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Abstract

In recent years the detailed study of the construction of constant weight codes
has been extended from length at most 28 to lengths less than 64. Andries Brouwer
maintains web pages with tables of the best known constant weight codes of these
lengths. In many cases the codes have more codewords than the best code in the
literature, and are not particularly easy to improve. Many of the codes are con-
structed using a specified permutation group as automorphism group. The groups
used include cyclic, quasi-cyclic, affine general linear groups etc. sometimes with
fixed points. The precise rationale for the choice of groups is not clear.

In this paper the choice of groups is made systematic by the use of the classifica-
tion of primitive permutation groups. Together with several improved techniques for
finding a maximum clique, this has led to the construction of 39 improved constant
weight codes.
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1 Introduction

A constant weight binary code is a set of binary vectors of length n, weight w and minimum
Hamming distance d. The weight of a binary vector (or codeword) x = (x1, x2, . . . , xn)
is the number of nonzero xi in the vector. The Hamming distance d(x,y) between two
vectors x and y is the number of positions in which they differ. The minimum distance of
a code is the minimum Hamming distance between any pair of codewords. The maximum
possible number of vectors in a constant weight code is usually referred to as A(n, d, w).
These codes have an important role in the theory of error-correcting codes [14]. They have
been used in applications such as the design of demultiplexers for nano-scale memories
[13] and the construction of frequency hopping lists for use in GSM networks [16].

Accounts of the theory of constant weight codes can be found in [14, 3]. A detailed
account of upper bounds for A(n, d, w) can be found in [1]. A variety of methods for
obtaining constructive lower bounds for A(n, d, w) can be found in [3], where tables of
best known codes are given for n 6 28. In [19] this work was extended to parameter sets
29 6 n 6 63 and 5 6 w 6 8 with d = 2w − 2, d = 2w − 4 and d = 2w − 6 appropriate
to a frequency hopping application. A small number of improvements to the values in
[19] can be found in [8, 9, 10, 22] and more improvements were obtained heuristically in
[15]. More recently, most of the lower bounds for A(n, d, w) for 29 6 n 6 63 have been
further improved by Brouwer [2], where more references may be found. The web page [2]
supersedes an earlier web page previously maintained by Sloane. The aim of this paper
is to further improve some of these lower bounds for A(n, d, w) for 29 6 n 6 63.

One of the main techniques used in [3, 2] involves permutation groups. A code
C(n, d, w) is constructed as a union of orbits of a non-trivial permutation group G per-
muting the symbols {1, 2, . . . , n}. The orbit of a binary vector x = (x1, x2, . . . , xn) of
weight w under G is the set of all distinct vectors xg = (xg(1), xg(2), . . . , xg(n)), g ∈ G. It
is necessary to choose G and orbits so that the minimum distance between any pair of
vectors in a single orbit (referred to here as the internal minimum distance) is at least
d. It is sometimes convenient to choose a single vector as a representative of each or-
bit. In this work the lexicographically minimal binary vector has been chosen. Let xi

denote the representative of Oi. In order to ensure that each pair of orbits is compati-
ble a (vertex) weighted graph Γ(n, d, w) is used. The set of vertices {vi} corresponds to
the set of orbits of G with internal minimum distance at least d. Given two orbits Oi

and Oj corresponding to vertices vi and vj of Γ(n, d, w), define the distance between the
orbits as δ(Oi, Oj) = min δ(xgk

i ,x
g`
j ) where the minimum is taken over all gk ∈ G and

all g` ∈ G. Then two vertices vi and vj of Γ(n, d, w) are adjacent if δ(Oi, Oj) > d. The
weight of a vertex is defined as the size of the orbit it represents. A maximum weighted
clique of Γ(n, d, w) (complete subgraph with the maximum sum of vertex weights) then
corresponds to the largest code C(n, d, w) obtainable by this method from the group G.
It should be noted that the actual automorphism group of the code may be larger than
the group G used to construct the code.

In order to find larger codes C(n, d, w) than those presented in [2] three main enhance-
ments can be attempted:
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1. A wider choice of permutation groups can be used.

2. Improved maximum clique algorithms can be applied for cases where maximum
clique algorithms do not terminate. Alternatively, more intensive use of existing
algorithms can give some improved results.

3. Different heuristic post-processing of the codes can give some larger codes.

When a new best code is found it may also give further new best codes by shortening.

2 Primitive Permutation Groups

The groups used in [2] include cyclic, quasi-cyclic, affine general linear groups etc., with
0, 1, 2 or more fixed symbols. The precise rationale for the selection of groups consid-
ered in [2] is unclear. In [20, 21] the database of transitive permutation groups in the
computer algebra system Magma1, based on the classifications in [11, 5], was used to
carry out similar tasks for permutation codes with n 6 18. While the use of all transitive
permutation groups, applied to n, n − 1 or n − 2 symbols with 0, 1 or 2 fixed symbols,
might be an ideal choice for a systematic approach, it is not feasible for 29 6 n 6 63.
The classifications only extend to n = 32 and for larger n there would be far too many
groups for the systematic approach presented here to be feasible. A more realistic choice
is given by primitive permutation groups.

A permutation group acting on the symbols {1, 2, . . . , n} is primitive if it acts tran-
sitively on {1, 2, . . . , n} and preserves no nontrivial partition of {1, 2, . . . , n}. Primitive
permutation groups are known for n < 4096 [7], and Magma contains a database for
n < 2500. It is this database that is used in the current work.

3 Maximum Clique Algorithms

A similar approach to that used in [20, 21] for permutation codes can be adopted. How-
ever, for constant weight codes the orbit lengths are not constant and Γ(n, d, w) is a vertex
weighted graph. In consequence an algorithm suitable for vertex weighted graphs must
be used.

Any efficient algorithm can be used if the clique search terminates. If the problem is
too large for the algorithm to terminate a variety of heuristic approaches are available.
It can be helpful to try several approaches. Algorithms that allow vertex orderings based
on vertex degrees are effective for these problems and will be described first.

The software system FASoft used for radio frequency assignment [12] contains a maxi-
mum clique algorithm based on that described in [6]. A weighted version of the algorithm
is available. The effectiveness of this algorithm can depend strongly on the initial order
in which the vertices of the graph are presented. This is true both for the speed of ter-
mination of the algorithm, and the quality of the solution available if the algorithm does

1http://magma.maths.usyd.edu.au/magma/
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not terminate. The order of vertices can be defined for the original degrees of Γ(n, d, w)
and also for a generalized degree (sum of the weights of adjacent vertices). The vertex
orderings used can include the following:

• Initial ordering: The algorithm in [6] is applied with the order of vertices as
presented by the problem.

• Initial ordering reversed: The reverse of the above ordering.

• Largest degree first (LF1): The vertices are sorted in decreasing order of their
degrees before the algorithm is applied.

• LF1 reversed: The reverse of the above ordering.

• Largest degree first (LF2):] The vertices of largest degree are successively re-
moved from the graph and added to a list. This time the degree calculation excludes
vertices that have already been ordered and removed from the graph.

• LF2 reversed: The reverse of the above ordering.

• Smallest degree last (SL):] The vertices of smallest degree are successively re-
moved from the graph and added to a list. Again the degree calculation excludes
vertices that have already been ordered and removed from the graph. When all
vertices have been removed the list is reversed.

• SL reversed: The reverse of the above ordering.

• Largest degree first (LF1) using generalized degree.

• LF1 reversed using generalized degree.

• Largest degree first (LF2) using generalized degree.

• LF2 reversed using generalized degree.

• Smallest degree last (SL) using generalized degree.

• SL reversed using generalized degree.

• Nonincreasing order of vertex weights.

• The reverse of the above ordering

A good approach appears to be to run all available orderings for say 120 seconds. The
ordering giving the largest clique can then be run again for as long as is practical. The
FASoft maximum clique algorithm was modified to allow this.

Some other algorithms, were also used. The weighted version of the algorithm Cliquer
[17, 18] did terminate in a small number of cases when FASoft did not, demonstrating
optimality. The algorithm of Busygin [4] was also used in some of the most promising
cases (new best results and cases needing only small improvement to become new best
results). The Busygin algorithm never improved a result obtained with FASoft using the
above approach.

In comparison with the results in [20], where different algorithms were best in different
cases, the increased number of vertex orderings available for these weighted problems
appears to make the FASoft based approach a particularly effective option.
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4 Heuristic Post-processing

The Clique Search (CS) procedure presented in [15] can be used to heuristically improve
a code obtained by any method. If the original code is constructed using a permutation
group the new code may have more codewords. The advantage of the method is that the
maximum clique problem can be kept to a manageable size for large codes.

Initially the working code is the given starting code. Repeatedly a random subset
of the codewords of the working code is removed, leaving a partial code. All the binary
vectors of weight w compatible with those already in the code are identified, and a graph
is built from these vectors, where the vectors are represented by vertices. Two vertices
are adjacent if and only if the Hamming distance between the corresponding vectors is at
least d. It is then possible to run a maximum clique algorithm on the graph in order to
complete the partial code in the best possible way. Fuller details can be found in [15].

5 Shortening

A shortening procedure can also be used, as is done in [3]. In this way a new best code
C(n, d, w) can give rise to a new best code C(n− 1, d, w). If Clique Search has been used
the position where the maximum number n0 of codewords have a 0 in that position must
be identified. Otherwise the first position can be used. These n0 codewords are selected
and the position is removed from all of the selected codewords.

6 The Constant Weight Codes Constructed

For codes of length n all primitive permutation groups of degree n, n− 1 and n− 2 were
considered. For good codes obtained the Clique Search and Shortening techniques were
applied, and sometimes combinations of these techniques were applied. For w = 5 and 6,
d = 2w− 2, d = 2w− 4 and d = 2w− 6 a comprehensive set of constructions were carried
out for 29 6 n 6 63 and 38 improved codes were found. For w = 7, d = 2w−2, d = 2w−4
and d = 2w − 6 the constructions were restricted to 29 6 n 6 48 to avoid excessive run
times, and only one improved code was found. For w = 8, only d = 2w − 6 appeared
promising, and the construction was restricted to 29 6 n 6 44 with no improvements
found.

Details of the constructions of the improved codes are given in Table 1. The primitive
permutation group used is identified by the degree, number and name used in the Magma
database. Also given in the table are the old and new lower bounds, an upper bound,
the number of orbits found, the maximum clique algorithm used and, if CS is used, the
number of codewords before CS is applied. This is the size of the code obtained with the
permutation group alone.

the electronic journal of combinatorics 19(4) (2012), #P4 5



Old New Upper Group from Number Max. CS Size
(n, d, w) lower lower bound Magma Order of clique Used? before

bound bound database orbits alg. CS
(32,4,5) 6582 6758 6944 (31,7)=31:15 465 16 FASoft
(42,4,5) 20671 21320 21781 (41,8)=AGL(1,41) 1640 16 FASoft
(43,4,5) 22728 23478 24647 (43,8)=AGL(1,43) 1806 17 FASoft
(50,4,5) 42920 43341 45080 (49,24)=AGL(1,49) 2352 23 FASoft yes 42924
(55,4,5) 63973 64447 68156 (55,4)=M11 7920 16 FASoft yes 62964
(58,4,5) 79330 79866 83311 Shorten code below
(59,4,5) 85728 87261 91025 (59,4)=AGL(1,59) 3422 32 FASoft
(63,4,5) 112457 113337 119133 (63,3)=PSU(3,3).2 12096 30 FASoft
(41,6,5) 930 943 1066 (41,4)=41:5 205 7 FASoft
(45,6,5) 1172 1175 1386 (43,3)=43:3 129 13 FASoft yes 1161
(47,6,5) 1293 1363 1607 (47,2)=D(2 ∗ 47) 94 17 FASoft
(48,6,5) 1360 1452 1689 Shorten code below
(49,6,5) 1500 1617 1764 (49,1)=49:4 196 11 FASoft
(53,6,5) 1946 2067 2341 (53,5)=53:26 1378 2 FASoft
(32,6,6) 1612 1643 2213 (31,4)=31:5 155 13 Cliquer
(33,6,6) 1798 1829 2673 (31,4)=31:5 155 15 Cliquer
(35,6,6) 2146 2170 3249 Shorten code below
(36,6,6) 2427 2604 3864 Shorten code below
(37,6,6) 2702 3108 4261 (37,6)=37:9 333 10 Cliquer
(38,6,6) 3112 3330 4636 (37,6)=37:9 333 12 Cliquer
(42,6,6) 4774 5002 7462 (41,6)=41:10 410 18 Cliquer
(43,6,6) 5516 5719 8005 (43,7)=43:21 903 7 FASoft
(45,6,6) 6387 6840 9832 (45,1)=M10 720 16 Cliquer yes 6810
(46,6,6) 7084 7494 10626 (45,1)=M10 720 20 Cliquer
(52,6,6) 11764 12220 17680 Shorten code below
(53,6,6) 13091 13780 18735 (53,5)=53:26 1378 13 Cliquer
(52,8,6) 754 791 1057 a yes 777
(53,8,6) 847 888 1095 b yes 887
(54,8,6) 950 995 1224 c yes 980
(55,8,6) 974 1098 1283 (55,1)=PSL(2,11) 660 5 FASoft yes 1045
(56,8,6) 1000 1126 1334 (55,1)=PSL(2,11) 660 5 FASoft yes 1045
(57,8,6) 1038 1166 1377 (55,1)=PSL(2,11) 660 5 FASoft yes 1045
(58,8,6) 1061 1166 1527 From code above
(59,8,6) 1104 1189 1593 Shorten code below
(60,8,6) 1144 1320 1650 Shorten code below
(61,8,6) 1220 1464 1708 (61,10)=61:20 1220 3 FASoft
(62,8,6) 1237 1464 1891 From code above
(63,8,6) 1338 1483 1953 (61,10)=61:20 1220 3 FASoft yes 1464
(42,8,7) 1355 1394 2952 (41,3)=41:4 164 15 FASoft

aShorten (54,8,6) (980 codewords) in position 47 and shorten the 874 codewords found in position 7.
Apply CS to the 777 codewords found.

bShorten (54,8,6) (995 codewords) in position 48 and apply CS to the 887 codewords found.
cShorten (55,8,6) (1098 codewords) in position 4 and apply CS to the 980 codewords found.

Table 1: Improved constant weight binary codes. All upper bounds are taken from [2] or
[19]. Groups are identified as (i, j) =“name” where i is the degree, j is the number and
“name” is the name in the Magma database. If CS gives an improvement the last column
gives the number of codewords of the code from the permutation group or shortened code.
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7 Conclusion

The computations confirm that the results in [2] are fairly hard to improve using prim-
itive groups, but the 39 improved codes found show that the enhancements outlined at
the end of Section 1 have been successful. Codeword files, together with files of orbit
representatives and details of the groups used can be found on the authors’ web pages at:

http://www.idsia.ch/~roberto/constant_weight_codes_2012.zip

http://data.research.glam.ac.uk/constant_weight_codes

Permutation generators for the groups can be found in these files or in the Magma
database.
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[17] P. R. J. Österg̊ard. A new algorithm for the maximum-weight clique problem. Nordic
Journal of Computing, 8(4): 424–436, 2001.
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