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Abstract

In this paper, some new properties are presented to the extremal graphs with
largest (signless Laplacian) spectral radii in the set of all the connected graphs with
prescribed degree sequences, via which we determine all the extremal tricyclic graphs
in the class of connected tricyclic graphs with prescribed degree sequences, and we
also prove some majorization theorems of tricyclic graphs with special restrictions.

Keywords: Spectral radius, signless Laplacian spectral radius, degree sequence,
majorization

1 Introduction

Throughout the paper, G denotes a connected undirected simple graph with n vertices
and m edges, unless specified otherwise. If m = n+c−1, then G is called a c-cyclic graph.
In particular, when c = 0, 1, 2 or 3, then G is called a tree, unicyclic graph, bicyclic graph
or tricyclic graph, respectively. As usual, denote NG(v) the neighbor set of vertex v in
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G, and let dG(v) be the degree of v. When there is no confusion, we simplify NG(v) and
dG(v) as N(v) and d(v), respectively. If d(v) = 1, v is called a pendant vertex.

Let A(G) be the adjacency matrix of G, and let D(G) be the diagonal matrix whose
(i, i)-entry is d(vi). The signless Laplacian matrix of G is Q(G) = D(G) +A(G). We use
the notations ρ(G) and µ(G) to denote the spectral radius and signless Laplacian spectral
radius of G, respectively, namely, ρ(G) and µ(G) are, respectively, equal to the largest
eigenvalues of A(G) and Q(G).

When G is connected, by the Perron-Frobenius Theorem of non-negative matrices (see
e. g. [4]), ρ(G) and µ(G) have multiplicity one and there exists a unique positive unit
eigenvector corresponding to ρ(G), and there also exists a unique positive unit eigenvector
corresponding to µ(G). In this paper, we use f = (f(v1), . . . , f(vn))

T to indicate the
unique positive unit eigenvector corresponding to ρ(G) or µ(G), and call f the Perron
vector of G.

If di = d(vi) for i = 1, 2, . . . , n, then we call the sequence π = (d1, d2, . . . , dn) the
degree sequence of G. Throughout this paper, we enumerate the degrees in non-increasing
order, i.e., d1 > d2 > . . . > dn. Let Γ(π) define the class of connected graphs with a
prescribed degree sequence π, and let S(π) be the class of connected tricyclic graphs with
a prescribed tricyclic degree sequence π. In the coming discussion, we call G an extremal
graph if G has largest spectral radius or signless Laplacian spectral radius of Γ(π).

Suppose π = (d1, d2, . . . , dn) and π′ = (d′1, d
′
2, . . . , d

′
n) are two non-increasing integer

sequences, we write π⊳π′ if and only if π 6= π′,
∑n

i=1 di =
∑n

i=1 d
′
i, and

∑j

i=1 di 6
∑j

i=1 d
′
i

for all j = 1, 2, . . . , n. Such an ordering is sometimes called majorization. Suppose that G
and G′ are the extremal graphs of Γ(π) and Γ(π′), respectively. We say that the spectral
radii (respectively, signless Laplacian spectral radii) of G and G′ satisfy the majorization
theorem if π ⊳ π′ implies that ρ(G) < ρ(G′) (respectively, µ(G) < µ(G′)).

The work on determining the graph which has largest spectral radius among some
class of graphs, can be traced back to 1985 when Brualdi and Hoffman investigated the
maximum spectral radius of the adjacency matrix of a (not necessarily connected) graph
in the set of all graphs with a given number of vertices and edges. Their work was followed
by other people, in the connected graph case as well as in the general case.

In this line, the unique extremal graph of Γ(π) was characterized when Γ(π) are
restricted on trees, unicyclic graphs and/or bicyclic graphs, respectively [1, 2, 5, 11, 16, 17],
and the (signless Laplacian) spectral radii of extremal graphs were proved to satisfy the
majorization theorem when Γ(π) are restricted on trees, unicyclic graphs and/or bicyclic
graphs, respectively [2, 5, 6, 8, 16, 17]. Furthermore, Liu et al. [9] found that the
majorization theorem is a good tool to deal with Cvetković’s problem, asked how to classify
and order graphs according to their spectral radii [3]. Unfortunately, this method (namely,
the tool of majorization theorem) cannot be applied to deal with Cvetković’s problem for
the spectral radii of tricyclic graphs, since a counterexample to the majorization theorem
of tricyclic graphs was discovered by Liu et al. [10].

In this paper, some new properties are presented to the extremal graphs of Γ(π), and
all the extremal tricyclic graphs of S(π) will be determined. Furthermore, we also verify
some majorization theorems of tricyclic graphs with special restrictions.
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The rest of this paper is organized as follows: We first give some new properties to the
extremal graphs of Γ(π) in Section 2, via which we characterize all the extremal tricyclic
graphs of S(π) in Sections 3. Finally, some majorization theorems of tricyclic graphs with
special restrictions are given in Section 4.

2 Extremal graphs of Γ(π)

Let G−uv denote the graph obtained from G by deleting the edge uv ∈ E(G). Similarly,
denote by G+ uv the graph obtained from G by adding an edge uv 6∈ E(G).

Lemma 1. [15, 16] Let u, v be two vertices of the connected graph G, and w1, w2, . . . , wk

(1 6 k 6 d(v)) be some vertices of N(v) \ (N(u)∪ {u}). Let G′ = G+w1u+ · · ·+wku−
w1v− · · ·−wkv. Suppose f is the Perron vector of G. If f(u) > f(v), then ρ(G′) > ρ(G)
and µ(G′) > µ(G).

Corollary 2. Suppose G is an extremal graph of Γ(π) and f is the Perron vector of G.
If d(v) > d(u), then f(v) > f(u). Moreover, if f(v) = f(u), then d(v) = d(u).

Proof. Suppose that there exist vertices v and u such that d(v) > d(u), but f(v) 6 f(u).
Since G is connected, we may suppose that Puv is a shortest path from u to v. Note that
d(v)− d(u) = k > 0. Then, there exist vertices {w1, w2, . . . , wk} ⊆ N(v) \ (N(u) ∪ {u})
such that w1, w2, . . . , wk 6∈ V (Puv). Let G′ = G + uw1 + · · · + uwk − vw1 − · · · − vwk.
Then, G′ ∈ Γ(π). Since f(v) 6 f(u), ρ(G′) > ρ(G) and µ(G′) > µ(G) by Lemma 1,
contradicting the choice of G.

Lemma 3. ([4], P. 492–493) Suppose M = Mn×n is a symmetric, nonnegative matrix, y is
an n-tuple positive vector, α and β are two nonnegative real numbers. If αy 6 My 6 βy,
then α 6 λ 6 β, where λ is the largest eigenvalue of M . Furthermore, αy < My implies
that α < λ, and My < βy implies that λ < β.

Proposition 4. Let G = (V,E) be a connected graph such that ux ∈ E, vy ∈ E, uv 6∈ E,
xy 6∈ E, and let f be the Perron vector of G. Let G′ = G + uv + xy − ux − vy (not
necessary simple). Suppose G′ is not connected and G∗ is a connected component of G′ so
that uv ∈ E(G∗) and xy 6∈ E(G∗). If f(u) > f(y) and f(v) > f(x), then ρ(G∗) > ρ(G)
and µ(G∗) > µ(G). Moreover, ρ(G∗) = ρ(G) (respectively, µ(G∗) = µ(G)) if and only if
f(u) = f(y) and f(v) = f(x).

Proof. Let f1 be a vector which is the restriction of f on V (G∗). Since uv ∈ E(G∗)
and xy 6∈ E(G∗), ρ(G)f1 6 A(G∗)f1 and µ(G)f1 6 Q(G∗)f1. By Lemma 3 we can
conclude that ρ(G∗) > ρ(G) and µ(G∗) > µ(G), where both equalities hold if and only if
f(u) = f(y) and f(v) = f(x).

By Lemma 3, we can restate Lemma 3 of [2] and Lemma 3.3 of [16] as follows.
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Lemma 5. [2, 16] Let G = (V,E) be a connected graph such that ux ∈ E, vy ∈ E,
uv 6∈ E, xy 6∈ E. Let G′ = G + uv + xy − ux − vy. Suppose f is the Perron vector of
G. If f(u) > f(y) and f(v) > f(x), then ρ(G′) > ρ(G) and µ(G′) > µ(G). Moreover,
ρ(G′) = ρ(G) (respectively, µ(G′) = µ(G)) if and only if f(u) = f(y) and f(v) = f(x).

Corollary 6. Let G be an extremal graph of Γ(π) and let f be the Perron vector of G.
Suppose ux ∈ E, vy ∈ E, uv 6∈ E, xy 6∈ E. Let G′ = G+uv+xy−ux−vy. If G′ ∈ Γ(π),
then

(1) f(u) > f(y) if and only if f(v) < f(x);

(2) f(u) = f(y) if and only if f(v) = f(x), and f(u) = f(y) (respectively, f(v) = f(x))
if and only if G′ is also an extremal graph of Γ(π).

Definition 7. Let G be a connected graph and f be the Perron vector of G. A well-
ordering v1 ≺ v2 ≺ · · · ≺ vn of V (G) is called a BFS-ordering if the following hold for all
vertices u, v ∈ V (G) :

(i) d(v1) > d(v2) > · · · > d(vn), f(v1) > f(v2) > · · · > f(vn) and h(v1) 6 h(v2) 6

· · · 6 h(vn), where h(vi) is the distance between vi and v1.

(ii) If v ∈ N(u)\N(x), y ∈ N(x)\N(u) such that h(u) = h(x) = h(v)−1 = h(y)−1, then
f(u) > f(x) if and only if f(v) > f(y), and f(u) = f(x) if and only if f(v) = f(y).

Furthermore, if V (G) has a BFS-ordering, then we call G a BFS-graph.

Suppose v1 ≺ v2 ≺ · · · ≺ vn is a BFS-ordering of V (G). Denote by dist(u, v) the
distance between u and v in G, and let h(v) = dist(v1, v). Set Ai = {v : dist(v1, v) = i}.
In some literatures (for instance, [2, 5]), Ai is also called the i-th layer vertices of G.
Clearly, A0 = {v1} and A1 = N(v1). We write u ≡ v if and only if we can interchange the
positions of u and v in ≺ to obtain another BFS-ordering of V (G).

Lemma 8. [2, 17] Suppose G is an extremal graph of Γ(π), and f is the Perron vector of G.
Then, V (G) has a well-ordering v1 ≺ v2 ≺ · · · ≺ vn such that d(v1) > d(v2) > · · · > d(vn),
f(v1) > f(v2) > · · · > f(vn) and h(v1) 6 h(v2) 6 · · · 6 h(vn).

Lemma 9. Suppose G is an extremal graph of Γ(π), and f is the Perron vector of G.
Then, V (G) has a BFS-ordering such that

(1) if h(u) = h(v), then u ≡ v if and only if f(u) = f(v).

(2) if h(u) = h(v) = h(w), u ≡ v and v ≡ w, then u ≡ w.

Proof. We first show that V (G) has a BFS-ordering. By Lemma 8, V (G) has a well-
ordering v1 ≺ v2 ≺ · · · ≺ vn so that Definition 7 (i) holds. Thus, it suffices to deduce that
Definition 7 (ii) also holds. Let G′ = G+uy+xv−uv−xy. Then, G′ ∈ Γ(π), and hence
Definition 7 (ii) follows from Corollary 6.
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We secondly prove (1). Without loss of generality, suppose that u ≺ v in the ordering
≺. Clearly, u ≡ v implies that f(u) = f(v), since f(u) > f(v) by Definition 7 (i). Thus,
it suffices to show that f(u) = f(v) also implies that u ≡ v.

Now, we suppose that f(u) = f(v). We interchange the positions of u and v in the
ordering ≺ to obtain a new ordering ≺′ . Since f(u) = f(v), d(u) = d(v) by Corollary 2.
So, ≺′ satisfies (i) of Definition 7 because h(u) = h(v). Furthermore, ≺′ clearly satisfies
(ii) of Definition 7, since ≺ satisfies (ii). So, (1) holds.

Finally, we turn to prove (2). Since u ≡ v and v ≡ w, f(u) = f(v) = f(w) by (1).
Now, (1) implies that u ≡ w. Thus, (2) holds.

Theorem 10. Let G be an extremal graph of Γ(π) and f be the Perron vector of G. Then,
V (G) has a BFS-ordering ≺ such that

(1) if h(u) = h(v) = h(w), u ≺ v ≺ w, uw ∈ E(G) and uv 6∈ E(G), then x ∈ N(w)
holds for any x ∈ N(v) \ {w} with u ≺ x, and there must exist some y ≺ u such
that y ∈ N(v) \ N(w). Furthermore, if h(v2) = h(v) = h(w), v2 ≺ v ≺ w, then
v2w ∈ E(G) implies that v2v ∈ E(G).

(2) if f(v1) > f(v2), then h(u) < h(v) implies that f(u) > f(v).

Proof. We first prove (1). By Lemma 9, V (G) has a BFS-ordering ≺. Assume, to the
contrary, that the result is not true. Let u and w be the least vertices and v be the last
vertex in the ordering ≺ of V (G) such that h(u) = h(v) = h(w), u ≺ v ≺ w, uw ∈ E(G),
uv 6∈ E(G) and there exists some vertex x ∈ N(v) \ {w} with u ≺ x, but x 6∈ N(w). We
may suppose that v 6≡ w (Otherwise, we will consider the new BFS-ordering ≺′ of V (G)
obtained from ≺ by interchanging the positions of v and w). So, f(v) > f(w) by Lemma
9 (1) and Definition 7 (i). Let G′ = G+uv+wx−uw− vx. By Corollary 6 (1), it follows
that f(u) < f(x), contradicting (i) of Definition 7.

If y ∈ N(w) holds for every y ∈ N(v) with y ≺ u, since u ∈ N(w)\N(v) and x ∈ N(w)
holds for any x ∈ N(v) \ {w} with u ≺ x, we have d(v) < d(w), contradicting Definition
7 (i).

Thus, V (G) has a BFS-ordering ≺ such that (1) holds. Now, we turn to show (2).
It suffices to show that f(u) > f(v) whenever u ∈ Aj and v ∈ Aj+1 holds for j > 0 by
induction. The result clearly follows for j = 0 by the condition f(v1) > f(v2). Now, we
assume that the result already holds for 0 6 j 6 k − 1, and we will prove that the result
also follows for j = k.

Suppose that there exist two vertices, say u and v, such that u ∈ Ak, v ∈ Ak+1 and
f(u) 6 f(v). Since h(u) < h(v), we have f(u) = f(v) by Definition 7 (i), and hence
d(u) = d(v) by Corollary 2. Let Puv1 be a shortest path from v1 to u, and let Pvv1 be a
shortest path from v1 to v. Choose x ∈ V (Puv1) such that x ∈ N(u). Then, xv 6∈ E(G)
and h(x) = h(u)− 1.

Suppose u ∈ V (Pvv1). Then d(v) = d(u) > 2 and uv ∈ E(Pvv1). Since d(v) = d(u) > 2
and x ∈ N(u) \ N(v), there exists some y ∈ N(v) \ {u} such that y 6∈ N(u). Since
u ∈ N(v) ∩ V (Pvv1), h(y) > h(u) = h(x) + 1. If h(y) > h(u), by Definition 7 (i) we have
f(u) > f(y). By the induction hypothesis and h(x) = k − 1 < k = h(u), f(x) > f(u).
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Thus, f(x) > f(y). If h(y) = h(u), since h(x) = k − 1 < k = h(u) = h(y), by the
induction hypothesis we have f(x) > f(y). So, we get f(x) > f(y) whenever h(y) > h(u)
or h(y) = h(u). Let G′ = G + vx + uy − ux − vy. Since ux ∈ E(G), uv ∈ E(G)
and vy ∈ E(G), we can conclude that G′ ∈ Γ(π). Now, Corollary 6 (1) implies that
f(v) < f(u), a contradiction.

Suppose u 6∈ V (Pvv1). Choose y ∈ N(v) ∩ V (Pvv1) such that h(y) = h(u). Thus,
f(x) > f(y) by the induction hypothesis and h(x) = k − 1 < k = h(u) = h(y). If
yu 6∈ E(G), let G′ = G + vx + uy − ux − vy. Then, f(v) < f(u) by Corollary 6 (1),
a contradiction. If yu ∈ E(G), since x ∈ N(u) \ N(v) and d(u) = d(v), there exists
some z ∈ N(v) \ {u} such that z 6∈ N(u). Since h(z) > h(y) = h(u), f(x) > f(z) by
the induction hypothesis and Definition 7 (i). Let G′ = G + xv + uz − ux − vz. Now,
Corollary 6 (1) implies that f(v) < f(u), a contradiction.

In the following, if G is an extremal graph of Γ(π), we always suppose that V (G) =
{v1, v2, . . . , vn} has a BFS-ordering ≺ such that ≺ satisfies the conclusion of Theorem
10.

Lemma 11. Let G be an extremal graph of Γ(π), and uv be an edge on a cycle of G.
Suppose P = w1 · · ·ws+1 is a path of G, and f(ws+1) < min{f(u), f(v)}, where f is
the Perron vector of G. If there exists some j ∈ {1, 2, . . . , s} such that uwj 6∈ E(G),
uwt 6∈ E(G) and vwt 6∈ E(G) hold for every t ∈ {j + 1, . . . , s+ 1}, then f(v) > f(wj).

Proof. To the contrary, suppose that f(v) 6 f(wj). Let G′ = G + uwj + vwj+1 − uv −
wjwj+1. Then, G

′ ∈ Γ(π). By Lemma 5, f(u) 6 f(wj+1). Let G
′′ = G+ uwj+2+ vwj+1−

uv − wj+1wj+2. Then, G′′ ∈ Γ(π). Since f(u) 6 f(wj+1), by Lemma 5 it follows that
f(v) 6 f(wj+2). Let G

′′′ = G+ uwj+2+ vwj+3− uv−wj+2wj+3. Then, G
′′′ ∈ Γ(π). Since

f(v) 6 f(wj+2), f(u) 6 f(wj+3) by Lemma 5. By repeating the similar arguments, we
can conclude that f(ws+1) > min{f(u), f(v)}, contradicting the condition.

Denote by R(G) the reduced graph obtained from G by recursively deleting pendant
vertices of the resultant graph until no pendant vertices remain. If G is a connected
c-cyclic graph, it is easy to see that R(G) is unique and R(G) is also a connected c-cyclic
graph. Thus, we have

∑

w∈V (R(G))

dR(G)(w) = 2|V (R(G))|+ 2c− 2. (1)

Proposition 12. Let G be an extremal graph of Γ(π), and f be the Perron vector of G.
Suppose u ∈ V (R(G)) and v ∈ V (G) \ V (R(G)). Then, f(u) > f(v).

Proof. If d(v) = 1, then f(u) > f(v) by Corollary 2 and d(u) > 2. Now, we suppose that
d(v) > 2. Then, there exists some pendant path, say P = vx1 · · ·xs, where d(xs) = 1.

Suppose u lies on some cycle C. Then, there exists some vertex w ∈ V (C) ∩ N(u)
such that wv 6∈ E(G), wxi 6∈ E(G) and uxi 6∈ E(G) hold for 1 6 i 6 s. Thus, f(u) > f(v)
by Lemma 11.
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Suppose u does not lie on any cycle. Since u ∈ R(G), u lies on a path, say P ,
where P is the unique path of R(G) connecting two cycles, say C and C ′. Suppose
{x} = V (P ) ∩ V (C) and {y} = V (P ) ∩ V (C ′). Let Pv1x be a shortest path connecting
v1 and x, and let Pv1y be a shortest path connecting v1 and y. If u ∈ V (Pv1x), then
f(u) > f(x) > f(v) by the former arguments and Theorem 10. Similarly, if u ∈ V (Pv1y),
then f(u) > f(y) > f(v). Now, we consider the case that u 6∈ V (Pv1x) and u 6∈ V (Pv1y).

If either y ∈ V (Pv1x) or x ∈ V (Pv1y), since u 6∈ V (Pv1x) and u 6∈ V (Pv1y), it is easy
to see that u lies on a cycle, a contradiction. If y 6∈ V (Pv1x) and x 6∈ V (Pv1y), since
u 6∈ V (Pv1x) and u 6∈ V (Pv1y), u also lies on a cycle, a contradiction.

Proposition 13. Let G be an extremal graph of Γ(π) and u and v be two vertices of
R(G). Suppose f is the Perron vector of G. If dR(G)(u) > dR(G)(v), then f(u) > f(v).
Furthermore, f(u) = f(v) implies that dR(G)(u) = dR(G)(v).

Proof. By Corollary 2, we may suppose that dG(u) 6 dG(v). Let Puv be a shortest path
from u to v in R(G). Since dR(G)(u) > dR(G)(v), there exists some vertex w ∈ NR(G)(u) \
NR(G)(v) so that w 6∈ Puv. Moreover, since d(u) 6 d(v) and dR(G)(u) > dR(G)(v), there
exists some vertex z such that z ∈ NG(v)\NG(u) and z ∈ V (G)\V (R(G)). By Proposition
12, f(w) > f(z). Let G′ = G + uz + vw − uw − vz. By Corollary 6 (1), it follows that
f(v) < f(u).

Corollary 14. Suppose G is an extremal graph of Γ(π). If dR(G)(v) > 2 holds for some
v ∈ Aj ∩ R(G) and j > 2, then

(1) dR(G)(u) > dR(G)(v) holds for each u ∈ Ai, where 0 6 i 6 j − 1;

(2) dR(G)(w) = dG(w) holds for each w ∈ Ak, where 0 6 k 6 j − 2.

Proof. (1) clearly follows from Proposition 13 and Theorem 10. Thus, we only need to
show (2). Suppose that there exists some vertex x such that x ∈ NG(w)\NR(G)(w). Then,
x 6∈ V (R(G)). So, f(v) > f(x) by Proposition 12. On the other hand, since x ∈ NG(w),
dist(v1, x) < dist(v1, v). By Theorem 10, f(v) 6 f(x), a contradiction.

Let G be a connected graph and T be a tree such that T is attached to a vertex v of
G. Then, v is called the root of T . In the coming discussion, we use the notation Tv to
denote a root tree with root v, and we agree that Tv includes the root v.

An internal path, say P = v1v2· · · vs+1 (s > 1), is a path joining v1 and vs+1 (which
need not be distinct) such that v1 and vs+1 have degree greater than 2, while all other
vertices v2, . . . , vs are of degree 2. Suppose P is an internal path. Denote l(P ) the length
of P , i.e., l(P ) = s.

Proposition 15. Let G be an extremal graph of Γ(π), where dn = 1. Suppose P =
w1· · ·ws+1 is an internal path of R(G).

(1) If w1 6= ws+1, then l(P ) 6 2. Furthermore, if l(P ) = 2, then either w1w3 ∈ E(G)
or all the pendant vertices of G are on Tw2

.
(2) If w1 = ws+1, then l(P ) = 3.
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Proof. Here we only prove (1), since (2) can be demonstrated analogously. Let f be the
Perron vector of G, and let f(wk) = min{f(wi), where 1 6 i 6 s + 1}. Suppose s > 3.
By Proposition 13, we have 2 6 k 6 s.

If there exists at least one pendant vertex pertaining to V (G)\V (Twk
), let G′ = G +

wk−1wk+1 + wkwk − wk−1wk − wkwk+1 (not simple), and let G∗ be the component of
G′ containing the edge wk−1wk+1. Now, Proposition 4 implies that ρ(G∗) > ρ(G) and
µ(G∗) > µ(G). Suppose u is a pendant vertex of G∗, and uv ∈ E(G∗). Let G′′ be the
graph obtained from G∗ by subdividing the edge uv, i.e., adding a new vertex w and
edges wu, wv in G− uv. Then, we can construct a new graph G′′′ obtained from G′′ (via
replacing Twk

by Tw) such that G′′′ ∈ Γ(π). Since G∗ ⊂ G′′′, ρ(G′′′) > ρ(G∗) > ρ(G) and
µ(G′′′) > µ(G∗) > µ(G), a contradiction.

Thus, all the pendant vertices of G are on Twk
. Since s > 3, there exists some vertex,

say x, such that x ∈ V (P )\{w1, wk, ws+1}, dG(wk) > 2 = dG(x) and hence f(wk) > f(x)
by Corollary 2, contradicting the choice of wk. This contradiction implies that l(P ) 6 2.

Now, we assume that w1w3 6∈ E(G) and there exists at least one pendant vertex
pertaining to V (G)\V (Tw2

). Let G′ = G + w1w3 + w2w2 − w1w2 − w2w3 (not simple).
Similarly, we will reach a contradiction, since f(w2) < min{f(w1), f(w3)} by Proposition
13. So, all the pendant vertices of G are on Tw2

.

By the definition of internal path and Corollary 2, with the similar method as applied
in the proof of Proposition 15, we have

Proposition 16. Let G be an extremal graph of Γ(π), where dn = 1. Suppose P is an
internal path of G from u to v. (1) If u 6= v, then l(P ) 6 2 and uv ∈ E(G). (2) If u = v,
then l(P ) = 3.

3 Extremal graphs of S(π)

Denote Pn and Kn, respectively, a path and a complete graph on n vertices. Suppose u is
a vertex of G, and Ps+1 = u1u2 · · ·us+1, where ui 6∈ V (G) for 1 6 i 6 s+ 1. If we obtain
G′ by adding two edges between u and the two pendant vertices of Ps+1, i.e., by adding
the edges uu1 and uus+1, then we say that G′ is obtained from G by appending the path
Ps+1 to u of G. If we obtain G′ by adding the edge uu1, then we say that G′ is obtained
from G by attaching the path Ps+1 to u of G.

Suppose π = (d1, d2, . . . , dn) is a tricyclic degree sequence. Then,
∑n

i=1 di = 2n + 4,
which implies that dn 6 2 holds for n > 5. It easily follows that

Proposition 17. Suppose π = (d1, d2, . . . , dn) is a tricyclic degree sequence. If dn = 2,
then π ∈ {(6, 2, . . . , 2), (5, 3, 2, . . . , 2), (4, 4, 2, . . . , 2), (4, 3, 3, 2, . . . , 2), (3, 3, 3, 3, 2, . . . , 2)}.
If dn = 1, then either (1) d1 > 4 and d4 > 3 or (2) d1 = 3 and d4 = 3 or (3) d2 = d3 =
d4 = 2 or (4) d2 = 3 and d3 = d4 = 2 or (5) d2 = d3 = 3 and d4 = 2 or (6) d2 > 4 and
d4 = 2.
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In the following, we shall determined all the extremal tricyclic graphs of S(π) for any
prescribed tricyclic degree sequence π according to Proposition 17. To do this, we need
to introduce more notations as follows.

Let F1 be the tricyclic graph obtained by appending two paths of lengths one and a
path of length n − 6, respectively, to a common vertex. Let D = (V,E) be the bicyclic
graph such that V (D) = {u1, u2, u3, u4} and E(D) = {u1u2, u1u3, u1u4, u2u3, u2u4}. In
other words, D = K4 − e. Let F2 be the tricyclic graph obtained from D by appending a
path of length n− 5 to u1 of D.

Suppose Pn−4 = w1w2 · · ·wn−4. Let F3 be the tricyclic graph obtained from D and
Pn−4 by adding two edges u1w1 and u2wn−4. Let F4 be the tricyclic graph obtained from
D and Pn−4 by adding two edges u1w1 and u3wn−4. Let F5 be the tricyclic graph obtained
from D and Pn−4 by adding two edges u3w1 and u4wn−4.

Theorem 18. Suppose G is an extremal of S(π), where π = (d1, d2, . . . , dn) and dn = 2.

(1) If d1 = 6 and d2 = · · · = dn = 2, then G ∼= F1;

(2) If d1 = 5, d2 = 3 and d3 = · · · = dn = 2, then G ∼= F2;

(3) If d1 = d2 = 4 and d3 = · · · = dn = 2, then G ∼= F3;

(4) If d1 = 4, d2 = d3 = 3 and d4 = · · · = dn = 2, then G ∼= F4;

(5) If d1 = d2 = d3 = d4 = 3 and d5 = · · · = dn = 2, then G ∼= F5.

Proof of Theorem 18 (1). Since d1 = 6 and d2 = · · · = dn = 2, G is obtained by appending
three paths, say Pli = wi1wi2 · · ·wili (i = 1, 2, 3), respectively, to a common vertex u.
Without loss of generality, suppose that l1 > l2 > l3.

If l2 > 3, by Corollary 2, we have u = v1 and f(v1) > f(v2). Thus, f(w21) > f(w12)
and f(w11) > f(w22) by Theorem 10 (2). Let G′ = G+w11w21+w12w22−w11w12−w21w22.
By Corollary 6 (1), f(w11) < f(w22), a contradiction.

Therefore, l2 = l3 = 2, and hence G ∼= F1.

Proof of Theorem 18 (2). By Theorem 10, we can conclude that v1v2 ∈ E(G). If G con-
tains a cut edge, say uv, then we may suppose that u = v1 and v = v2 by Corollary
2 and d3 = 2. Suppose x ∈ N(v1) \ {v2} and y ∈ N(v2) \ {v1}. By Corollary 2,
f(v1) > f(v2), and hence f(x) > f(y) by Theorem 10 (2). Choose z ∈ N(x) \ {v1}.
Let G′ = G + v2x + yz − v2y − xz. By Corollary 6 (1), f(v2) < f(z), a contradiction.
Therefore, G contains no cut edge.

Since d3 = 2, there are two paths, say Pli = v1wi1wi2 · · ·wili−2v2 (i = 1, 2), respec-
tively, connecting v1 and v2 such that v1v2 6∈ E(Pl1) and v1v2 6∈ E(Pl2). Without loss of
generality, suppose that l1 > l2. If l1 > 4, choose x ∈ N(v1)\{v2} such that x 6∈ V (Pl1)
and x 6∈ V (Pl2), and let y ∈ N(x) \ {v1}. By Corollary 2, f(v1) > f(v2), and hence
f(x) > f(w1l1−2) by Theorem 10 (2). Let G′ = G+ v2x+ yw1l1−2 − v2w1l1−2 − xy. Now,
Corollary 6 (1) implies that f(v2) < f(y), a contradiction. Therefore, l1 = l2 = 3, and
hence G ∼= F2.
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Proof of Theorem 18 (3). By Theorem 10, we can conclude that v1v2 ∈ E(G).
Suppose v2 is a cut vertex of G. Since d3 = 2, G is obtained from a cycle C =

v2v1w11 · · ·w1l1v2 by appending the path Pl2 = w21w22 · · ·w2l2 to v1 and appending the
path Pl3 = w31w32 · · ·w3l3 to v2. By Corollary 2, f(v2) > f(w22), and hence f(w21) <
f(w31) by Corollary 6 (1), since G′ = G+ v2w21 + w22w31 − w21w22 − v2w31 is connected.
On the other hand, since h(w31) > h(w21), we have f(w21) > f(w31) by Theorem 10, a
contradiction.

Thus, v2 is not a cut vertex of G. Since d3 = 2, there are three paths, say Pli =
v1wi1wi2 · · ·wili−2v2 (i = 1, 2, 3), respectively, connecting v1 and v2 such that v1v2 6∈ E(Pli)
holds for i ∈ {1, 2, 3}. Without loss of generality, suppose that l1 > l2 > l3. Assume that
l2 > 4. Let G′′ = G+ w11w21 + w12w22 − w11w12 − w21w22. Then, G

′′ is connected.
If f(w11) = f(w22) and f(w21) = f(w12), G

′′ is also an extremal graph of S(π) by
Corollary 6 (2). But v2 is a cut vertex of G′′, a contradiction. Thus, either f(w11) > f(w22)
or f(w21) > f(w12) holds by Theorem 10. By Corollary 6 (1), f(w21) > f(w12) implies
that f(w11) < f(w22) and f(w11) > f(w22) implies that f(w21) < f(w12), a contradiction.

Thus, l2 = l3 = 3, and hence G ∼= F3.

Proof of Theorem 18 (4). By Theorem 10, v1v2 ∈ E(G) and v1v3 ∈ E(G).
Case 1. v2v3 6∈ E(G).
Then, N(v1) ∩N(v2) = ∅ by Theorem 10 (1).
If v1v2 is a cut edge of G, choose x ∈ N(v2) \ {v1}, y ∈ N(v1) \ {v2} and z ∈

N(y) \ {v1}. Since f(v1) > f(v2) by Corollary 2, f(y) > f(x) by Theorem 10 (2). Let
G′ = G + v2y + xz − v2x− yz. By Corollary 6 (1), f(v2) < f(z), a contradiction.

If v1v2 is not a cut edge of G, choose x ∈ N(v2)\{v1} such that x is in a shortest path,
say P , from v2 to v1 in G − v1v2. Choose y ∈ N(v3) \ {v1} such that y is not in P (By
d4 = 2 and the choice of P , such y must exist). Let G′ = G+ v2v3+xy− v2x− v3y. Since
f(v2) > f(y) by Corollary 2, by Corollary 6 (1), we have f(v3) < f(x), a contradiction.

Case 2. v2v3 ∈ E(G).
If v1 is a cut vertex of G, choose x ∈ N(v1) \ {v2, v3} and y ∈ N(v2) \ {v1, v3}. Let

z be a vertex of N(x) \ {v1}. Since f(v1) > f(v2), f(x) > f(y) by Theorem 10 (2). Let
G′ = G+ v2x+ yz− xz− v2y. By Corollary 6 (1), we have f(v2) < f(z), a contradiction.

Thus, v1 is not a cut vertex ofG. Since d4 = 2, there is a path Pl1 = v1w11w12 · · ·w1l1−2v2
connecting v1 and v2 in G− v3, and there is a path Pl2 = v1w21w22 · · ·w2l2−2v3 connecting
v1 and v3 in G− v2.

If l1 > 4, by Theorem 10 (2), f(w21) > f(w1l1−2). Let G′ = G + w21v2 + w22w1l1−2 −
w21w22 − v2w1l1−2 (if l2 = 3, then replace w22 by v3). By Corollary 6 (1), f(v2) < f(w22),
a contradiction. Thus, l1 = 3, and hence G ∼= F4.

Proof of Theorem 18 (5). By Theorem 10, v1v2 ∈ E(G), v1v3 ∈ E(G) and v1v4 ∈ E(G).
Suppose G contains a cut vertex u, where u ∈ {v2, v3, v4}. Without loss of generality,

assume that u = v2. Choose x ∈ N(v2) \ {v1} and y ∈ N(v3) such that d(y) = 2. Then,
f(v2) > f(y) by Corollary 2. Let G′ = G + v2v3 + xy − v2x − v3y. By Corollary 6 (1),
f(v3) < f(x), which contradicts d(v3) > d(x) = 2 and Corollary 2.
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Thus, G is obtained from a cycle C = uw11 · · ·w1l1vw21 · · ·w2l2ww31 · · ·w3l3u and an
isolated vertex z by adding three edges zu, zv, and zw. Without loss of generality, suppose
that l1 > l2 > l3 > 0. If l2 > 1, then f(u) > f(w21) and f(v) > f(w11) by Corollary 2. Let
G′ = G+ uv+w11w21 − uw11 − vw21. By Corollary 6 (1), f(v) < f(w11), a contradiction.

Therefore, l2 = l3 = 0, and hence G ∼= F5.

Lemma 19. Suppose G is an extremal of S(π), and v ∈ R(G) such that dist(v1, v) is as
large as possible. If v 6∈ A1 and dn = 1, then v ∈ A2, dR(G)(v) = 2, and the two neighbors
of v of R(G) pertain to A1.

Proof. If dR(G)(v) > 3 holds for some v ∈ Aj ∩ R(G) and j > 2, by Corollary 14 (1),
dR(G)(u) > 3 holds for every u ∈ Ai, where 0 6 i 6 j − 1. Thus,

∑

w∈V (R(G)) dR(G)(w) >

5× 3+2(|V (R(G))| − 5) > 2|V (R(G))|+4, contradicting equation (1). So, dR(G)(v
′) = 2

holds for each v′ ∈ Aj ∩ R(G), where j > 2.
Suppose that there exists some v ∈ Aj ∩R(G), where j > 3. Since dR(G)(v

′) = 2 holds
for each v′ ∈ A2 ∩R(G), by Corollary 14, v lies on an internal path P of R(G) such that
l(P ) > 4, contradicting Proposition 15. Therefore, v ∈ A2 and dR(G)(v) = 2.

To complete the proof, it suffices to show the following claim.
Claim. If v ∈ A2 ∩ V (R(G)), then the two neighbors of v of R(G) pertain to A1.
Assume the claim is not true, then at least one of the two neighbors of v of R(G) does

not belong to A1. We may assume that w is such a neighbor of v. Then, dR(G)(w) = 2
and w ∈ A2 ∩ V (R(G)) by the former arguments. We consider the following two cases.

Case 1. v and w do not lie on a triangle.
Then, v lies on an internal path P from x to y, where {x, y} ⊆ V (R(G)) by Corollary

14. Furthermore, x = y implies that l(P ) > 4 and x 6= y implies that l(P ) > 3, which is
a contradiction to Proposition 15.

Case 2. v and w lie on a triangle, say C, where V (C) = {u, v, w}.
By Corollary 14, A1 ∩NR(G)(v) = {u} = A1 ∩NR(G)(w).
Subcase 2.1. There exists some vertex x such that x ∈ A2 ∩ (V (R(G))\{v, w}).
By Case 1, either there exist vertices y ∈ A1 ∩ V (R(G)) and z ∈ A2 ∩ V (R(G))

such that x, y, z form a triangle, or there exist vertices y, z ∈ A1 ∩ V (R(G)) such that
NR(G)(x) = {y, z}.

We first suppose that there exist vertices y ∈ A1∩V (R(G)) and z ∈ A2∩V (R(G)) such
that x, y, z form a triangle. If u = y, then dR(G)(v1) > dR(G)(u) > 5 by Proposition 13, and
hence

∑

w∈V (R(G)) dR(G)(w) > 5× 2 + 2(|V (R(G))| − 2) > 2|V (R(G))|+ 4, contradicting

equation (1). If uy ∈ E(G), then dR(G)(v1) = 2 < dG(v1), contradicting Corollary 14 (2).
Thus, u 6= y and uy 6∈ E(G). By Proposition 13, f(u) > f(x) and f(y) > f(v). Let

G′ = G + uy + vx− uv − yx. Corollary 6 (1) implies that f(y) < f(v), a contradiction.
Now, we suppose that there exist vertices y, z ∈ A1 ∩ V (R(G)) such that NR(G)(x) =

{y, z}.
If u = y, by Proposition 13, dR(G)(v1) > dR(G)(u) > 4. We claim that dR(G)(z) > 3.

Otherwise, P = yxzv1 is an internal path of R(G) of length three, contradicting Propo-
sition 15 (1). So, dR(G)(z) > 3. On the other hand, recall that dR(G)(v1) > dR(G)(u) > 4,
it is a contradiction to equation (1). Thus, u 6= y. Similarly, u 6= z.
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Since G is a tricyclic graph, either uy 6∈ E(G) or uz 6∈ E(G). We may suppose
that uz 6∈ E(G). By Proposition 13 and Theorem 10, f(u) > f(x) and f(z) > f(v).
Let G′ = G + uz + vx − uv − zx. Now, Corollary 6 (1) implies that f(z) < f(v), a
contradiction.

Subcase 2.2. A2 ∩ V (R(G)) = {v, w}.
If ux ∈ E(G) holds for every x ∈ N(v1) \ {u}, by Proposition 13, we have dR(G)(v1) >

dR(G)(u) > 5, contradicting equation (1). Thus, there exists at least one vertex, say y, of
N(v1) \ {u} such that uy 6∈ E(G), and there exists a vertex z in N(v1) \ {u, y} such that
yz ∈ E(G).

If uz ∈ E(G), by Proposition 13, we have dR(G)(v1) > dR(G)(u) > 4 and dR(G)(z) > 3,
contradicting equation (1). Thus, uz 6∈ E(G) and uy 6∈ E(G).

Since G is a tricyclic graph, either dR(G)(y) = 2 or dR(G)(z) = 2. We may suppose
that dR(G)(z) = 2. By Proposition 13 and Theorem 10, f(u) > f(z) and f(y) > f(v).
Let G′ = G + uy + vz − uv − yz. Now, Corollary 6 (1) implies that f(y) < f(v), a
contradiction.

Lemma 20. Suppose G is an extremal of S(π), and v ∈ R(G) such that dist(v1, v) is as
large as possible. If d1 > 4 and dn = 1, then v ∈ A1.

Proof. Suppose v 6∈ A1. By Lemma 19, v ∈ A2 with dR(G)(v) = 2, and we may suppose
that x and y are the two neighbors of v in R(G) ∩ A1. Furthermore, Corollary 14 (1)
implies that w ∈ R(G) holds for each w ∈ A1.

If xy 6∈ E(G), by Proposition 15 (1), all the pendant vertices of G lie on Tv. So,
dG(v) > 3. By Corollary 2, dR(G)(w) = dG(w) > dG(v) > 3 holds for each w ∈ A1 ∪ {v1},
since f(w) > f(v) by Theorem 10. Thus,

∑

w∈V (R(G)) dR(G)(w) > 4+4×3+2(|V (R(G))|−
5) > 2|V (R(G))|+ 4, which contradicts equation (1).

If xy ∈ E(G), then d1 = 4 and dR(G)(v4) = dR(G)(v5) = 2 by equation (1) and Corollary
14 (2). By the virtue of the former arguments and equation (1), we may suppose that
A2 ∩ V (R(G)) = {v} and hence v4v5 ∈ E(G). By Proposition 13 and Theorem 10, we
have f(v2) > f(v5) and f(v4) > f(v). Let G′ = G+ v2v4+ v5v− v4v5− v2v. By Corollary
6 (1), f(v4) < f(v), a contradiction.
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Figure 1: The tricyclic graphs H1, H2, . . . , H6.
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In the following, let H1, H2, . . . , H6 be the tricyclic graphs as shown in Figure 1.

Lemma 21. Suppose G is an extremal of S(π), and v ∈ R(G) such that dist(v1, v) is as
large as possible. If v ∈ A1, then R(G) ∈ {H1, H2, H4, H5, H6}.

Proof. Since R(G) is also a tricyclic graph, 1 6 max{|NR(G)(u) ∩ NR(G)(v1)| : u ∈
V (R(G)) \ {v1}} 6 3. If max{|NR(G)(u) ∩ NR(G)(v1)| : u ∈ V (R(G)) \ {v1}} = 1, then
R(G) ∼= H4 by Proposition 12–13 and Lemma 9. If max{|NR(G)(u) ∩ NR(G)(v1)| : u ∈
V (R(G)) \ {v1}} = 2, then R(G) ∼= H1 or R(G) ∼= H5 or R(G) ∼= H6 by Theorem 10 (1)
and Propositions 12–13. Similarly, if max{|NR(G)(u)∩NR(G)(v1)| : u ∈ V (R(G))\{v1}} =
3, then R(G) ∼= H2.

Lemma 22. Suppose G is an extremal of S(π), where π = (d1, d2, . . . , dn) and dn = 1.

(1) If d2 > 3, then R(G) 6∼= H4;.

(2) If d2 > 4 or d3 > 3, then R(G) 6∼= H5;

(3) If d2 > 4 or d4 > 3, then R(G) 6∼= H6.

Proof. (1) Assume that R(G) ∼= H4. Since d2 > 3, there exists some neighbor, say x, of
v2 such that x ∈ V (G) \V (R(G)). By Lemma 11, we have f(v6) > f(v2), a contradiction.

(2) Assume that R(G) ∼= H5. If d3 > 3, there exists some neighbor, say x, of v3 such
that x ∈ V (G) \ V (R(G)). By Lemma 11, we have f(v6) > f(v3), a contradiction. If
d2 > 4, we will yield a similar contradiction.

(3) Assume that R(G) ∼= H6. If d4 > 3, by Lemma 11 we have f(v5) > f(v4), a
contradiction. If d2 > 4, by Lemma 11, we have f(v3) > f(v2), a contradiction.
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v14
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Figure 2: The tricyclic graph W1.

Let W1 be the unique tricyclic graph with R(W1) = H1, and the remaining vertices
appear in BFS-ordering (also called spiral like dispositions in [1, 11]) with respect to H1

starting from v5 that is adjacent to v1. It means that, W1 can be constructed by the
breadth-first-search method as follows: Select a vertex v1 as a root and begin with v1 of
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the zeroth layer. Select the vertices v2, . . . , vd1+1 as the first layer such that v2, . . . , vd1+1

are adjacent with v1. Let

N(v2) = {v1, v3, v4, vd1+2, vd1+3, . . . , vd1+d2−2},
N(v3) = {v1, v2, v4, vd1+d2−1, . . . , vd1+d2+d3−5},
N(v4) = {v1, v2, v3, vd1+d2+d3−4, . . . , vd1+d2+d3+d4−8}, and

N(v5) = {v1, vd1+d2+d3+d4−7, . . . , vd1+d2+d3+d4+d5−9}, etc.

Informally, for a given tricyclic degree sequence π = (6, 5(2), 4(2), 3, 2(2),1(11)), W1 is the
tricyclic graph of order 19 as shown in Figure 2.

Let W2 (respectively, W5, W6) be the unique tricyclic graph with R(W2) = H2 (respec-
tively, R(W5) = H5, R(W6) = H6), and the remaining vertices appear in BFS-ordering
with respect to H2 (respectively, H5, H6) starting from v6 (respectively, v7, v6) that is
adjacent to v1. Denote W3 the unique tricyclic graph with R(W3) = H3 so that the
remaining vertices appear in BFS-ordering with respect to H3 starting from v6 that is
adjacent to v5.

Paths Pl1 , . . . , Plk are said to have almost equal lengths if l1, . . . , lk satisfy |li − lj | 6 1
for 1 6 i 6 j 6 k. Let W4 be the unique tricyclic graph obtained from H4 by attaching
k paths of almost equal lengths to v1 of H4, where d1 = k + 6.

Theorem 23. Suppose G is an extremal of S(π), where π = (d1, d2, . . . , dn) and dn = 1.

(1) If d1 > 4, d4 > 3, then G ∼= W1 or G ∼= W2;

(2) If d1 = 3 and d4 = 3, then G ∼= W3;

(3) If d2 = d3 = d4 = 2, then G ∼= W4;

(4) If d2 = 3 and d3 = d4 = 2, then G ∼= W5;

(5) If d2 = d3 = 3 and d4 = 2, then G ∼= W6;

(6) If d2 > 4 and d4 = 2, then G ∼= W2.

Proof. Choose v ∈ R(G) such that dist(v1, v) is as large as possible.
(1) By Lemma 20, vv1 ∈ E(G). By Lemmas 21–22, we can conclude that R(G) ∼= H1

or R(G) ∼= H2. Thus, either G ∼= W1 or G ∼= W2 by Theorem 10.
(3) Since G is a tricyclic graph, d1 > 7. Otherwise,

∑n

i=1 di 6 6+2(n−2)+1 = 2n+3,
a contradiction. By Lemmas 20–21 and Theorem 10, we have G ∼= W4.

(4) Since G is a tricyclic graph, d1 > 6. Otherwise,
∑n

i=1 di 6 5 + 3 + 2(n− 3) + 1 =
2n+ 3, a contradiction. By Lemmas 20–22, R(G) ∼= H5, and hence G ∼= W5 by Theorem
10.

(5) Since G is a tricyclic graph, d1 > 4. Otherwise,
∑n

i=1 di 6 3× 3 + 2(n− 4) + 1 =
2n+ 2, a contradiction. By Lemmas 20–22 and Theorem 10, we have G ∼= W6.

(6) By Lemma 20, vv1 ∈ E(G), and hence R(G) ∼= H2 by Lemmas 21–22. Now,
Theorem 10 implies that G ∼= W2.
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(2) Since G is a tricyclic graph, d1 = d2 = · · · = d5 = 3 and dn = 1. By Lemma
19, either v ∈ A2 with dR(G)(v) = 2 or vv1 ∈ E(G). If vv1 ∈ E(G), then R(G) ∼= H1

by Lemmas 21–22 and hence G is not connected, a contradiction. Thus, v ∈ A2 with
dR(G)(v) = 2, and hence dR(G)(v1) = 3 and dR(G)(v2) > dR(G)(v3) > dR(G)(v4) > 2 by
Corollary 14.

By Lemma 19, let x and y be the two neighbors of v of R(G) in A1.
If xy ∈ E(G), then dR(G)(z) = 3, where z ∈ {v2, v3, v4} \ {x, y} and there exist two

vertices, say u and w, such that u, w ∈ A2 and z, u, w form a triangle, which contradicts
Lemma 19.

If xy 6∈ E(G), by Proposition 15 (1), all the pendant vertices of G are on Tv. So,
dG(v) = 3. By Corollary 2, we can conclude that dR(G)(v2) = dR(G)(v3) = dR(G)(v4) = 3.
Thus, G ∼= W3 by Theorem 10, Lemma 19 and Proposition 15 (1).

4 Further discussion

In view of Theorem 23, it is natural to consider the following question: Whether the
construction of G of Theorem 23 (1) is unique? Unfortunately, as the following example
shown, the answer is negative.

Example 24. Suppose p > q > 0 are two integers. Let S1 and S2 be the tricyclic graphs
as shown in Figure 3. Let S1(p, q) (respectively, S2(p, q)) be the tricyclic graph obtained
from S1 (respectively, S2) by attaching p pendant vertices to v1, and attaching q pendant
vertices to v2. Let G be the extremal graph of S(π), where π = (p+4, q+4, 4(2), 3, 1(p+q+5)).
Theorem 23 (1) implies that either G ∼= S1(p, q) or G ∼= S2(p, q). Using “Matlab”, it
easily follows that ρ(S1(4, 2)) > 3.7363 > 3.6888 > ρ(S2(4, 2)), ρ(S1(15, 10)) < 4.9168 <
4.9238 < ρ(S2(15, 10)), µ(S1(4, 2)) < 9.7373 < 9.7374 < µ(S2(4, 2)), and µ(S1(1, 1)) >
7.8243 > 7.7439 > µ(S2(1, 1)).

S1

v1 v2

S2

v1 v2

Figure 3: The tricyclic graphs S1 and S2.

Now, we present our main result of this section as follows.

Proposition 25. Let π = (d1, d2, . . . , dn) and π′ = (d′1, d
′
2, . . . , d

′
n) be two different tri-

cyclic degree sequences, and π ⊳ π′. Suppose G and G′ are the extremal graphs of S(π)
and S(π′), respectively.
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(1) If dn > 2, then ρ(G) < ρ(G′) and µ(G) < µ(G′);

(2) If di = d′i holds for 1 6 i 6 4, then ρ(G) < ρ(G′) and µ(G) < µ(G′);

(3) Suppose there exists some t such that d′t > 3 and di = d′i holds for all 1+ t 6 i 6 n.
If d1 = d′1, then ρ(G) < ρ(G′) and µ(G) < µ(G′);

(4) Suppose there exists some t such that d′t > 2 and di = d′i holds for all 1+ t 6 i 6 n.
If d1 = d′1, d2 = d′2 and d3 = d′3, then ρ(G) < ρ(G′) and µ(G) < µ(G′).

To prove Proposition 25, we need to introduce more lemmas as follows.
Denote Φ(G, x) the characteristic polynomial of the adjacency matrix of G. The

following result is often used to calculate Φ(G, x) of a graph G.

Lemma 26. [14] (Schwenk’s formulas) Let G be a graph. Denote by Cv the set of all
cycles in G containing a vertex v. Then,

Φ(G, x) = xΦ(G− v, x)−
∑

w∼v

Φ(G− v − w, x)− 2
∑

C∈Cv

Φ(G− V (C), x).

Lemma 27. If n > 7, then ρ(F1) > ρ(F2) and µ(F1) > µ(F2).

Proof. We first show that ρ(F1) > ρ(F2). Applying Lemma 26 to v1 of F1 and F2,
respectively, it follows that

Φ(F1, x) = (x− 1)(x2 − x− 4)(x+ 1)2Φ(Pn−5, x)− 2(x2 − 1)2Φ(Pn−6, x)− 2(x2 − 1)2,
(2)

Φ(F2, x) = x(x+ 1)(x2 − x− 4)Φ(Pn−4, x)− 2x(x2 − 2)Φ(Pn−5, x)− 2x(x2 − 2), (3)

Furthermore, Lemma 26 implies that Φ(Pn, x) = xΦ(Pn−1, x)− Φ(Pn−2, x). Thus, by
equations (2) and (3), we have

Φ(F2, x)− Φ(F1, x) = 2Φ(Pn−6, x) + (x3 + x+ 4)Φ(Pn−7, x) + 2(x4 − x3 − 2x2 + 2x+ 1).

Note that x4 − x3 − 2x2 + 2x + 1 > 0 when x > ρ(F1) >
√

dF1
(v1) =

√
6. Thus, when

x > ρ(F1) > 2 > ρ(Pn−6), Φ(F2, x) > Φ(F1, x), which implies that ρ(F1) > ρ(F2).
Now we turn to verify that µ(F1) > µ(F2). Since F1 is not bipartite, then µ(F1) >

dF1
(v1) + 1 = 7 (see e. g. [13]). By the upper bound of [7] for µ(G), we have

µ(F2) 6 max

{

d(u)(d(u) +m(u)) + d(v)(d(v) +m(v))

d(u) + d(v)
, uv ∈ E(F2)

}

6
48

7
< µ(F1),

where m(v) =
∑

w∈N(v)

d(w)/d(v). So, the result follows.

If d = (d1, . . . , dn) is a non-increasing integer sequence and di > dj + 2, then the
following operation is called a unit transformation from i to j on d: subtract 1 from di
and add 1 to dj. The following famous lemma on majorization of integer sequences, is
due to Muirhead (see [12]).
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Lemma 28. (Muirhead’s Lemma) If d and d′ are two non-increasing integer sequences
and d⊳ d′, then d can be obtained from d′ by a finite sequence of unit transformations.

Suppose π ⊳ π′, G and G′ are the extremal graphs of Γ(π) and Γ(π′), respectively.
In the following, by Lemma 28, we may always suppose that π and π′ differ only in two
positions where the difference is 1, that is, di = d′i, i 6= p, q, 1 6 p < q 6 n, and d′p = dp+1,
d′q = dq − 1. Let f be the Perron vector of G, and let Pvpvq be a shortest path from vp
to vq. By the choice of G and p < q, f(vp) > f(vq) follows from Theorem 10. In the
following, if w is a vertex of G such that w ∈ N(vq) \ (N(vp) ∪ {vp}) and w 6∈ V (Pvpvq),
then we call w a surprising vertex of G. If G contains some surprising vertex, say w, let
G∗ = G + vpw − vqw. Then, G∗ ∈ Γ(π′). Since f(vp) > f(vq), Lemma 1 implies that
ρ(G) < ρ(G∗) 6 ρ(G′) and µ(G) < µ(G∗) 6 µ(G′). Therefore, if G contains a surprising
vertex, then ρ(G) < ρ(G′) and µ(G) < µ(G′).

Proof of Proposition 25. It is easy to check that the result follows for n 6 6 with the aid
of computer. Thus, we may suppose that n > 7 in the following.

(1) If π = (5, 3, 2, . . . , 2) and π′ = (6, 2, 2, . . . , 2), then G = F2 and G′ = F1 by
Theorem 18. Now, the result follows from Lemmas 27. If π = (3, 3, 3, 3, 2, . . . , 2), then
π′ = (4, 3, 3, 2, . . . , 2). By Theorem 18, G = F5 and G′ = F4. Without loss of generality,
suppose f(u3) > f(u4). Choose x ∈ N(u4) \ {u1, u2}. Then, x is a surprising vertex of
F5, and hence ρ(F5) < ρ(F4) and µ(F5) < µ(F4). We can also employ the similar method
to deal with the other cases by Theorems 10 and 18.

(2) Since di = d′i holds for 1 6 i 6 4, q > p > 5 and dn = 1 by Theorem 18.
If q > 8 or d7 > 3, by Theorem 23 G contains some surprising vertex.
If q = 7 and d7 = 2, then p = 6 or p = 5. When p = 5, G contains some surprising

vertex according to Theorem 23. When p = 6, then d5 = d′5 > d′6 = d6 + 1 > 3. By
Theorem 23, G contains some surprising vertex.

If q = 6, then p = 5, and hence d4 = d′4 > d′5 = d5+1 > 3. By Theorem 23, G contains
some surprising vertex.

(3) Note that d′t > 3 and di = d′i holds for all 1 + t 6 i 6 n. Then, dq = d′q + 1 >

d′t + 1 > 4. Since d1 = d′1, G contains some surprising vertex according to Theorem 18
and Theorem 23.

(4) Note that d′t > 2 and di = d′i holds for all 1 + t 6 i 6 n. Then, dq = d′q + 1 >

d′t + 1 > 3 and d′p = dp + 1 > dq + 1 > 4. Since d1 = d′1, d2 = d′2 and d3 = d′3 > d′p > 4, G
contains some surprising vertex according to Theorem 18 and Theorem 23.

Finally, we will verify the following majorization theorem to the c-cyclic graphs for
c > 4.

Proposition 29. Let π = (d1, d2, . . . , dn) and π′ = (d′1, d
′
2, . . . , d

′
n) be two different c-

cyclic degree sequences, and let G and G′ be the extremal c-cyclic graphs of Γ(π) and
Γ(π′), respectively. Suppose π ⊳ π′, d1 = d′1 and c > 4. If there exists some t such that
d′t > c− 1 and di = d′i holds for all 1 + t 6 i 6 n, then ρ(G) < ρ(G′) and µ(G) < µ(G′).
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Proof. Note that d′t > c− 1 and di = d′i holds for all 1 + t 6 i 6 n. Then, dq = d′q + 1 >

d′t+1 > c > 4. If dn = 2, then d′1 > d′p = dp+1 > dq+1 > c+1. Recall that d′q > c−1 > 3.
Thus, 2(n + c − 1) =

∑n

i=1 d
′
i > 2(c + 1) + 3 + 2(n − 3) = 2n + 2c − 1, a contradiction.

Thus, we may suppose that dn = 1.
If vq ∈ V (G) \ V (R(G)), then G contains some surprising vertex (since dq > 4).

Thus, we may suppose that vq ∈ V (R(G)) in the following. By Proposition 12 and
f(vp) > f(vq), it follows that vp ∈ V (R(G)). If there exists some x ∈ N(vq) such that x ∈
V (G) \V (R(G)), it is easy to see that x is a surprising vertex of G. If N(vq) ⊆ V (R(G)),
then dR(G)(v1) > dR(G)(vp) > dR(G)(vq) = dG(vq) > c by Theorem 10 and Proposition 13.
Thus,

2(|V (R(G))|+ c− 1) =
∑

w∈V (R(G))

dR(G)(w) > 3c+ 2(|V (R(G))| − 3), (4)

which implies that c = 4 by c > 4.
By inequality (4) and d1 = d′1, we can conclude that p = 2, q = 3, dR(G)(v1) =

dR(G)(v2) = dR(G)(v3) = 4 and dR(G)(w) = 2 holds for w ∈ V (R(G)) \ {v1, v2, v3}. If there
exists some x ∈ NR(G)(v3) \ {v1, v2} such that x 6∈ NR(G)(v2), then x is a surprising vertex
of G. Now, we assume that NR(G)(v3) \ {v1, v2} = NR(G)(v2) \ {v1, v3}.

Since c = 4 and dR(G)(w) = 2 holds for w ∈ V (R(G)) \ {v1, v2, v3}, by Proposition 15,
we have v2v3 ∈ E(G) and v4v5 ∈ E(G). Choose y ∈ NR(G)(v3) \ {v1, v2}. By Theorem 10
and Proposition 13, f(v3) > f(v5) and f(v4) > f(y). Let G∗ = G+v3v4+v5y−v3y−v4v5.
By Corollary 6 (1), f(v4) < f(y), a contradiction.
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