 m-1} a_{1}$.

If m is odd, we employ a similar process: For $i \leqslant(m-1) / 2-1$, we make the same switches. For the final segment, when $i=(m-1) / 2$, we use is $a_{2 m-1} a_{2 m} a_{1}$ to complete a proper $C_{2 m}$ for a contradiction.

A similar argument within and between components shows the result holds when G^{i} is disconnected but the sum of the diameters of the components is greater than $2(m-1)$.

Note that a result like Theorem 3 does not hold in general for proper- $C_{2 m+1}$ free colorings of K_{n}. Consider a red path on $n-2$ vertices and a single isolated edge colored in green. Color all other edges in this graph blue to yield a coloring of K_{n}. This coloring contains no properly colored odd cycle of any length since every other edge in any proper cycle C must be blue and thus C must be even. On the other hand, the subgraph induced on the red edges in this coloring has diameter $n-3$, thus demonstrating that we can find colorings of K_{n} with no proper cycles of odd length and with at least one color with large diameter. Applying Theorem 3, we obtain the analog of Theorem 2 for proper- C_{4} free colorings of K_{n}. The next theorem implies that any coloring containing two or more spanning and connected colors forces the existence of a proper C_{4}.

Theorem 4. For $n \geqslant 4$, if G is a proper $-C_{4}$ free coloring of K_{n}, then G has at most one spanning and connected color.
Proof. The proof is by induction on n. First, suppose $n=4$. The only way for two colors to be spanning and connected in a colored K_{4} is to have a P_{4} in color 1 and a P_{4} (the complement of the first P_{4}) in color 2 . Then neither color induces a graph of diameter at most two, contradicting Theorem 3.

Now, suppose the result holds for colorings of K_{n-1}, and let G be a coloring of K_{n}. Suppose colors 1 and 2 are both spanning and connected in G. By induction, if we remove any vertex v, we are left with at most one spanning and connected color, say color 1 . Then, in G^{2}, the vertex v is a cut vertex. Since the diameter of G^{2} is at most two by Theorem 3, the vertex v must be adjacent to all of $G \backslash\{v\}$ in color 2 . This means that color 2 is the only spanning and connected color in G.

This theorem establishes that, in a proper- C_{4} free coloring of a complete graph, there is at most one spanning and connected color. On the other hand, there may not even be one such color, as seen in the following example: Consider three sets A_{1}, A_{2}, and A_{3}, each of order $n / 3$ (see Figure 1). Color all edges contained in each set A_{i} with color i and all edges from A_{i} to A_{i+1} with color i where indices are taken modulo 3. This example is proper- C_{4} free but has no spanning and connected color.

Figure 1: Coloring with no proper C_{4} and no spanning and connected color

3 Proper- C_{5} free Colorings

We now obtain the analog of Theorem 2 for proper- C_{5} free colorings of K_{n}. Theorem 5 shows that any coloring containing three or more spanning and connected colors forces the existence of a proper C_{5}.

Theorem 5. For $n \geqslant 5$, if G is a proper- C_{5} free coloring of K_{n}, then G has at most two spanning and connected colors.

Proof. The proof is by induction on n. Suppose G is a proper- C_{5} free coloring of K_{n} for $n \geqslant 5$ in which at least 3 colors, say colors 1,2 , and 3 , are spanning and connected. For a base case, if $n=5$, each spanning and connected color needs at least $n-1=4$ edges so there cannot be three spanning and connected colors on $e\left(K_{5}\right)=10$ edges. Thus, we may assume $n \geqslant 6$. First, we show that the graph induced on each of colors 1,2 , and 3 has small diameter.

Claim 6. The diameter of G^{i} is at most three for all i.
Proof. This proof is by contradiction. Suppose the diameter of G^{1} is at least four. Then there exists an induced path $P=v_{1} v_{2} \ldots v_{5}$ on 5 vertices where the distance, in G^{1}, between v_{1} and v_{5} is four. By combining colors, we may assume that there are at most two other colors, suppose 2 and 3 , on the edges. Our first goal is to show that there is only one color on the remaining edges in $G^{\prime}=G[V(P)]$.

First, suppose color 3 has only one edge e in G^{\prime} and all remaining edges within $G[V(P)]$ have color 2. Regardless of the position of e, it is easy to construct a proper C_{5} in this structure so each color 2 and 3 must have at least two edges in G^{\prime}. At least one of these colors, say color 2 , must be present on two disjoint edges. Suppose $v_{1} v_{3}$ and $v_{2} v_{4}$ both have color 2 . The case where $v_{1} v_{3}$ and $v_{2} v_{5}$ have color 2 is similar and all other cases can be argued similarly. Now, the edge $v_{1} v_{5}$ must also have color 2 since otherwise $v_{1} v_{3} v_{2} v_{4} v_{5} v_{1}$ forms a proper C_{5}. Also $v_{3} v_{5}$ must have color 2 since otherwise $v_{1} v_{2} v_{4} v_{3} v_{5} v_{1}$ gives a proper C_{5}. Finally, if $c\left(v_{1} v_{4}\right)=c\left(v_{2} v_{5}\right)=3$, then $v_{1} v_{4} v_{5} v_{2} v_{3} v_{1}$ yields a proper C_{5} (here $c(e)$ denotes the color of the edge e). Hence, there is at most one edge of color 3, for a contradiction. Thus, there are only two colors, say 1 and 2 , on the edges of G^{\prime}.

Since color 3 is spanning and connected, there exists a vertex $v \in G \backslash P$ such that $c\left(v v_{1}\right)=3$. It is easy to see that in order to avoid a proper C_{5}, all edges from v to P must have color 3 . Now since color 1 is spanning and connected, there is an edge of color 1 from v to a vertex $w \in G \backslash P$. In particular, this means n must be at least 7. In order to avoid easily constructing a proper C_{5}, all edges from w to P must have color 1 , but this contradicts the assumption that the distance from v_{1} to v_{5} in G^{1} is four.

Continuing with the proof of Theorem 5, suppose there exists a vertex v such that $G \backslash\{v\}$ still has three spanning and connected colors. Then, by induction on n, there exists a proper C_{5} in $G \backslash\{v\}$ and so also in G. Thus, every vertex of G is a cut vertex of G^{i}, for some $1 \leqslant i \leqslant 3$. Let S_{i} be the set of cut vertices of G^{i} for all i. For all i, since G_{i} has diameter at most 3 by Claim 6 , it can be shown that S_{i} induces a complete graph in color i.

Suppose for a moment that $n \geqslant 7$. Then $\left|S_{i}\right| \geqslant 3$ for some i, and without loss of generality, suppose $i=1$. Let $S_{1}=\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}$ and let V_{i} be the set of vertices in $G \backslash S_{1}$ with only one edge in color 1 to S_{1}, to s_{i}, for all i. Note that $V_{i} \neq \emptyset$ for all i since every vertex of S_{1} must be a cut vertex of G^{1}. The subgraph H induced by $S_{1} \cup V_{1} \cup V_{2} \cup \ldots$ is shown Figure 2.
Claim 7. All edges in H have color 1 or color $c \neq 1$.
Proof. This proof is also by contradiction. In this proof, v_{i} indicates any vertex in V_{i}. Let i, j, k be distinct indices. Edges $s_{i} v_{j}$ and $v_{j} v_{k}$ have the same color because otherwise, $s_{i} v_{j} v_{k} s_{k} v_{i} s_{i}$ is a proper C_{5}. This forces that all edges between s_{i}, V_{j}, and V_{k} have the same color but this color may depend on i, j, k. Call this Fact (1). To show all edges between s_{i}, V_{j}, and V_{k} have the same color c regardless of i, j, k, it suffices to show all edges between V_{i} and V_{j} and between V_{j} and V_{k} have the same color. Assume this is not true. There there are edges $v_{i} v_{j}$ and $v_{j} v_{k}$ which have different colors. Then by Fact (1), $s_{i} v_{j}$ and $v_{j} s_{k}$ have different colors as well and so $v_{i} s_{i} v_{j} s_{k} v_{k} v_{i}$ is a proper C_{5}. Thus, all edges between V_{i} and V_{j} and between V_{j} and V_{k} have the same color c and we have just shown that all edges which are not color 1 and are not contained in some V_{i} have the same color c. Finally, we show all edges within V_{i} have colors 1 or c as well. Assume some edge $x y$ within V_{i} has a color that is not 1 or c. Then for any s_{j} where $j \neq i$ and $v_{j} s_{j} x y s_{i} v_{j}$ is a proper C_{5}, a contradiction.

Figure 2: Graphs induced by each color

Again continuing with the proof of Theorem 5, assume, without loss of generality, that $c=2$. Now, let $v_{1} \in V_{1}$. We know that v_{1} has an edge of color 3 to a vertex u but by Claim 7, we must have $u \in G \backslash H$. Since G^{1} has diameter at most 3, u has an edge in color 1 to S_{1} but since $u \notin V_{i}$ for any i, u must have at least two edges in color 1 to S_{1}. That means u must have at least one edge in color 1 to s_{i} where $i \neq 1$. Without loss of generality, suppose $i=2$. Then $v_{1} u s_{2} v_{3} s_{3} v_{1}$ is a proper C_{5} for some vertex $v_{3} \in V_{3}$, a contradiction. This completes the proof for the case when $n \geqslant 7$.

Finally, suppose $n=6$. In a coloring of K_{6} with three spanning and connected colors, each color must use exactly five edges and form a tree. By Claim 6, we know that each color has diameter at most three. If one color has diameter 2 , then since it is also a tree, it is a spanning star and no other color is connected to the center of this star. Thus, we may assume each color induces a tree of diameter exactly three. This means that each color induces one of the graphs in Figure 3.

T_{1}

T_{2}

Figure 3: Graphs induced by each color

In fact, since each vertex of K_{6} has degree five and all three colors are spanning, every color must induce precisely the tree T_{1}. Without loss of generality, we may assume color 1 induces the tree T_{1} shown and that $v_{1} v_{5}$ has color 2 . Then $v_{3} v_{5}$ also has color 2 or else $v_{1} v_{2} v_{4} v_{3} v_{5} v_{1}$ forms a proper C_{5}. Furthermore, $v_{1} v_{3}$ must also have color 2 since otherwise $v_{1} v_{5} v_{2} v_{6} v_{3} v_{1}$ gives a proper C_{5}. Now there is a triangle in color 2 , contradicting the fact that it must induce a copy of T_{1}. This completes the proof of Theorem 5.

4 Proper- C_{6} free Colorings

In this section, we establish an analog of Theorem 2 for proper- C_{6} free colorings of K_{n}. As in the case of proper- C_{5} free colorings, Theorem 8 similarly shows that any coloring with three or more spanning and connected colors forces the existence of a proper C_{6}.

Theorem 8. For $n \geqslant 6$, if G is a proper- C_{6} free coloring of K_{n}, then G has at most two spanning and connected colors.

Proof. We show the claim is true for $n=6$ at the end of our proof. For $n>6$, our proof uses a minimal counterexample but we first need some claims that will be extremely important in the proof. Let G be a proper- C_{6} free coloring of K_{n} with $n>6$ and suppose, for a contradiction, that G has at least three colors which induce spanning and connected graphs but the result holds for smaller complete graphs. This leads to the following immediate fact.

Fact 9. For every vertex $v \in G, G \backslash\{v\}$ contains at most two spanning and connected colors.

In particular if G has $\ell \geqslant 3$ spanning and connected colors, this means that every vertex is a cut vertex of at least $\ell-2 \geqslant 1$ colors.

Claim 10. Within the subgraph induced on each spanning and connected color, the graph induced on the cut vertices must be connected.

Proof. The proof is by contradiction. Suppose a monochromatic subgraph, say red, is spanning and connected and contains two cut vertices u and v that are not adjacent in red (and not connected by a sequence of cut vertices). Then the red subgraph, after removal of these two vertices, must have at least three components A, B, and C. One such component, say B, must have at least one edge to both u and v while at least one other component, say A, must be adjacent to u and another, say C, adjacent to v. Since $n \geqslant 7$, at least one of these components must contain at least two vertices and so an edge e. Suppose, without loss of generality, that $e \in A$ (the case where $e \in B$ is handled identically). Then let f be an edge from B to u and let g be an edge from C to v. Then using the edges e, f, g, it is easy to produce a properly colored C_{6} for a contradiction.

For the statement of the next claim, we define a slim caterpillar to be a graph consisting of two vertex disjoint stars each containing at least one edge with the addition of a single vertex adjacent only to the centers of the two stars. The centers of the stars along with the added vertex are called the body of the caterpillar.

Claim 11. The graph induced on each spanning and connected color has at most three cut vertices. Moreover, if the graph induced on a color has three cut vertices, it must induce a slim caterpillar.

Proof. Suppose the red subgraph has at least three cut vertices. Within the red subgraph, by Claim 10, the cut vertices must induce a connected graph. If there is a set T of three cut vertices which induce a red connected graph, each with at least one red edge to a vertex that is not in T (since vertices in T are cut vertices, these neighbors must all be distinct), then using these three disjoint red edges, one may easily produce a proper C_{6}. Thus, if there are three cut vertices of the red subgraph, one must only have red edges to the other two, thereby forcing the graph induced on the red edges to be a slim caterpillar.

Next suppose that there are at least four cut vertices of the subgraph induced on the red edges. Let $C=\{u, v, w, x\}$ be four of the cut vertices which themselves induce a red connected graph. Thus, we may assume two of the vertices, say v and w, only have edges to u and/or x. Since each of these vertices is a cut vertex of the red subgraph and they induce a connected subgraph themselves, this means C must induce a red path, say $u v w x$. Let e be an edge from u to $G \backslash C$ and f be an edge from x to $G \backslash C$. Such edges exist since these are cut vertices. Then using e, f, and the edge $v w$ we may again easily produce the desired properly colored C_{6}.

First, suppose $n \geqslant 10$. By Fact 9 , every vertex of G is a cut vertex of some spanning and connected color but by Claim 11, each spanning and connected color has at most three cut vertices. This means that there must be at least $\left\lceil\frac{n}{3}\right\rceil \geqslant 4$ spanning and connected colors in G. By Fact 9 again, every vertex of G is a cut vertex for at least $\left\lceil\frac{n}{3}\right\rceil-2$ colors but since each color still has at most three cut vertices, there must be at least

$$
\left\lceil\frac{n\left(\left\lceil\frac{n}{3}\right\rceil-2\right)}{3}\right\rceil \geqslant \frac{2 n}{3}
$$

spanning and connected colors. This is clearly a contradiction since each spanning and connected color requires at least $n-1$ edges to be connected. This concludes the proof when $n \geqslant 10$ so it remains to show that the result holds for $6 \leqslant n \leqslant 9$.

If $7 \leqslant n \leqslant 9$ and there are at least four spanning and connected colors, then the above argument holds for a contradiction. Since each color has at most three cut vertices and every vertex is a cut, there must then be exactly three spanning and connected colors.

We break the remainder of the proof into cases based on the value of n.
Case 1. $8 \leqslant n \leqslant 9$.
By Claim 11, two of these colors induce body-disjoint slim caterpillars. Up to relabeling, these must induce the graph in Figure 4 where $\left\{v_{1}, v_{2}, v_{3}\right\}$ is the body of the caterpillar on the thin edges representing color 1 , and $\left\{v_{4}, v_{5}, v_{6}\right\}$ is the body of the caterpillar on the thick edges representing color 2 . Note that the dotted edges may not all be the same color but certainly must not be either color 1 or 2 . Regardless of the colors of the dotted edges, the cycle $v_{5} v_{6} v_{4} v_{1} v_{3} v_{2} v_{5}$ must be a proper C_{6} for a contradiction.

Figure 4: If there are two slim caterpillars

Case 2. $n=7$.
This case is proven by case analysis similar to classical forbidden subgraph arguments. As observed above, there can only be three colors that are spanning and connected and one of these colors, say red, must induce a slim caterpillar. Then suppose blue and green are the other two spanning and connected colors, each having at least two cut vertices. Let v_{1}, v_{2}, v_{3} be the body of the red caterpillar.

First, suppose each of v_{1} and v_{3} has exactly two red neighbors other than v_{2}. Let v_{4}, v_{5} be the red neighbors of v_{1} and let v_{6}, v_{7} be the red neighbors of v_{2}. Since we have assumed the cycle $v_{1} v_{3} v_{a} v_{b} v_{i} v_{j} v_{1}$ where $\{a, b\}=\{6,7\}$ and $\{i, j\}=\{4,5\}$ is not proper, we may assume that the edge $v_{b} v_{i}$ must be the same color as either $v_{a} v_{b}$ or $v_{i} v_{j}$. On the other hand, if all edges within $\left\{v_{4}, v_{5}, v_{6}, v_{7}\right\}$ have the same color, say blue, then by Claim 10, it is impossible for two of these vertices to be cut vertices of the subgraph induced on green edges. Thus, we may assume, without loss of generality, that $v_{4} v_{5}$ is green and that $v_{5} v_{6}$ and $v_{6} v_{7}$ are both blue.

By looking at the cycle $v_{4} v_{5} v_{6} v_{3} v_{1} v_{2} v_{4}$, the edge $v_{2} v_{4}$ must be green to avoid a proper C_{6}. Also using the cycle $v_{4} v_{5} v_{1} v_{3} v_{7} v_{2} v_{4}$, the edge $v_{7} v_{2}$ must be green. From the cycle $v_{6} v_{7} v_{2} v_{3} v_{5} v_{1} v_{6}$, the edge $v_{1} v_{6}$ must be blue. From the cycle $v_{4} v_{1} v_{3} v_{3} v_{7} v_{5} v_{4}$, we get $v_{7} v_{5}$ must be green. Finally, from the cycle $v_{6} v_{8} v_{5} v_{1} v_{3} v_{2} v_{6}$, the edge $v_{2} v_{6}$ is blue so, since green is spanning and connected, $v_{4} v_{6}$ must be green. This gives a proper C_{6} on the vertices $v_{4} v_{1} v_{3} v_{2} v_{7} v_{6} v_{4}$ for a contradiction.

Thus, we may assume one of v_{1} or v_{3}, say v_{1}, has three red neighbors, say v_{4}, v_{5}, v_{6}. Since three colors are spanning and connected, v_{1} must also have a blue edge and a green edge so suppose $v_{1} v_{3}$ is blue and $v_{1} v_{7}$ is green. The vertex v_{3} must have another blue edge since the blue graph is spanning and connected so, without loss of generality, say $v_{3} v_{5}$ is blue. Also v_{3} needs a green edge so say $v_{3} v_{6}$ is green. By considering the cycle $v_{1} v_{4} v_{2} v_{3} v_{6} v_{7} v_{1}$, we see that $v_{6} v_{7}$ must be green to avoid a proper C_{6}.

Suppose first that the edge $v_{5} v_{7}$ is blue. Then the cycle $v_{1} v_{5} v_{7} v_{6} v_{2} v_{3} v_{1}$ must not be proper so $v_{2} v_{6}$ must be green. Also the cycle $v_{1} v_{4} v_{3} v_{2} v_{5} v_{7} v_{1}$ must not be proper so $v_{2} v_{5}$ is blue. If $v_{4} v_{6}$ is blue, then the cycle $v_{1} v_{4} v_{6} v_{5} v_{3} v_{7} v_{1}$ implies $v_{6} v_{5}$ is blue and since green is
spanning and connected, $v_{5} v_{4}$ must be green so $v_{1} v_{4} v_{5} v_{6} v_{7} v_{3} v_{1}$ is a proper C_{6}. Thus, $v_{4} v_{6}$ must be green. Since blue is spanning and connected, $v_{5} v_{6}$ must be blue which means $v_{5} v_{4}$ must be green - again making $v_{1} v_{4} v_{5} v_{6} v_{7} v_{3} v_{1}$ a proper C_{6}.

Finally, suppose the edge $v_{5} v_{7}$ is green. First, we will also assume $v_{4} v_{6}$ is green. The cycle $v_{1} v_{4} v_{6} v_{5} v_{7} v_{3} v_{1}$ cannot be proper so $v_{5} v_{6}$ must also be green. Since v_{6} must have a blue edge, $v_{6} v_{2}$ must be blue. Since the cycle $v_{1} v_{3} v_{7} v_{2} v_{6} v_{5} v_{1}$ is not proper, this shows that $v_{7} v_{2}$ must be blue but the cycle $v_{1} v_{4} v_{2} v_{6} v_{7} v_{3} v_{1}$ must also not be proper, showing that $v_{4} v_{2}$ must also be blue. This implies that $v_{5} v_{2}$ must be green for v_{2} to have a green edge but then $v_{1} v_{5} v_{2} v_{6} v_{7} v_{3} v_{1}$ is a proper C_{6}.

Thus, we may also assume $v_{4} v_{6}$ is blue. The cycle $v_{1} v_{4} v_{6} v_{7} v_{2} v_{3} v_{1}$ shows that $v_{2} v_{7}$ must be green which immediately implies $v_{7} v_{4}$ is blue since v_{7} needs a blue edge. The cycle $v_{1} v_{4} v_{7} v_{5} v_{2} v_{3} v_{1}$ implies $v_{5} v_{2}$ must be green while the cycle $v_{1} v_{4} v_{7} v_{6} v_{2} v_{3} v_{1}$ implies $v_{6} v_{2}$ is also green. Since v_{2} needs a blue edge, $v_{4} v_{2}$ must be blue. Then $v_{1} v_{4} v_{2} v_{5} v_{3} v_{7} v_{1}$ is a proper C_{6} to complete the proof in this case.

Case 3. $n=6$.
As in the previous cases, there must be three colors that are spanning and connected. By Theorem 3, the diameter of each color can be at most four. Recall that in the base case of Theorem 5, we argue that each G^{i} has exactly five edges and that if each G^{i} has a diameter of at most three, then each G^{i} is a T_{1}. Thus, if no color has diameter four, then up to relabeling of colors, there is exactly one coloring of G in which each color induces a T_{1}. This coloring is shown in Figure 5 below.

Figure 5: Coloring of K_{6}

In Figure 5, we see that $v_{5} v_{6} v_{4} v_{2} v_{3} v_{1} v_{5}$ is a proper C_{6}. We now assume that there is a color, say color 1 , with diameter exactly four. For the duration of the proof, we rely on the following claim.

Claim 12. In any coloring G of K_{6} with three spanning and connected colors, G does not contain a monochromatic triangle.

Proof. This proof is by contradiction. Assume G has a monochromatic triangle in color i. Since G has three spanning and connected colors, G^{i} has exactly five edges. Since G^{i} contains a triangle $v_{1} v_{2} v_{3}, G^{i}$ has exactly two other edges that must connect the remaining three vertices $v_{4} v_{5} v_{6}$ to the triangle, a contradiction.

Since color 1 has diameter exactly four, G^{1} has a path $v_{1} v_{2} v_{3} v_{4} v_{5}$ with no chords of color 1 . If edge $v_{3} v_{6}$ is color 1 , then G^{1} has three disjoint color 1 edges and we can easily find a C_{6} in G. Since G^{1} is spanning, this forces that either edge $v_{2} v_{6}$ or $v_{4} v_{6}$ is color 1. Without loss of generality, assume $v_{2} v_{6}$ is color 1 . We also know that edges $v_{1} v_{6}$ and $v_{5} v_{6}$ are not color 1 because otherwise the diameter of G^{1} is not four. We now consider two subcases.

Subcase 3.1. $v_{1} v_{6}$ and $v_{5} v_{6}$ have the same color.
Assume $v_{1} v_{6}$ and $v_{5} v_{6}$ have color 2. Then $v_{1} v_{5}$ must be color 3 or triangle $v_{1} v_{5} v_{6}$ forms a monochromatic triangle, thus contradicting Claim 12. If $v_{3} v_{5}$ is color 2 , then $v_{1} v_{6} v_{2} v_{4} v_{3} v_{5} v_{1}$ is a proper C_{6}, so assume $v_{3} v_{5}$ is instead color 3 . If $v_{1} v_{3}$ is color 3 , then triangle $v_{1} v_{3} v_{5}$ is a monochromatic triangle, again contradicting Claim 12. Thus, $v_{1} v_{3}$ is color 2. Finally, this implies that $v_{3} v_{6}$ must be color 3 or otherwise $v_{1} v_{3} v_{6}$ is a monochromatic triangle in color 2, another contradiction of Claim 12. In this structure, we see that $v_{1} v_{2} v_{4} v_{5} v_{6} v_{3} v_{1}$ is a proper C_{6}.
Subcase 3.2. $v_{1} v_{6}$ and $v_{5} v_{6}$ have different colors.
If edge $v_{1} v_{3}$ also has a different color from edge $v_{1} v_{6}$, then $v_{1} v_{6} v_{5} v_{4} v_{2} v_{3} v_{1}$ is a proper C_{6}. Thus, $v_{1} v_{3}$ and $v_{1} v_{6}$ have the same color and similarly $v_{3} v_{5}$ and $v_{5} v_{6}$ have the same color. This forces either $v_{1} v_{3} v_{6}$ or $v_{3} v_{5} v_{6}$ to be a monochromatic triangle, which contradicts Claim 12.

5 Proper- C_{m} free Colorings

The results contained in the previous sections establish that two or more spanning and connected colors imply the existence of a proper C_{4}, while three or more spanning and connected colors imply the existence of a proper C_{5} and a proper C_{6}. The next result shows that as the desired cycle length gets longer, we need more and more spanning and connected colors to force the existence of a properly colored cycle. Specifically, Theorem 13 ensures that we need at least $k+1$ spanning and connected colors to force the existence of a proper C_{m}, for $m>2 k$.

Theorem 13. For $n \geqslant 2 k$, there exists a coloring of K_{n} which contains k spanning and connected colors but no proper cycles of length greater than $2 k$.

Proof. The construction is by induction on n. Suppose there exists a coloring G of $K_{n-2 k}$ which contains no proper cycle of length greater than $2 k$. If $n \leqslant 4 k$, this is trivial so we may suppose $n>4 k$. Add $2 k$ new vertices $\left\{u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}\right\}$ to G. For all $i \geqslant j$, color the edges $u_{i} v_{j}$ and $v_{i} u_{j}$ with color j. For $i<j$, color the edges $u_{i} u_{j}$ and $v_{i} v_{j}$ with
color j. This provides a coloring of all the edges among pairs of the added vertices. All edges between u_{i} and G and between v_{i} and G receive color i. In this coloring of K_{n}, colors $1,2, \ldots, k$ are spanning and connected.

Suppose there exists a properly colored cycle $C=C_{m}$ in this graph for some $m>2 k$. Since G was assumed to have no properly colored C_{m}, we know $C \nsubseteq G$. Conversely, since $|C|=m>2 k$, we also know that $C \nsubseteq\left\{u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}\right\}$. Consider an edge e of C from G to u_{i} (or identically v_{i}). By construction, e has color i. Following C from u_{i}, we cannot take an edge of color i, so must take an edge of color j to a vertex u_{j} for $j \geqslant i$ or v_{j} for $j<i$. Similar statements hold when leaving u_{j} or v_{j}, and we see that we can never return to G. This is a contradiction. Note that all colors are spanning and connected.

Theorem 13 yields a lower bound for the number of spanning and connected colors required to force the existence of a properly colored cycle. Theorem 14 yields a general upper bound and shows that any coloring with $2 m-1$ or more spanning and connected colors forces the existence of a proper C_{m}, for $m \geqslant 3$.

Theorem 14. Let $m \geqslant 3$ and $n \geqslant m$. If G is a proper- C_{m} free coloring of K_{n}, then G has at most $2 m-2$ spanning and connected colors.

Proof. This proof is by induction on m. If $m \leqslant 6$, the result follows from Theorems 2, 4, 5, and 8 so suppose $m \geqslant 7$. Let G be a coloring of K_{n} with at least $2 m-1$ colors spanning connected graphs and suppose G contains no proper C_{m}. Note that this implies $n \geqslant 2 m$. By induction, we may assume there is a properly colored C_{m-1} in G. Call this cycle C. We now prove a sequence of claims which lead to the construction of a proper C_{m}.

Claim 15. If $w \in G \backslash C$ has an edge e to C of color i where i is not used in C, then w has only edges in color i to C.

Proof. Let c_{1} be the vertex of C contained in e and let $c_{2}, c_{3}, \ldots, c_{m-1}$ be the remaining vertices of C in order around C. Let $i_{1}, i_{2}, \ldots, i_{m-1}$ be the colors of the edges in C such that the color of $c_{j} c_{j+1}$ is i_{j} (where the indices are taken modulo $m-1$). In order to avoid creating a properly colored C_{m}, the edge $w c_{2}$ must either have color i or i_{2}. Let $j_{2} \in\left\{i, i_{2}\right\}$ be the color of $w c_{2}$. Similarly, the edge $w c_{3}$ must either have color j_{2} or i_{3}. Let $j_{3} \in\left\{j_{2}, i_{3}\right\}$ be the color of $w c_{3}$. Following this pattern, let j_{t} denote the color of the edge $w c_{t}$ where $j_{t} \in\left\{j_{t-1}, i_{t}\right\}$ for all $2 \leqslant t \leqslant m-1$. Since the edge $w c_{1}$ has color i, it must be that i is in the set $\left\{j_{m-1}, i_{1}\right\}$. Since i is unused in C, we must have $j_{m-1}=i$. This, in turn, implies that $i \in\left\{j_{m-2}, i_{m-1}\right\}$, so again $j_{m-2}=i$. This argument can be repeated all the way around C to conclude that the color of $w c_{j}$ is i for all j.

Without loss of generality, suppose C uses colors $m+1, m+2, \ldots, m+s$ where $s \leqslant m-1$. Since $2 m-1$ colors are spanning and connected, we may assume colors $1,2, \ldots, m$ are all spanning and connected and not present in C. For all $i \geqslant 1$, let V_{i} be the set of vertices in $G \backslash C$ with all edges to C in color i. Since colors $1,2, \ldots, m$ are all spanning and connected, applying Claim 15, we see that $V_{i} \neq \emptyset$ for all $i \leqslant m$.
Claim 16. If $w \in G \backslash\left(\cup_{i \geqslant 1} V_{i}\right)$ and $v \in V_{i}$, then wv has color i.

Proof. This proof is by contradiction. By the definition of V_{i}, all edges between V_{i} and C have color i so if $H=C$, we're finished. Thus, we may assume $H \backslash C \neq \emptyset$. Let $w \in H \backslash C$ and suppose $v \in V_{i}$ and $v w$ has color $j \neq i$ where j is not used in C. Since $w \notin \cup V_{i}$, there exists an edge $w c_{1}$ with color $k \neq j$ for some $c_{1} \in C$. Again let c_{i} denote the vertices of C in order around the cycle. Since either $c_{m-1} c_{1}$ or $c_{1} c_{2}$ has a color other than k, we will assume the color of $c_{m-1} c_{1}$ is $\ell \neq k$ (see Figure 6). Now, by considering the cycle $w c_{1} c_{m-1} \cdots c_{3} v w$, we see that the color of $c_{3} c_{4}$ must be i since otherwise this produces a proper C_{m}, a contradiction.

Figure 6: Structure of G

Continuing with the proof of Theorem 14, consider edges between sets V_{i} and V_{j} for $1 \leqslant i, j \leqslant m$. Suppose $v_{i} \in V_{i}$ and $v_{j} \in V_{j}$ and the color of $v_{i} v_{j}$ is $k \notin\{i, j\}$. Then $v_{i} c_{1} c_{2} \cdots c_{m-2} v_{j} v_{i}$ is the desired proper C_{m}. Note that this holds even if $i=j$. The next fact is immediate.
Fact 17. Let $v_{i} \in V_{i}$ and $v_{j} \in V_{j}$ for some $1 \leqslant i, j \leqslant m$. Then the color of $v_{i} v_{j}$ is either i or j.

Note that if $i=j$, this means that the color of $v_{i} v_{j}$ is i.
Suppose $1 \leqslant i, j \leqslant m$ with $i \neq j$. By Fact 17 and Claim 16, in order for a vertex in V_{i} to have an edge of color j, it must have an edge in color j to a vertex of V_{j}. Since each of these colors is spanning and connected, we get the following easy fact.
Fact 18. Every vertex in V_{i} must have an edge of color j to a vertex of V_{j} for all i and j with $1 \leqslant i, j \leqslant m$.

Let $v_{1,1} \in V_{1}$. By Fact 18, there exists a vertex $v_{2,1} \in V_{2}$ such that the color of the edge $v_{1,1} v_{2,1}$ is 2 . Similarly, there exists a vertex $v_{3,1} \in V_{3}$ such that the color of the edge $v_{2,1} v_{3,1}$ is 3 . This process can be continued to create vertices $v_{i, 1}$ for all $1 \leqslant i \leqslant m$. Then there exists a vertex $v_{1,2} \in V_{1}$ such that $v_{m, 1} v_{1,2}$ has color 1 . Note that $v_{1,2} \neq v_{1,1}$ since otherwise we would have created a proper (in fact rainbow) C_{m}. Thus, we may continue
to create a long proper path using vertices $v_{i, j} \in V_{i}$ where j denotes the number of times we pass through set V_{i}. Since G is finite, this path must repeat a vertex at some point, creating a proper cycle of order a multiple of m. Let C^{\prime} be the shortest such cycle created by this process which has order a multiple of m. Without loss of generality, suppose $C^{\prime}=v_{1,1} v_{2,1} \cdots v_{m, r} v_{1,1}$.

Now for all i, let $W_{i} \subseteq V_{i}$ denote the vertices of V_{i} which are also in C^{\prime}. Without loss of generality, consider consecutive sets W_{1} and W_{2}. The edges $v_{1, k} v_{2, k}$ must all have color 2 by construction but all other edges between W_{1} and W_{2} must have color 1 since otherwise we could create a shorter proper cycle which still has length a multiple of m, contradicting the choice of C^{\prime} (see Figure 7). Using the edges between W_{i} and W_{i+1} which are not in C^{\prime}, we may easily construct a proper C_{m} unless $r=2$. In this case, the cycle must look like $v_{1,1} v_{2,2} v_{3,1} v_{4,2} \cdots v_{m, 1} v_{1,1}$ but this works only when m is odd. Thus, we may assume $r=2$ and m is even. Consider the edge $v_{1,1} v_{4,1}$. If this edge has color 4 , then $C^{\prime \prime}=v_{1,1} v_{4,1} v_{3,2} v_{4,2} \cdots v_{m, 2} v_{1,1}$ is a proper C_{m}. By this argument, all edges of the form $v_{i, 1} v_{i+3,1}$ and $v_{i, 2} v_{i+3,2}$ have color i. Then we can create all even cycles with length $2 t$ a multiple of four from length eight up to $2 m$ as follows. The cycle

$$
v_{1,1} v_{2,1} \cdots v_{t, 1} v_{t-1,2} v_{t, 2} v_{t-3,2} v_{t-2,2} v_{t-5,2} v_{t-4,2} \cdots v_{1,2} v_{2,2} v_{1,1}
$$

is properly colored and has length $2 t$.

Figure 7: Structure of C^{\prime}

Finally, it remains to produce a proper $C_{2 t}$ when t is odd. If $v_{1,1} v_{3,1}$ has color 3 and
$v_{3,1} v_{5,1}$ has color 5 , then

$$
v_{1,1} v_{3,1} v_{5,1} v_{6,1} \cdots v_{t+1,1} v_{t, 2} v_{t+1,2} v_{t-2,2} v_{t-1,2} v_{t-4,2} v_{t-3,2} \cdots v_{1,2} v_{2,2} v_{1,1}
$$

is a properly colored $C_{2 t}$ for $t \geqslant 5$ while $v_{1,1} v_{3,1} v_{5,1} v_{4,2} v_{1,2} v_{2,2} v_{1,1}$ suffices when $t=3$. By symmetry, we cannot have both $v_{1,1} v_{3,1}$ in color 1 and $v_{3,1} v_{5,1}$ in color 3 (by considering the relabeling $v_{1,1}^{\prime}=v_{7,1}, v_{2,1}^{\prime}=v_{6,2}, v_{3,1}^{\prime}=v_{5,1}, v_{4,1}^{\prime}=v_{4,2}, \ldots, v_{7,1}^{\prime}=v_{1,1}, v_{8,1}^{\prime}=v_{m, 1}$, $v_{9,1}^{\prime}=v_{m-1,2}, \ldots$ and so on). By the same argument, we cannot have both $v_{i, j} v_{i+2, j}$ in color i (or $i+2$) and $v_{i+2, j} v_{i+4, j}$ in color $i+2$ (or respectively, $i+4$). Thus, if $m \geqslant 8$, we get, either $v_{1,1} v_{3,1}$ in color 3 and $v_{5,1} v_{7,1}$ in color 7 or $v_{1,1} v_{3,1}$ in color 1 and $v_{5,1} v_{7,1}$ in color 5 . In the first case, the desired proper C_{m} is

$$
v_{1,1} v_{3,1} v_{4,1} v_{5,1} v_{7,1} v_{8,1} \cdots v_{m / 2+1,1} v_{m / 2,2} v_{m / 2+1,2} v_{m / 2-2,2} v_{m / 2-1,2} v_{m / 2-4,2} \cdots v_{1,2} v_{2,2} v_{1,1}
$$

while, in the second case, we use

$$
v_{1,1}^{\prime} v_{3,1}^{\prime} v_{4,1}^{\prime} v_{5,1}^{\prime} v_{7,1}^{\prime} v_{8,1}^{\prime} \cdots v_{m / 2+1,1}^{\prime} v_{m / 2,2}^{\prime} v_{m / 2+1,2}^{\prime} v_{m / 2-2,2}^{\prime} v_{m / 2-1,2}^{\prime} v_{m / 2-4,2}^{\prime} \cdots v_{1,2}^{\prime} v_{2,2}^{\prime} v_{1,1}^{\prime}
$$

This completes the proof of Theorem 14.
We end this section with a corollary summarizing the lower and upper bounds given by Theorems 13 and 14 .

Corollary 19. Given integers m and n with $n \geqslant m$, let $M(m, n)$ be the maximum number of spanning and connected colors in a coloring of K_{n} containing no proper C_{m}. Then $\frac{m-1}{2} \leqslant M(m, n) \leqslant 2 m-2$.

6 Conclusion

Future work in the area of proper-cycle free colorings includes tightening the gap between the upper and lower bounds given in Corollary 19. The results of Theorems 4, 5, and 8 indicate that the lower bound of Corollary 19 may be sharp, but in general, this may be difficult to show. The proofs of Theorems 4,5 , and 8 do not suggest a way to easily extend the results of proper- C_{4} free, C_{5} free, and C_{6} free colorings to general C_{m} free colorings. Since we believe the lower bound in Corollary 19 is sharp (see Conjecture 20), this indicates that the sharp results for even cycles C_{m} may be more difficult to prove since the cycle is longer than the corresponding odd cycle C_{m-1}. Even so, we conjecture the result is the same.

Conjecture 20. Given integers m and n with $n \geqslant m$, the maximum number of spanning and connected colors in a coloring of K_{n} containing no proper C_{m} is $\left\lfloor\frac{m-1}{2}\right\rfloor$.

Finding analogs to Theorem 1 would also be a welcome addition to the literature; in particular, proving partition results as described in Problem 21 for proper- C_{m} free colorings of complete graphs. We pose the following problem.

Problem 21. Given an integer m, find the smallest number $\lambda(m)$ such that every properC_{m} free coloring of a complete graph has a non-trivial partition with at most $\lambda(m)$ colors on the edges between the parts.

Some other related results concerning colorings free of proper cycles bear mentioning. Many such results are contained in [1]. In particular, the following important structural result of Yeo [8].

Theorem 22 (Yeo [8]). If G is a proper cycle free coloring of a (not necessarily complete) graph, then there is a vertex $z \in G$ such that no connected component of $G \backslash\{z\}$ is joined to z by more than one color.

Note that if G is a coloring of K_{n}, Theorem 22 yields the following corollary almost immediately.

Corollary 23. If G is a rainbow triangle free and proper-C4 free coloring of K_{n}, then there is a vertex $z \in G$ incident only to edges of a single color.

Therefore, to gain more structural information about proper- C_{4} free colorings, one may assume the existence of a rainbow triangle.

References

[1] J. Bang-Jensen and G. Gutin. Digraphs. Springer Monographs in Mathematics. Springer-Verlag London Ltd., London, second edition, 2009. Theory, algorithms and applications.
[2] S. Fujita, A. Gyárfás, C. Magnant, and A. Seress. Disconnected colors in generalized Gallai colorings. J. Graph Theory, To appear.
[3] S. Fujita and C. Magnant. Extensions of Gallai-Ramsey results. J. Graph Theory, 70(4):404-426, 2012.
[4] S. Fujita, C. Magnant, and K. Ozeki. Rainbow generalizations of Ramsey theory: a survey. Graphs and Combin., 1:1-30, 2010.
[5] S. Fujita, C. Magnant, and K. Ozeki. Rainbow generalizations of Ramsey theory: a survey (upated). http://math.georgiasouthern. edu/~ cmagnant/, 2011.
[6] T. Gallai. Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hungar, 18:25-66, 1967.
[7] A. Gyárfás and G. Simonyi. Edge colorings of complete graphs without tricolored triangles. J. Graph Theory, 46(3):211-216, 2004.
[8] A. Yeo. A note on alternating cycles in edge-coloured graphs. J. Combin. Theory Ser. B, 69(2):222-225, 1997.

