
Münchhausen Matrices

Michael Brand
Faculty of Information Technology

Monash University
Clayton, VIC, Australia

michael.brand@alumni.weizmann.ac.il

Submitted: May 10, 2012; Accepted: Nov 27, 2012; Published: Dec 13, 2012

Mathematics Subject Classifications: 11B83, 05B20, 05B30, 05-04

Abstract

“The Baron’s omni-sequence”, B(n), first defined by Khovanova and Lewis
(2011), is a sequence that gives for each n the minimum number of weighings on
balance scales that can verify the correct labeling of n identically-looking coins with
distinct integer weights between 1 gram and n grams.

A trivial lower bound on B(n) is log3 n, and it has been shown that B(n) is

O(log n).
We introduce new theoretical tools for the study of this problem, and show

that B(n) is log3 n + O(log log n), thus settling in the affirmative a conjecture by
Khovanova and Lewis that the true growth rate of the sequence is very close to the
natural lower bound.

Keywords: Baron’s Omni-sequence; Munchausen; coin weighing; verification

1 Introduction and definitions

Coin-weighing puzzles have been abundantly discussed in the mathematical literature
over the past 60 years (see, e.g. [16, 7, 15, 5]). In coin-weighing problems one must
typically identify a counterfeit coin from a set of identically-looking coins by use of balance
scales, utilizing the knowledge that the counterfeit coin has distinctive weight. This can
be generalized to the problem of identifying a coin, or a subset of the coins, based on
distinctive weight characteristics, or, alternatively, to the problem of establishing the
weight of a given coin.

This paper relates to a different kind of coin-weighing puzzle, which we call the
Münchhausen coin-weighing problem. Consider the following question: given n coins
with distinct integer weights between 1 gram and n grams, each labeled by a distinct
integer label between 1 and n, what is the minimum number of weighings of these n coins

the electronic journal of combinatorics 19(4) (2012), #P40 1



on balance scales that can prove unequivocally that all coins are labeled by their correct
weight?

This question differs from classic coin-weighing problems in that we do not need to
discover the weights, but only to determine whether or not a given labeling of weights is
the correct one. To establish the weights one would require Ω(n log n) weighings (as can
be proved by reasoning similar to that which establishes lower bounds for comparative
sorting [13, 3]), whereas merely verifying an existing labeling can be performed trivially
in O(n) weighings.

This question, which was inspired by a riddle that appeared in the Moscow Mathe-
matical Olympiad [1], gives rise to an integer sequence, B(n), that was studied in [11]
and was dubbed there “The Baron’s omni-sequence”. It appears as sequence A186313 in
the On-line Encyclopedia of Integer Sequences [10].

The present paper takes the view that, in studying this and related topics, [11] and [12]
uncovered the tip of an iceberg, under which lies a wealth of hitherto unexplored mathe-
matical questions that belong to a new class of problems. Namely, these are “verification
problems”.

In the remaining parts of this section, we define some terminology regarding weighings.
The definitions present the subject of verification as resembling a design problem, and
demonstrate how verification can be considered as a matrix property. The section will
conclude with a re-definition of B(n) as a special case and a formulation of the problem
statement.

In Section 2 we develop new analytical tools which we believe to be of importance
in a range of verification problems. We begin by presenting a simplified version of the
tools. These allow the construction of matrices with the desired properties, but only
for matrices whose dimensions satisfy certain conditions. For n values that satisfy these
special conditions, the constructions prove an upper bound on B(n) that is tighter than
the best previously-known bound.

In Section 3, the tools developed previously are embellished. Further complications
allow their use for matrices with general widths. We note that in both Section 2 and
Section 3 the techniques used, even with the extra features, are fairly generic in what they
accomplish and are straightforward to apply to other problems. Unfortunately, proving
that the algorithms terminate successfully for any specific case, such as the Münchhausen
coin-weighing problem, and, furthermore, proving bounds on their outputs for specific
cases, does necessitate a certain level of technical detail, which forms large parts of the
sections.

Lastly, in Section 4, we put the new tools to full use, designing with them an effi-
cient strategy for solving the Münchhausen coin-weighing problem for any n. Our main
theorems are proved by calculating the bound on B(n) that this strategy implies.

1.1 Weigh-sets

First, we introduce the following notations. Let ~n be the vector (1, . . . , n)T , ~1n be the
n× 1 all-ones vector and ~0n be the n× 1 all-zeros vector, where the subscript n may be

the electronic journal of combinatorics 19(4) (2012), #P40 2



omitted from the latter two notations when it is clear from the context. The name of
a vector will also be used for its elements. For example, if ~v is a vector of length s, its
elements will be denoted as (v1, . . . , vs). For a matrix, M , Mij is its element in the i’th
row and j’th column, where index counting begins with 1. Mi∗ and M∗j signify the i’th
row and the j’th column of M , respectively.

For a set of coins X, a weighing can be described by an unordered pair of disjoint
subsets of X, {L,R}. Set L is conceptually the subset placed on one pan of the balance
scales and set R is placed on the other pan. Similarly, a weigh-set can be described as a
set of weighings. Thus, the definition of a weigh-set of X as a set of unordered pairs of
disjoint subsets of X is possibly reminiscent of the definition of a design (most generally
describable as a set of disjoint subsets of some base set X). Like in the case of designs, it
is often convenient to discuss weighings and weigh-sets in matrix notation. Consider the
following.

If the elements of the set X are indexed 1, . . . , n, a vector ~v of length n with entries
in {−1, 0, 1} represents a weighing by placing in L all elements of X whose indices have a
−1 entry in ~v, and placing in R all those whose indices have a 1 entry. Similarly, an m×n
matrix, M , with entries in {−1, 0,+1} represents a weigh-set composed of m weighings:
each row represents a weighing. (Note: this weigh-set in matrix notation should not be
confused with a “weighing matrix”, defined in [14], which relates to a different type of
weighing problem.)

Clearly, the matrix notation has redundant information. The order of the rows can be
permuted arbitrarily and each row can be inverted. A weigh-set matrix should therefore be
taken as a representative of an entire set of possible representations of the same weigh-set.
In this paper, we use set and matrix notation interchangeably when discussing weigh-sets.
For example, though the variable M is always a matrix, the terminology “weigh-set M”
should be taken as short-hand for “a weigh-set represented by matrix M”.

Suppose that X is a set of n coins, in which the i’th coin weighs xi. In the weigh-
set M , the vector that is the result of the product M~x describes the m imbalances in
the m weighings described by M . On balance scales, we typically get the information
of the sign of each entry in M~x. However, in other scenarios we may consider having
more information (such as full information on the imbalance) or less (just the binary
information of whether or not the two pans balance, omitting the sign information of any
imbalance).

A weigh-set M is a verification for the set X with elements whose weights are described
by the vector ~x if the vector of signs of the elements of M~x is unique among all M~y where
~y is a permutation of ~x. A matrix (weigh-set) that is a verification of the coins weighing
1, . . . , n grams is a Münchhausen weigh-set or Münchhausen matrix.

In addition, one can also consider “partial verifications”. We say that a weigh-set, M ,
establishes a partition of X if the vector of signs of the elements of M~x is different to that
of any M~y where ~y = σ(~x) and σ is a permutation that does not respect the partition.

By contrast, we say that the weigh-set verifies X subject to the partition if the vector
of signs of the elements of M~x is unique among all M~y where ~y = σ(~x) and σ is a
permutation that does respect the partition.

the electronic journal of combinatorics 19(4) (2012), #P40 3



If A is a weigh-set that establishes some partition, P , of X, and B is a weigh-set that
verifies X subject to it, A ∪B is a verification of X.

1.2 The Baron’s omni-sequence

The Baron’s omni-sequence is the sequence whose n’th term, B(n), is the minimum num-
ber for which there exists a B(n)× n Münchhausen matrix.

A trivial lower bound for B(n) is log3 n. This bound is attained from the observa-
tion that there are at most 3m distinct columns in an m × n {−1, 0, 1}-matrix, and a
Münchhausen matrix cannot have duplicate columns, because if any two columns, i and
j, were identical, permuting the coins by replacing the i’th and j’th coin would not have
affected the weighing results.

In [11], Khovanova and Lewis construct m × n Münchhausen matrices with m 6
α log3 n + C for some constant C and an α value of approximately 2.96. This has since
been improved to α = 2 in [2], reducing the gap between the theoretical lower bound and
the best known algorithm to a factor of 2.

It was conjectured in [11] that B(n) is very close to log3 n, a statement that can,
perhaps, be rigorously taken to mean that B(n) is log3 n + o(log3 n). The main claim of
this paper is:

Theorem 1. The sequence B(n) is log3 n+ O(log log n).

1.3 The Baron’s homogeneous omni-sequence

All constructions in this paper (with the exception of constructions for n < 4, where
these are impossible), belong to a special class of weigh-sets we call homogeneous. A
homogeneous weigh set is a matrix, M , such that M~n = ~0. By definition, homogeneous
Münchhausen weigh-sets require that M~n = ~0 and that M~v′ 6= ~0 for ~v′ that is a nontrivial
permutation of ~n (where by “nontrivial permutation” we mean any permutation other
than the identity). This definition does not involve any use of the sign function, and
therefore lends itself more easily to theoretical study. This may explain why in previous
papers regarding verification [11, 12, 2] virtually all weigh-sets used are homogeneous.

We define The Baron’s homogeneous omni-sequence analogously to the Baron’s omni-
sequence. For n > 3, B′(n) is the smallest m for which there exists an m×n homogeneous
Münchhausen matrix. This is also the smallest number of weighings required to verify
the weights of coins weighing 1, . . . , n grams by use of balance scales that give only the
information of whether they balance or tip, but not to which direction they tip.

Because the weighing strategies described in this paper are all homogeneous, we effec-
tively also prove

Theorem 2. The sequence B′(n) is log3 n+ O(log log n).

We conjecture that Θ(B(n) − log3 n) ≡ Θ(B′(n) − log3 n), implying that the added
information of the direction to which the scales tip (when they do) is not a significant
help in the Münchhausen problem.

the electronic journal of combinatorics 19(4) (2012), #P40 4



2 Special n values

We begin by constructing Münchhausen matrices for some special n values, noting that
these constructions are the first known constructions that give a log3 n + o(log n) bound
on B(n) for any infinite family of n values. For this, we introduce two new notions:
monotonicity and balance.

2.1 Monotonicity

In [11] and [2], all constructions iteratively establish partitions and then sub-partitions of
the set of n coins. However, [11] also cites solutions found by computer searching, due to
Konstantin Knop and Maxim Kalenkov, that reveal that the optimal strategy (at least
for the range where computer searching is feasible) uses a different method. Consider, for
example, the following weigh-set for n = 19, found by Maxim Kalenkov:

M =

 − − − − − 0 − − 0 − 0 0 − 0 0 + 0 + +
− − − 0 0 − 0 + − + − 0 + 0 0 − + 0 0
− 0 + − 0 − + − 0 0 + − + 0 + 0 0 − 0

 ,

where + indicates 1 and − indicates −1. To demonstrate that this is a Münchhausen
matrix, consider the equation

(12, 7, 3)M = (−22,−19,−16,−15,−12,−10,−9,−8,−7,−5,−4,−3,−2, 0, 3, 5, 7, 9, 12).

The entries of the resulting vector form a strictly increasing list.
Formally, we define a monotone matrix to be any matrix, M , for which there exists

a vector ~w such that the entries of the vector ~wM are monotone strictly increasing. The
general claim is:

Lemma 2.1. Any homogeneous monotone matrix is a Münchhausen matrix.

Proof. By definition of a homogeneous matrix, M satisfies M~n = ~0. Because M is
monotone, we know that there exist vectors ~w and ~c such that ~wM = ~c and ~c has monotone
strictly-increasing entries. Therefore 〈~c · ~n〉 = ~wM~n = 0. The rearrangement inequality
[8] states that the dot product of any two vectors, ~x and ~y, with strictly-increasing entries
is strictly larger than the dot product of ~x with any nontrivial permutation of ~y. In
particular, for any nontrivial permutation ~v′ of ~n, 〈~c · ~v′〉 6= 0, so M~v′ 6= ~0.

2.2 Balance

A matrix M is balanced if M~1 = ~0.
Unlike monotonicity, which has roots in the works of Knop and Kalenkov, the concept

of balance is an innovation of this paper. Balance allows “good” constructions to be
repeated for different n values: if M is a balanced homogeneous m × n matrix, then
M~v = ~0 not only for ~v = ~n, but also for any ~v that is a linear progression of length

the electronic journal of combinatorics 19(4) (2012), #P40 5



n. This allows us to create a new balanced homogeneous weighing {L′, R′} from an
existing balanced homogeneous weighing {L,R}, by setting L′ = {ax + b : x ∈ L} and
R′ = {ax+ b : x ∈ R} for any integers a and b.

Furthermore, if {LA, RA} and {LB, RB} are two balanced homogeneous weighings,
then so are {LA ] LB, RA ] RB}, if LA ] LB and RA ] RB (the disjoint unions) are well
defined and do not intersect.

For matrices A and B, we use the standard block notation (A B) and
(
A
B

)
to indicate

that A and B are placed side-by-side and one on top of the other, respectively, in a
new matrix. Additionally, we denote by (A × k) and [A × k] the matrix defined by
arranging k copies of A side-by-side and that created by copying each column of A k

times, respectively. Otherwise stated: (A × k)
def
= ~1T

k ⊗ A and [A × k]
def
= A ⊗ ~1T

k , where
⊗ signifies the Kronecker product. In all operations described, vectors can be used as
matrices.

These operations are useful, because if the operands are balanced homogeneous weigh-
sets, then so are the results.

Define the t-th moment of a vector ~v to be
∑

i vii
t. A vector is balanced if its 0-th

moment is 0. It is homogeneous if its first moment is 0. We refer to the 0-th moment as
the imbalance. The first moment will simply be referred to as the moment.

2.3 The basic idea

Clearly, both monotonicity and balance are desirable properties in constructing homoge-
neous Münchhausen matrices. The following hypothetical construction demonstrates the
gist of how this is done.

Hypothetical Construct 1. If M is a homogeneous, monotone, balanced weigh-set of
dimensions m× n, and {Mi}∞i=1 is defined recursively as

M1 = M,

Mi+1 =

(
M × ni

[Mi × n]

)
,

then for all i, Mi is a homogeneous, monotone, balanced, Münchhausen weigh-set.

Proof. It is clear that all Mi are homogeneous and balanced. By Lemma 2.1, if Mi is
homogeneous and monotone, it is also Münchhausen. We therefore only need to prove
that all Mi are monotone.

Consider the vector ~w satisfying ~wM = ~c with a monotone strictly-increasing ~c.
Choose a number C, larger than max(~c)−min(~c). Define recursively the following vector
sequence.

~w1 = ~w,

~wi+1 = (~w C ~wi),

where (~a ~b) indicates that vector~b is appended to vector ~a and C ~w is scalar multiplication.

The vector ~ck
def
= ~wkMk has monotone strictly-increasing entries. To see this, note that

the electronic journal of combinatorics 19(4) (2012), #P40 6



the result at column j is
∑i

l=1 cr(l)C
l, where r(l) ≡ dj/nl−1e (mod n). One can formally

view these sums over all j as an enumeration in base C using the digits c1, . . . , cn. The
enumeration clearly forms a strictly-increasing list.

Unfortunately, as it stands, this construction is merely hypothetical because the con-
ditions required of M are never satisfied.

Lemma 2.2. No homogeneous, balanced weigh-set is monotone.

Proof. If M is a homogeneous, balanced weigh-set, then M~n = ~0 and M~1 = ~0, and
therefore also M(a~n + b~1) = ~0 for any choice of a and b. In particular, choosing a = −1,
b = n + 1 we get a~n + b~1 = (n, . . . , 1)T , which is a permutation on ~n. This means
that there exists a nontrivial permutation on ~n, ~v′, that yields M~v′ = ~0, so M is not a
Münchhausen matrix. By Lemma 2.1, it is not monotone.

We therefore augment our requirements to “the next best thing”. Let a weigh-set be t-
part piecewise-monotone if its columns can be partitioned into at most t consecutive parts,
such that each part forms a monotone weigh-set. A t-part piecewise-monotone weigh-set
M is k-regular if each monotone part in the column-partition of M is exactly k columns
wide. The qualifiers “t-part” and “k-regular” may be omitted if they are understood from
the context.

Lemma 2.3. Let M be a homogeneous, balanced, k-regular piecewise-monotone weigh-set
of dimensions m× kt, and let {Mi}∞i=1 be a sequence of weigh-sets defined recursively as

M1 = M,

Mi+1 =

(
M × ki

[Mi × k]

)
,

then for all i, Mi is a homogeneous, balanced, ki-regular t-part piecewise-monotone weigh-
set of dimensions mi× kit.

Proof. The proof is essentially the same as for Hypothetical Construct 1.

Our main theorem in this section is

Theorem 3. For any α > 1 there exists a constant C such that there exist m × n
homogeneous Münchhausen matrices with m 6 α log3 n+C for arbitrarily large values of
n.

The basis of the proof for Theorem 3 is Lemma 2.3. However, we still need to show that
a suitable matrix M (as in Lemma 2.3) can be provided, and that the resulting t-part
piecewise-monotone weigh-sets can be made into homogeneous Münchhausen matrices.
The first part is discussed in Subsection 2.4. The second part is established by the
following lemma.

Lemma 2.4. Any homogeneous, t-part piecewise-monotone weigh-set can be extended into
a Münchhausen weigh-set by adding O(t) further weighings into the set.

the electronic journal of combinatorics 19(4) (2012), #P40 7



Proof. Each part of the piecewise-monotone weigh-set is individually monotone. By the
reasoning of Lemma 2.1, the weigh-set is a verification subject to its piecewise-monotone
partition. To complete the piecewise-monotone weigh-set into a Münchhausen weigh-
set, we add weighings that establish this partition. What we need to prove is that O(t)
additional weighings suffice.

We prove, more generally, that for 1 6 j < n it is possible to separate the coins
1, . . . , j from the coins j + 1, . . . , n in at most 8 weighings. Repeating this for each of the
at-most t− 1 partition separation points, the full partition will have been established and
the proof completed.

To separate the coins 1, . . . , j from the coins j + 1, . . . , n, we consider two cases:

Case 1: 2(j2 + j) > n2 + n

Let x be the minimum integer such that x2 + x > (n2 + n)− (j2 + j).

Case 1a: x2 + x = (n2 + n)− (j2 + j)

In this case, the set of coins {1, . . . , x} weighs the same as {j + 1, . . . , n}.
Balancing them against each other establishes the partition {{1, . . . , x}, {x +
1, . . . , j}, {j + 1, . . . , n}}, and, in particular, the partition we have set out to
establish.

This is true because replacing any of the coins 1, . . . , x would have made their
pan heavier, whereas replacing any of the coins j + 1, . . . , n would have made
their pan lighter.

Case 1b: x2 + x > (n2 + n)− (j2 + j)

In this case, weighing L = {1, . . . , x} against R = {j + 1, . . . , n} would have
resulted in an imbalance of y, 1 6 y < x, in favor of the former. Instead, as
a first weighing we balance L \ {y} against R. To establish the partition, we
must now merely verify the identity of coin y. However, in [12] it was already
shown that at most 7 weighings are necessary to verify the weight of any single
coin.

Case 2: 2(j2 + j) < n2 + n

In this case, we can no longer use the system described above, because there would
be overlaps between 1, . . . , x and j + 1, . . . , n. Instead, we pick x as the maximal
value that satisfies x2 + x 6 (n2 + n)− (j2 − j). Note the use of j2 − j, not j2 + j.

Case 2a: x2 + x > (n2 + n)− (j2 + j)

Let y = ((j2 + j) + (x2 + x) − (n2 + n))/2. The value of y lies in the range
0 6 y 6 j. The weight of y can be verified in at most 7 weighings, following
which balancing {1, . . . , j}\{y} against {x+1, . . . , n} establishes the partition.

Case 2b: x2 + x < (n2 + n)− (j2 + j)

Balance {1, . . . , j} against {y, x+2, . . . , n}, where y is chosen to satisfy equality
of masses. The value of y is in the range j + 1 6 y 6 x, so the weighing is

the electronic journal of combinatorics 19(4) (2012), #P40 8



well-defined. We complete the process, again, by verifying the weight of y in
at most 7 additional weighings.

2.4 Constructing a base matrix

We now turn to the construction of the base matrix, M .

Lemma 2.5. For every m > 2, there is a k-regular piecewise-monotone, homogeneous,
balanced weigh-set of dimensions m× kt, where k > 3m−1 and t 6 5k.

We remark that any bound on t that is a polynomial in k would have sufficed to
prove that B′(n) is log3 n + O(log log n). We prove for a low degree polynomial because
it improves the constants used in the O(log log n), but even so this bound is not tight.

Proof. We construct explicitly a matrix, M , satisfying the conditions of the lemma.
Let ~w of length m be defined by

wi =

{
2 · 3m−1−i if i < m,

1 if i = m.

This will be the vector satisfying that ~c = ~wM is monotone strictly-increasing in each
[ik + 1, . . . , (i+ 1)k] interval.

We choose k to be the largest prime number less than 2·3m−1. To satisfy the conditions
of the lemma we require that this value satisfies 3m−1 < k < 2 · 3m−1, which is guaranteed
by Bertrand’s postulate, asserting the existence of a prime between x and 2x. We note
that for m = 2 we have k = 5, and that for m > 2 both upper and lower bounds are
composite numbers. Hence, the inequalities are sharp in all cases.

Because M is required to be homogeneous, we know that for each of its rows, Mi∗, we
have 〈Mi∗ · ~n〉 = ~0. Because it is required to be balanced, we have 〈Mi∗ · ~1〉 = ~0. Both
of these conditions are linear, so we know that they must also hold for ~c. We begin by
designing such a vector.

Vector ~c will be several concatenated copies of a vector ~c′ of length k2. By choosing ~c′

to be balanced and homogeneous, ~c is also ensured to have these properties. Algorithm 1
shows how to construct ~c′.

Each [ik + 1, . . . , (i + 1)k] interval in ~c is chosen by Algorithm 1 to hold one of the
following possible lists of values, each of which is monotone strictly-increasing: (−(k +
1)/2, . . . , (k−3)/2), (−(k−1)/2, . . . , (k−1)/2) or (−(k−3)/2, . . . , (k+1)/2), noting that
k is a large prime and therefore odd. We call the first “choice −1”, the second “choice 0”
and the third “choice +1”, according to the value of their associated h′i+1. These choices
all satisfy the monotonicity requirement. By choosing the same number of “choice −1”
and “choice +1”, balance (i.e., 〈~c · ~1〉 = 0) is also guaranteed.

The remaining condition is homogeneity: 〈~c′ ·~n〉 = 0. Let us consider the vector ~̃c that
would have been returned by Algorithm 1 had the “while” loop of step 5 been stopped
after fewer iterations than is required by the algorithm.

the electronic journal of combinatorics 19(4) (2012), #P40 9



Algorithm 1 Finding the vector ~c′ as a function of k

1: ~h′ ← ~0k

2: T ← (k − 1)(k + 1)/12
3: s← 1
4: f ← k
5: while T > 0 do
6: if T < f − s then
7: f ← T + s
8: end if
9: h′s ← 1

10: h′f ← −1
11: T ← T − (f − s)
12: s← s+ 1
13: f ← f − 1
14: end while
15: for i ∈ 0, . . . , k − 1 do
16: for j ∈ 0, . . . , k − 1 do
17: c′ik+j+1 ← −(k − 1)/2 + j + h′i+1

18: end for
19: end for
20: return (c′1, . . . , c

′
k2)

If terminated after 0 iterations, ~̃c would have been the vector with all “choice 0”
choices. Its moment, 〈~̃c · ~n〉, can be calculated as 2kP(k−1)/2, where Pr is the r’th square
pyramidal number,

Pr = 12 + · · ·+ r2 = r(r + 1)(2r + 1)/6,

because each [ik + 1, . . . , (i + 1)k] interval contributes 2P(k−1)/2 to the moment. This
equals k2(k − 1)(k + 1)/12.

At each iteration of the “while” loop, the moment is decreased by incrementing by 1
a list of k consecutive values starting at position sk+ 1, and decrementing by 1 a list of k
consecutive values starting at position fk + 1. This decreases the moment by k2(f − s).

The value of T in Algorithm 1 is initialized at step 2 and decreased at 11. These
updates of T maintain the invariant 〈~̃c · ~n〉 = k2T . Because we know that T = 0 when
the “while” loop terminates, 〈~c′ · ~n〉 = 0, as required.

To prove that the algorithm terminates, one can simply compute the number of itera-
tions required to cancel the initial moment. This number is dk/2−

√
k2/6 + 1/12e. Not

only does this prove a successful termination of the algorithm, it also indicates that the
middle bk

√
2/3c parts of ~c′ have at most one non-“0” choice.

Algorithm 2 shows how to construct matrix M .
By construction, when Algorithm 2 terminates, its output is a k-regular piecewise-

monotone, homogeneous, balanced weigh-set of dimensions m× kt, where k > 3m−1.

the electronic journal of combinatorics 19(4) (2012), #P40 10



Algorithm 2 Finding M as a function of ~c′

1: The vector ~w is as defined earlier.
2: N ′ is a 0× k2 matrix.
3: N is a 0× 0 matrix.
4: ~c← ~00

5: {N ′, N and ~c initially contain no elements, but we use them as recursion bases.}
6: for i ∈ 1, . . . ,m do
7: loop
8: ~c← (~c ~c′)
9: N ← (N N ′)

10: len ← length of ~c
11: ~v ← ~0len

12: ~r ← ~c−
∑i−1

l=1 wlNl∗
13: for R ⊆ {j : rj = 3m−i−1} and L ⊆ {j : rj = −3m−i−1} subject to |R| = |L| do
14: for j ∈ 1, . . . , len do
15: if j ∈ R or rj > 3m−i−1 then
16: vj ← 1
17: else if j ∈ L or rj < −3m−i−1 then
18: vj ← −1
19: else
20: vj ← 0
21: end if
22: end for
23: if 〈v · ~n〉 = 0 then
24: go to 28
25: end if
26: end for
27: end loop
28: N ′ ←

(
N
~v

)
29: ~c′ ← ~c
30: N is an i× 0 matrix.
31: ~c← ~00

32: end for
33: M ← N ′

34: return M

To see this, note that Algorithm 2 maintains as an invariant throughout its execution
that the absolute value of any element of ~r is at most 3m−i. At the termination of
the loop at step 6, ~r, which at this time computes ~c − ~wM , will have become ~0. The
equation ~wM = ~c ensures all required monotonicity requirements. Homogeneity is ensured
explicitly at step 23 and balance is a result of the invariant maintained throughout that
the number of appearances of any value, x, in ~r is the same as the number of appearances

the electronic journal of combinatorics 19(4) (2012), #P40 11



of −x. Under this invariant, the choice |R| = |L| both ensures that each ~v tried in step
23 is balanced and ascertains that the invariant is retained in all future steps.

In order to complete the proof of the lemma, what still needs proving is that the
algorithm terminates at all, and that it terminates with a sufficiently low t. We begin by
proving termination.

The question of Algorithm 2’s termination is the question of whether suitable R and
L are always eventually found in the for-loop of step 13 that will allow escape from the
endless loop of step 7 by satisfying the condition of step 23.

We separate here two cases: i = m and i 6= m. At the last iteration of the main
for-loop (step 6), the condition of step 23 is met immediately in the first pass through the
loop of step 7 and using the only choices for R and L possible in the for loop of step 13,
namely R = L = ∅.

The reason for this is that, as previously noted, Algorithm 2 maintains as an invariant
throughout its execution that the absolute value of any element of ~r is at most 3m−i. At
i = m, ~r is therefore a {−1, 0, 1}-vector, so at the for-loop of step 14, ~v is chosen to be
~r, reducing ~wM − ~c to zero. (Throughout the process, ~r keeps a tally of this difference.)
By construction 〈~c · ~n〉 = 0, and also each row of M other than the last is homogeneous.
By linearity, we conclude that the last row of M must also be homogeneous.

For the case i < m, let us consider a variation on Algorithm 2, where the comprehensive
search over all possible R and L combinations presented in step 13 is replaced by a much
more efficient, though possibly sub-optimal, search. This change definitely cannot make
Algorithm 2 terminate if it had otherwise not terminated, nor can it decrease the value
of t at termination.

The simpler method to come up with (R,L) pairs is divided into three stages. First,
we initialize ~v. In a second step, we reduce the moment of ~v to almost zero. (Specifically,
at the end of the process its absolute value is less than 2k.) Finally, we zero the moment
out completely.

We describe the process here as an algorithm that chooses ~v directly, not going through
the process of picking out R and L first. The initialization is described in Algorithm 3.
The rough correction stage is described in Algorithm 4. The fine correction stage is then
described in Algorithm 5.

Let ~v0 be the value returned by Algorithm 3.
Algorithm 4 attempts to cancel out the moment of ~v0 by a method similar to that used

in Algorithm 1 for the generation of ~c′. Set R is assigned the lowest possible values, and
set L is assigned the highest ones, subject to not overshooting the moment’s target zone.
Though it may be that |R| and |L| cannot be made large enough to counter all existing
moment, in which case the algorithm will fail, reaching step 14, the one thing ensured by
the algorithm is that it will not overshoot the mark: because there is a value that can be
added to L at every interval of length k, the moment is decreased by at most 2k at every
step, ensuring that the target zone is not missed.

Though this algorithm may not be able to cancel out the initial moment, repeatedly
appending copies of this basic ~v to each other (which is what is done by the loop in
step 7 of Algorithm 2) is sure to eventually result in a vector for which this Algorithm 4

the electronic journal of combinatorics 19(4) (2012), #P40 12



Algorithm 3 Initializing ~v

1: for j ∈ 1, . . . , s do
2: if rj > 3m−i−1 then
3: vj ← 1
4: else if rj < −3m−i−1 then
5: vj ← −1
6: else
7: vj ← 0
8: end if
9: end for

10: return ~v

terminates successfully. Suppose that the vector’s original length was kl and that it was
appended to itself r times. If the initial moment was b, after r repetitions it has become
rb. However, because there is a candidate for R and a candidate for L in every interval of
length k, Algorithm 4 is sure to be able to cancel out a moment of order O(kr2l2). For a
large-enough r, the moment-countering ability, growing as a quadratic function of r, will
suffice to cancel the moment, which grows as a linear function of r, and the algorithm
will terminate successfully.

Furthermore, by appending yet additional copies of the initial ~v, countering the mo-
ment generated by r copies will require the cardinalities of R and L (which are equal) to
be O(

√
r). This means that in increasing r we also increase, without bound, the num-

ber of intervals that are unused by both R and L, and are therefore free to be used by
Algorithm 5.

We now move to analyzing the fine-tuning algorithm. We prove that given enough
“free” intervals (as guaranteed, given a large enough r), the fine-tuning algorithm termi-
nates successfully. Algorithm 5 describes the fine-tuning algorithm for the case moment >
0. The case moment < 0 is symmetric, with the roles of negatives and positives reversed.
(And the case moment = 0 requires no further moment-cancellation, of course.)

The way that Algorithm 5 works is by seeking pairs of potential values for R and
for L, (r, l), such that l − r = pos and such that r − l = neg . It then uses the minimal
amount of each type of pair needed in order to cancel out the remaining moment. Because
we chose k to be prime, pos and neg , satisfying pos + neg = k, are necessarily co-prime.
Therefore, there is necessarily some nump < neg that satisfies neg |(moment +nump ·pos).
The number of neg needed, numn is then bounded by nump · pos/neg + moment/neg ,
where the first part is bounded by pos and the second part by 4, because it is known that
neg > pos , and therefore neg > k/2, whereas moment < 2k.

We now need to ensure that enough pairs with differences pos and neg exist. By the
construction of ~c, a pair with a difference of pos exists in every [ik+1, . . . , (i+1)k] interval
not used by the rough-cancellation step. To obtain a difference of neg , we need two such
consecutive intervals with the same “choice”. Note, however, that in ~c′ there are at most
5 cases where consecutive “choice”s are different (when considering ~c′ as cyclic, which is
how it is used in constructing ~c).

the electronic journal of combinatorics 19(4) (2012), #P40 13



Algorithm 4 Rough correction of moment

1: moment ← 〈~v · ~n〉
2: pos ← 2 · 3m−i−1

3: neg ← k − pos
4: if pos < neg then
5: target ← {0, . . . , 2k − 1}
6: else
7: target ← {1− 2k, . . . , 0}
8: end if
9: while moment /∈ target do

10: pvals ← {l : rl = 3m−i−1 and vl = 0}
11: nvals ← {l : rl = −3m−i−1 and vl = 0}
12: if pvals = ∅ then
13: {Failed to correct the moment.}
14: quit
15: end if
16: if moment > 0 then
17: s← min(pvals)
18: f ← max(nvals)
19: x← min(nvals)
20: while moment − (x− s) > max(target) and x 6= f do
21: nvals ← nvals \ {x}
22: x← min(nvals)
23: end while
24: vs ← 1
25: vx ← −1
26: moment ← moment − (x− s)
27: else
28: s← min(nvals)
29: f ← max(pvals)
30: x← min(pvals)
31: while moment − (s− x) < min(target) and x 6= f do
32: pvals ← pvals \ {x}
33: x← min(pvals)
34: end while
35: vs ← −1
36: vx ← 1
37: moment ← moment − (s− x)
38: end if
39: end while
40: return ~v

the electronic journal of combinatorics 19(4) (2012), #P40 14



Algorithm 5 Fine correction of the moment

Require: moment > 0
1: pvals ← {l : rl = 3m−i−1 and vl = 0}
2: nvals ← {l : rl = −3m−i−1 and vl = 0}
3: nump ← minimum nonnegative integer such that neg |moment + nump · pos
4: numn ← (moment + nump · pos)/neg
5: pairs ← {l : l ∈ pvals and l − pos ∈ nvals}
6: if |pairs| < nump then
7: {Failed to correct the moment.}
8: quit
9: end if

10: for l ∈ nump lowest elements of pairs do
11: vl ← 1
12: vl−pos ← −1
13: end for
14: pvals ← {l : rl = 3m−i−1 and vl = 0}
15: nvals ← {l : rl = −3m−i−1 and vl = 0}
16: pairs ← {l : l ∈ pvals and l + neg ∈ nvals}
17: if |pairs| < numn then
18: {Failed to correct the moment.}
19: quit
20: end if
21: for l ∈ numn lowest elements of pairs do
22: vl ← 1
23: vl+neg ← −1
24: end for
25: return ~v

Because the fine-tuning algorithm is not guaranteed to be able to use any interval
already utilized at the rough-cancellation step, consider the situation of the used intervals
at the end of that previous step. The rough-cancellation algorithm uses the intervals of ~v
corresponding to the lowest and highest valued elements of ~n, but it leaves in the middle
one consecutive portion of unused intervals, with at most one used interval interrupting
it.

We claim that if this consecutive portion is of length 2k + 13 intervals or more, this
guarantees that the fine-tuning algorithm will terminate successfully. The case that re-
quires the greatest number of intervals for the fine-tuning step is pos = k − 1, neg = 1,
with the original moment being 2k − 1. This requires k − 2 neg-pairs (each of which
requires 2 intervals) and 3 pos-pairs (each of which requires a single interval), for a total
of 2k− 1 intervals. Given that in any consecutive set of at most 3k intervals there cannot
be more than 15 “choice” changes, and in each such “choice” change there is at most one
interval that cannot be used to create a neg-sized interval, the total number of intervals
needed can be bounded by the following computation: 2k − 4 (number of intervals used

the electronic journal of combinatorics 19(4) (2012), #P40 15



in neg pairs) +15 (number of intervals wasted over “choice” changes) +2 (number of in-
tervals wasted because they or the interval after them was used in the rough-cancellation
stage) = 2k+ 13. We note that in this worst-case scenario there is no need to add 3 more
intervals for the pos pairs, as the pos pairs can use any of the 15 intervals unusable by
neg pairs due to “choice” changes.

For large enough m we have 2k + 13 6 3k, so the argument holds. The only m for
which this does not hold is m = 2. We now show that for m > 4, ~c = (~c′ × 5) suffices
for Algorithm 4 to leave this many unused intervals, ensuring the successful termination
of Algorithm 2 with matrix dimensions meeting the condition t 6 5k of the lemma. We
treat the case m < 4 separately.

First, let us consider the size of the moment that needs to be counteracted at each step.
Our original ~c′, of length k2, was composed of k repetitions of either −(k− 1)/2, . . . , (k−
1)/2 or −(k − 3)/2, . . . , (k − 3)/2, and also at most (k − 1)/2 pairs of −(k + 1)/2 and
(k + 1)/2, values that appear, in total, at most once per k-length interval.

Consider the repetitions of −(k − 1)/2, . . . , (k − 1)/2 or −(k − 3)/2, . . . , (k − 3)/2 in

~c. Each such repetition includes one −x for every x. As a result, ~v0, taken over the
same indices, is balanced. The greatest moment that can occur in such a segment is
(k2 − 1)/4, for a total of (k2 − 1)/4 · k = (k3 − k)/4 per repetition of ~c′. The remaining
(−(k+1)/2, (k+1)/2) and (−(k−1)/2, (k−1)/2) value pairs also result in a balanced set.
Consider their moment. This moment is the result of “choice −1” and “choice +1” pairs
taken at the ~c′ determination stage. In designing ~c′ we needed to cancel out a moment
of (k − 1)k2(k + 1)/12. For this, we chose (s, f) pairs, and made the s-interval into a
“choice +1” and the f -interval into a “choice −1”. This cancels out exactly (f − s)k2. In

terms of ~v0, such a move creates, at most, 2(f − s + 1)k of moment. Knowing that the
sum of all f − s is (k − 1)(k + 1)/12, the total is bounded by (k − 1)k(k + 1)/6 + 2pk,
where p is the number of pairs used, which cannot be larger than (k − 1)/2. Adding all
this together and multiplying by 5, because the claim is that ~c has at most 5 repetitions
of ~c′, we get 25

12
k3 + 5k2 − 85

12
k. The total moment for ~v0 at step i = 1 of Algorithm 2 is

therefore bounded by 25
12
k3 + 5k2 − 85

12
k.

The choice of (R,L) at i = 1 must therefore create a ~v with at most this moment,
because the two moments must cancel each other exactly. Let us call the moment created
by the choice of (R,L) at iteration i by the name bi. We have b1 6 25

12
k3 + 5k2 − 85

12
k.

In subsequent steps, however, the moment can be significantly higher. The reason
for this is that the values of ~v0 in all subsequent steps are reversed by the choice of
(R,L) at all indices in R ∪ L. (A value of 3i can be described in one of two ways. It is
either

∑m
j=m−iwj or wm−i−1 −

∑m
j=m−iwj. Adding a position to R adds wm−i−1 to the

equation, and therefore reverses all subsequent choices.) This adds a further 2b1 to the
moment that needs to be corrected by b2, so |b2| 6 3b1. In total, we have the equation
|bi| 6

(
25
12
k3 + 5k2 − 85

12
k
)

3i−1.
On the other hand, consider how much moment can be countered at each step. In ~c,

every k-sized interval includes all numbers from −(k−3)/2 to (k−3)/2, and among them
all the numbers from −(3m−1 − 1)/2 to (3m−1 − 1)/2, being a total of 3m−1 consecutive
numbers. At iteration i of Algorithm 2, the candidates for R are exactly those positions

the electronic journal of combinatorics 19(4) (2012), #P40 16



whose cj is congruent to 3m−i−1 (mod 2 ·3m−i) and the candidates for L are exactly those
positions whose cj is congruent to −3m−i−1 (mod 2 ·3m−i). (Only wm is odd. All other wi

are even. However, w1/2, . . . , wm−1/2 form the powers of 3, and it is well known that any
integer can be expressed uniquely in base 3 using the digits {−1, 0, 1}. Therefore, every
odd number in the range can be expressed by exactly 2 combinations of wi, depending on
whether wm is added or subtracted. The numbers that are potentials for R in iteration i
of Algorithm 2 are exactly those 2x + 1 for which x has a 0 in its i’th digit in {−1, 0, 1}
base-3 representation and x+ 1 has a 1. Similarly, candidates for L are those where x has
a −1 and x+ 1 has a 0.)

Careful accounting shows that the number of candidates for R in every interval of
length k is (3i−1 +1)/2. This is given by the following computation. We have (3i−1−1)/2
due to this many full sets of all residues modulo 2 · 3m−i. In addition, we have one
more candidate due to the fact that remaining ~c entries include all residues in the range
0, . . . , (3m−i−1)/2, and so, in particular, they also include one that is congruent to 3m−i−1

(mod 2 · 3m−i). The total, (3i−1 + 1)/2, is also the number of candidates for L.
Suppose that all candidates in the first (3k − 13)/2 intervals were placed in set R

and all candidates in the last (3k − 13)/2 intervals were placed in set L. This would
still leave 2k + 13 free intervals, which we know is enough for fine tuning. To see how
much moment can be corrected by this choice, note that we can pair each member r of
R with a member l of L that is exactly (7k + 13)/2 intervals away from it. Even if l and
r are at their closest positions within their respective intervals, this is still a difference
of (7k2 + 11k)/2. The total correctable moment is bounded from below by the product
of this difference and the number of candidates used, (3i−1 + 1)/2 · (3k − 13)/2. The
product is (3i−1 + 1)(21

8
k3 − 29

4
k2 − 143

8
k), which is more than 3i−1(21

8
k3 − 29

4
k2 − 143

8
k).

The algorithm succeeds if this is enough to counterbalance an initial moment of bi, which
is bounded from above by

(
25
12
k3 + 5k2 − 85

12
k
)

3i−1.
Success of the algorithm depends, therefore, on the correctness of the inequality

25

12
k3 + 5k2 − 85

12
k 6

21

8
k3 − 29

4
k2 − 143

8
k,

or, equivalently, 13k2− 294k− 259 > 0. This is true for k > 24, so in particular for the k
values chosen for any m > 4.

We have shown that for m > 4, if the width of the matrices of Algorithm 2 ever reaches
5k2 (being 5 times the width at the start of the algorithm) the loop of step 7 will always
be stopped at its very first iteration at step 23. The width will not increase beyond this
point. We can therefore tweak Algorithm 2 to begin by choosing ~c = (~c′ × 5), thereby
ensuring that this will also be the final width.

Algorithm 6 summarizes this final algorithm.
Algorithm 6 is guaranteed to work for m > 4. However, by simply running it on

a computer it was possible to ascertain that it terminates successfully also in the cases
m ∈ {2, 3}. Therefore, the lemma is proved for all m > 2.

We can now complete the proof of this section’s main claim, as follows.

the electronic journal of combinatorics 19(4) (2012), #P40 17



Algorithm 6 Finding M , final

1: Find ~c′ as in Algorithm 1.
2: ~c← (~c′ × 5)
3: len ← 5k2

4: M ← 0m×len
5: ~w ← (2 · 3m−2, . . . , 2, 1).
6: for i ∈ 1, . . . ,m do
7: ~v ← ~0len

8: ~r ← ~c−
∑i−1

l=1 wlMl∗
9: Initialize ~v as in Algorithm 3

10: Update ~v as in Algorithm 4.
11: if moment > 0 then
12: Update ~v as in Algorithm 5.
13: else if moment < 0 then
14: Update ~v as in Algorithm 5, with positives and negatives reversed.
15: end if
16: Mi∗ ← ~v
17: end for
18: return M

Proof of Theorem 3. Let M be any k-regular piecewise-monotone, homogeneous, bal-
anced weigh-set of dimensions m × kt, then the sequence {Mi}∞i=1 defined by Lemma
2.3 is a sequence of t-part piecewise-monotone weigh-sets with dimensions mi = mi and
ni = kit, being arbitrarily large dimensions.

By Lemma 2.4, adding O(t) further weighings to these weigh-sets is enough to make
them Münchhausen. This is a number independent of n. We therefore have Münchhausen
weigh-sets of dimensions m′i × ni equal to (mi + O(t)) × (kit). These all satisfy m′i 6
α log3 ni + C with α = m/ log3 k.

All that is left is to prove that m/ log3 k can be made arbitrarily close to 1. However,
recall that in Lemma 2.5 M was constructed with k > 3m−1, meaning that α < m/(m−1),
which can be made arbitrarily close to 1.

Though not necessary for the main proofs of the paper, it is still interesting to note
that Theorem 3 immediately implies the following.

Corollary 2.1. There exists a sequence n values for which B(n) is log3 n+ o(log n).

3 General n values

We now turn to the question of arbitrary n values. Dealing with these requires strength-
ening the tools built in Section 2.

Let M(m, k, t, n) be the set of homogeneous, m × n matrices (weigh-sets), such that
M ∈ M(m, k, t, n) if and only if there exists a vector ~w of length m, such that ~c = ~wM

the electronic journal of combinatorics 19(4) (2012), #P40 18



satisfies the following properties:

ci 6 ci+1 (i 6≡ n (mod t)),

ci < ci+1 (i ≡ n (mod t) but i 6≡ n (mod kt)).

This definition ofM(m, k, t, n) is a generalization of monotonicity. If M is a k-regular
t-part piecewise monotone, homogeneous matrix, then M ∈M(m, k, 1, kt). Furthermore,
[M × r] is in M(m, k, r, rkt) and ([M × r] × s) is in M(m, k, r, rkts). In Section 2, we
proved that by joining M(m, k, ki, krt) weigh-sets for i = 0, . . . , r − 1, one can construct
a Münchhausen weigh-set of dimensions (mr + O(t)) × krt. In this section, we use the
more generalized form in order to replace krt by a general n.

However, before this can be done, we must first prove that the sets we use are
nonempty.

Lemma 3.1. For every m > 3 and any positive t, there exist a k > 3m−1, such that
M(m, k, t, n) is nonempty for n > 5tk2.

Proof. The proof for Lemma 3.1 follows the general outline of the construction in the
proof for Lemma 2.5. We begin by choosing the same ~w and k as before, construct a
suitable ~c, and then build a matrix M ∈M(m, k, t, n) row by row.

The final algorithm used will follow the framework of Algorithm 6. As is done there,
the length of ~c here is known in advance. In our case, it is n. In this case, there is no
need to first construct ~c′ and then duplicate it, as was done in Algorithm 2. Instead, we
construct ~c directly. The process for doing so is similar to that described in Algorithm 1.
However, three complications need to be accounted for:

1. The matrix width, n, may not be a multiple of kt. For this reason, a construction
that duplicates a basic construction of any width is not possible. In the construction
used here we will follow Algorithm 1 for the last bn/ktc kt columns, and will have
special handling for the first n mod kt ones.

2. The moment that needs to be counterbalanced in Algorithm 1 is known to be a
multiple of k2 (the equivalent of which in this algorithm would be a multiple of
k2t2), and can therefore be tackled by “choice +1” and “choice −1” pairs. Here,
the initial moment is general. We handle this by first reducing the moment from
its original value, I, to I mod k2t2, as was done before. Next, we use Lagrange’s
four-square theorem [9] to represent the remainder as a sum of 4 squares (each of
which is necessarily smaller than k2t2). A moment of a2, for a 6 kt, can be created
by shifting by 1 the a highest values in one kt-length interval, and by −1 the lowest
values in the kt-length interval immediately following it.

The new algorithm for choosing ~c is presented as Algorithm 7.
There are two potential pitfalls in Algorithm 7. First, in step 26, we need to make sure

that the “while” loop terminates successfully. This has already been discussed regarding
Algorithm 1, but we repeat the discussion here briefly. The total moment when entering

the electronic journal of combinatorics 19(4) (2012), #P40 19



Algorithm 7 Finding the vector ~c as a function of k, t and n

1: b← bn/ktc
2: ~c← ~0n

3: {Choosing the last bkt elements of ~c.}
4: for i ∈ 0, . . . , b− 1 do
5: for j ∈ 0, . . . , k − 1 do
6: for r ∈ 1, . . . , t do
7: cn−bkt+ikt+jt+r ← −(k − 1)/2 + j
8: end for
9: end for

10: end for
11: {Choosing the remaining elements of ~c.}
12: rem ← n− bkt
13: offset ← brem/2tc
14: parity ← 1− (brem/tc mod 2)
15: for j ∈ 0, . . . , (offset × t)− 1 do
16: cn−bkt−j ← offset − bj/tc
17: end for
18: for j ∈ offset × t, . . . , rem − 1 do
19: cn−bkt−j ← offset − bj/tc − parity
20: end for
21: {Rough moment cancellation.}
22: ~h← ~0b

23: moment ←
∑n

i=1 cii
24: s← 1
25: f ← b
26: while moment > k2t2 do
27: if moment < (f − s)k2t2 then
28: f ← bmoment/k2t2c+ s
29: end if
30: hs ← 1
31: hf ← −1
32: moment ← moment − (f − s)k2t2
33: s← s+ 1
34: f ← f − 1
35: end while

the “while” loop at step 26 is bounded by (k−1)k(k+1)(b+1)t2/12. (Here, multiplication
by b stems from the b complete kt-sized intervals, and the extra +1 stems from the effect of
the remaining elements. Explicitly computing the moment generated by these elements
shows that it can never be greater than that of a complete interval.) In all but the
last iteration, the counterbalance introduced by adding a new pair of (+1,−1)-choices is

the electronic journal of combinatorics 19(4) (2012), #P40 20



36: for i ∈ 0, . . . , b− 1 do
37: for j ∈ 1, . . . , kt do
38: cn−bkt+ikt+j ← cn−bkt+ikt+j + hi+1

39: end for
40: end for
41: {Fine moment cancellation.}
42: s← s− 1
43: Find a1, a2, a3 and a4 satisfying a21 + a22 + a23 + a24 = moment .
44: for i ∈ 1, . . . , 4 do
45: repeat
46: s← s+ 1
47: until hs = hs+1 = 0
48: for j ∈ 0, . . . , ai − 1 do
49: cn−bkt+skt−j ← cn−bkt+skt−j + 1
50: cn−bkt+skt+j+1 ← cn−bkt+skt+j+1 − 1
51: end for
52: s← s+ 1
53: end for
54: return ~c

known. The first pair counterbalances by (b− 1)k2t2, the next by (b− 3)k2t2, and so on.
The number of pairs needed, p, not including the last pair, is therefore p = bp̃c, where p̃
is the lowest solution to

bk2t2p̃− k2t2p̃2 = (k − 1)k(k + 1)(b+ 1)t2/12,

or, equivalently, to
kp̃2 − bkp̃+ (k − 1)(k + 1)(b+ 1)/12 = 0.

Using some calculus, and utilizing the information that n > 5tk2, as per the claim of the
lemma, and therefore b > 5k, as well as the knowledge of which k values are admissible
in the present construction, we conclude that the ratio p̃/b peaks at (k, b) = (17, 85), so

p̃

b
6

1

2
−
√

343707

368475
≈ 0.017. (1)

There are, therefore, many more pairs than are actually needed at this step. Let α =
1/2−

√
343707/368475.

The second potential pitfall for Algorithm 7 is that in step 47 we need to ensure
that enough unused intervals are left for fine-tuning. This corresponds to the equation
b − 2p > 12, because we require 2 intervals for the remaining rough-cancellation pair, 8
for the sum of squares, and a further 2 as the maximal amount of space wasted due to the
sum of squares requiring two consecutive “choice 0” intervals each. A stricter condition is
b− 2p̃ > 12. From equation (1), we see that this condition is met for b > 13, so certainly
also for b > 5k, because k > 5.

the electronic journal of combinatorics 19(4) (2012), #P40 21



With this computed ~c, we can now proceed with the equivalent of Algorithm 6. This
remains essentially unchanged, but has the following modification. In the original Al-
gorithm 6, moment cancellation was a two-step process: first rough-cancellation, then
fine-tuning. We now add a third step, before the original two, meant to simplify handling
of the variable t.

Recall that the algorithms of Section 2 deal with matrices divided into k-length in-
tervals, whereas here we deal with matrices divided into kt-length intervals. It would
be most convenient if we could treat the last bkt columns of matrix M as [M ′ × t]. In
fact, there are only 8 of the b intervals of the matrix where M diverges from an [M ′ × t]
format, and we can simply avoid using them in moment cancellation, so they can safely
be ignored. (These 8 intervals are the 2× 4 used in the sum of squares.)

In Section 2 we already investigated how to correct the moment of a matrix like M ′

and have already established how much moment can be corrected in such a matrix. The
problem is that any such action that has an effect of magnitude B on M ′ will have an
effect of magnitude Bt2 on M . This method can therefore only handle moments that are
multiples of t2. In M , however, the moment is general.

To solve this problem, we add 4 more intervals to the list of non-stretched intervals, for
a total of 12. Again, we use Lagrange’s four-square theorem to construct four numbers,
a1, . . . , a4, each at most t, such that the addition of

∑4
i=1 a

2
i to the moment will make it

divide by t2. Once this is done, the original moment cancellation algorithm is applied on
the M ′ matrices.

To perform the initial moment cancellation, we pick from each of the 4 chosen intervals
one element from pvals and one element from nvals , each repeated t times and each known
to exist in every interval, and make the ai with the highest indices among the t repetitions
of the value taken from pvals into 1 in ~v, and the ai with the lowest indices of the nvals
into −1. Though this will only create a counterbalance of magnitude a2i when the intervals
are consecutive, it always creates a counterbalance that is congruent to a2i in modulo t2.

Finally, the last remaining obstacle is that the algorithm may fail in one of the two
moment cancellation routines that were already introduced in Section 2. The calculation
here is similar to the one used in the proof for Lemma 2.5, but we augment it because
the moment may be larger and because the ability to counterbalance may be diminished
(both due to the added features of ~c).

We first revise our estimate regarding how many intervals are needed in order to
ascertain that the fine-tuning step succeeds. As before, the case that requires the greatest
number of intervals for fine-tuning is pos = k − 1, neg = 1, with the original moment
being 2k − 1. This requires k − 2 neg-pairs (each of which requires 2 intervals) and 3
pos-pairs (each of which requires a single interval), for a total of 2k − 1 intervals. The
difference, however, is that this time there is no partitioning of ~c into copies of a base
~c′. Therefore, the total number of intervals that are unusable due to “choice” changes is
bounded by 5. We describe explicitly the structure of ~v here.

The lowest indices of ~v correspond to “+1” choices and the highest indices are the
reverse. Between these, there may be at most one other “−1” choice, from step 27
of Algorithm 7. In the lowest-most “choice 0” intervals, 4 pairs of intervals are used

the electronic journal of combinatorics 19(4) (2012), #P40 22



for handling modulo k2t2 moment cancellation in ~c. These are not used in moment
cancellation on ~v.

Other than these 4 pairs, any two consecutive “+1”, “−1” or “0” choices can be used
at this point for the fine tuning in the choice of neg pairs. The intervals that are unusable
due to “choice” changes can be used either for the pos pairs or for the 4 intervals used
for ensuring that the moment divides by t2. Because there are no more than 5 intervals
affected by “choice” changes, but 4+3 (or more) interval roles that do not require pairing,
no interval is truly unusable due to a “choice” change. We therefore reach the conclusion
that if (2k − 1) + 2 × 4 + 4 = 2k + 11 of the b complete kt-sized intervals are unused at
the end of the rough moment-cancellation stage, these are enough to complete fine tuning
properly.

We now turn to the question of how much needs to be counterbalanced at the rough-
cancellation stage. The calculation repeats the one that was presented in the proof of
Lemma 2.5, with the necessary changes and adding in the effects of the new elements. We
summarize here briefly by enumerating the elements to be accounted for and their effect.

1. The −(k − 1)/2, . . . , (k − 1)/2 progression in “choice 0” intervals accounts for
(k2 − 1)t2/4 per interval. The −(k − 3)/2, . . . , (k − 3)/2 progression in “choice
1” and “choice −1” intervals accounts for less. Together with the remaining types
of complete intervals, these amount to no more than b(k2 − 1)t2/4.

2. “choice 1” and “choice −1” have pairs of (−(k−1)/2, (k−1)/2) and (−(k+1)/2, (k+
1)/2) shared among them. Originally, (f, s) pairs were chosen in ~c so as to coun-
terbalance at most (k − 1)k(k + 1)(b + 1)t2/12. Each such pair counterbalanced
(f − s)k2t2. In the present context, each such pair causes at most 2(f − s + 1)kt2

moment, so the total of all pairs is bounded by (k − 1)(k + 1)(b + 1)t2/6 + 2pkt2,
where p is the number of pairs, known to satisfy p 6 αb.

3. The 4 pairs of interval used to form a sum of squares in creating ~c differ from
regular intervals by the removal of at most t elements and their replacement by at
most t others. This change is complemented by a change in the neighboring interval.
Hence, this contributes at most 4kt2 to the moment, per pair, or 16kt2 in total. (The
fact that the elements that have not been replaced may have shifted positions does
not enter the calculation, because we have already taken into account the maximal
moment attainable by any interval, as long as its elements are balanced.)

4. The first n − bkt indices can be considered in two parts: first, we have n mod t
indices that contribute no more than t2/2 to the moment. The rest of the at most
(k−1)t indices are balanced, and cannot contribute more moment than (k−1)2t2/4.
In total, this is bounded by k2t2/4.

5. The cancellation actions of previous i iterations contribute twice their original mo-
ment. As a result, all of the above has to be multiplied by 3i−1.

6. In adding the sum of squares that cancels the moment of ~v modulo t2, each added
pair can cause an inadvertent moment of at most kt2, for a total of 4kt2. (This does

the electronic journal of combinatorics 19(4) (2012), #P40 23



not accrue a 3i−1 factor, because it is part of the ~v moment cancellation process,
not part of the initial moment of ~c.)

In total, this sums up to

3i−1t2
(
b

(
5

12
k2 + 2αk − 5

12

)
+

5

12
k2 + 16k − 1

6

)
+ 4kt2,

and to guarantee the success of the algorithm, this should be less than the moment that
can be produced in the rough-moment-cancellation step, minus 2k + 11 unused intervals.
The moment that can be generated in this way is bounded from below by

1

2
(3i−1 + 1)

⌊
1

2
(b− (2k + 11))

⌋(⌈
1

2
(b+ (2k + 11))

⌉
− 1

)
kt2.

Substituting in b > 5k, we get that this is true if k > 16, which is true if m > 3.

We remark that b > 5k is not a tight bound. For a large enough m, the methods used
here continue to work for any b > βk when β > 5+

√
61

3
≈ 4.27.

4 Bounding B(n) and B′(n)

We now turn to proving Theorem 2, of which our main theorem, Theorem 1, is a direct
corollary due to B′(n) > B(n).

Proof of Theorem 2. We construct, explicitly, a homogeneous m×n Münchhausen matrix
for any n, with an m value that is log3 n+ O(log log n).

Specifically, we construct a homogeneous m̃ × n matrix that is O(1)-part piecewise-
monotone, with a m̃ value that is log3 n + O(log log n), then use Lemma 2.4 to make it
into a Münchhausen matrix by adding O(1) weighings.

The homogeneous O(1)-part piecewise-monotone weigh-set is, in turn, the union of s
homogeneous weigh-sets, {Mi}si=1, with Mi ∈M(mi, ki, ti, n), for all i, where the param-
eters mi, ki, ti and s are determined as follows.

1. ∀i, ti =
∏i−1

j=1 kj.

2. ∀i,mi =
⌊
log3

(
3
2

√
n/5ti

)⌋
.

3. ∀i, ki is chosen to be the largest prime smaller than 2× 3mi−1.

4. The parameter s is chosen to be maximal, subject to ∀i,mi > 4.

The description above defines all parameters uniquely, as is demonstrated by Algo-
rithm 8.

Furthermore, by Lemma 3.1, there exist weigh-sets Mi that match these specifications.

the electronic journal of combinatorics 19(4) (2012), #P40 24



Algorithm 8 Choosing the parameters mi, ki, ti and s
1: s← 0
2: t1 ← 1

3: m1 ←
⌊
log3

(
3
2

√
n/5
)⌋

4: while ms+1 > 4 do
5: s← s+ 1
6: ks ← max{k : k prime and k < 2× 3ms−1}
7: ts+1 ← tsks

8: ms+1 ←
⌊
log3

(
3
2

√
n/5ts+1

)⌋
9: end while

By the same reasoning as in Lemma 2.3, the weigh-set constructed in this fashion
is dn/tse-part piecewise-monotone, which, due to the criterion for choosing s, is O(1)-
part piecewise-monotone, as necessary. We have shown, therefore, the construction of
a Münchhausen matrix with dimensions m × n, for an arbitrary n, where m is O(1) +∑s

i=1mi. We now turn to proving that m− log3 n is O(log log n).
As we have seen, the halting criterion ensures that n/ts is O(1) and, as a result, ks is

also O(1) and n/
∏s

i=1 ki is O(1). The value log3 n is therefore O(1) +
∑s

i=1 log3 ki. The
value m− log3 n can therefore be written as O(1) +

∑s
i=1(mi − log3 ki).

A simple upper bound on mi − log3 ki follows from Bertrand’s postulate, which we
have already used amply in the construction, according to which ki > 3mi−1, and therefore
mi − log3 ki < 1. This ensures that m− log3 n is O(s). We therefore turn to bounding s
from above.

Consider the list of ki values. By construction, ki is greater than 1/3 the largest power
of 3 that is smaller than 3

2

√
n/5ti. Specifically, it is greater than

√
n/5ti/6. On the other

hand, ki+1 is smaller than 2/3 the largest power of 3 that is smaller than 3
2

√
n/5ti+1. It

is therefore smaller than
√
n/5ti+1 =

√
n/5tiki, leading to the equation

ki+1 <
6ki√
ki

= 6
√
ki. (2)

Consider the sequence k̃i, defined as follows, for a general value of n and for ki and s

values calculated from it: k̃i
def
= minn{ks+1−i/36}. The sequence k̃i, up to an order reversal

and division by 36, gives a lower bound for the ki for any n. In particular, because ms > 4,
we have k̃1 > 53

36
> 1, and due to Equation (2) we have k̃i+1 > k̃2i . In particular, for all i,

k̃i > γ2
i
, for γ =

√
53/36.

Clearly, k1 6 n, so k̃s 6 n/36, leading to the equation n/36 > γ2
s
, so s is O(log log n).

We remark that throughout we have only used Bertrand’s postulate, certifying the
existence of a prime between a and 2a. However, the largest prime smaller than 2a, for
a large enough 2a, is known to be quite close to 2a. Specifically, a result by Dusart

the electronic journal of combinatorics 19(4) (2012), #P40 25



[4] is that for a large enough x a prime always exists between x and
(
1 + (2 ln2 x)−1

)
x.

Integrating this tighter bound into our calculation of mi − log3 ki it is possible to show
that m is log3 n+ δ log2 logB n+ O(1), where δ = log3

3
2

and the choice of B is arbitrary,
and only affects the O(1).

Though, mathematically speaking, δ log2 logB n is clearly an unbounded function of
n, it is interesting to note that even when choosing B = 2, the value of this function
only reaches 3 when n > 1080, which is more than the estimated number of atoms in the
universe [6]. It goes up to 4 at n > 10551 and up to 5 at n > 103604. These numbers
demonstrate that B(n) is, indeed, very close to log3 n, as was conjectured in [11].

Acknowledgements

The author wishes to thank Ian Wanless for introducing him to the problem.

References

[1] Problems from the last round of LIV Moscow Mathematical Olympiad. Kvant, 9:70–
71, 1991.

[2] M. Brand. Tightening the bounds on the Baron’s omni-sequence. Discrete Mathe-
matics, 312(7):1326–1335, 2012.

[3] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms,
Section 8.1: Lower bounds for sorting, pages 165–168. MIT Press and McGrow-Hill,
2nd edition, 2001.

[4] Pierre Dusart. Inégalités explicites pour ψ(X), θ(X), π(X) et les nombres premiers.
C. R. Math. Acad. Sci. Soc. R. Can., 21(2):53–59, 1999.

[5] F. J. Dyson. 1931. the problem of the pennies. The Mathematical Gazette,
30(291):231–234, 1946.

[6] J. Gribbin. In Search of the Big Bang: Quantum Physics and Cosmology. Heinemann,
1986.

[7] L. Halbeisen and N. Hungerbühler. The general counterfeit coin problem. Discrete
Mathematics, 147(1–3):139–150, 1995.

[8] G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge, at the Uni-
versity Press, 1952. 2d ed.

[9] Kenneth Ireland and Michael Rosen. A Classical Introduction to Modern Number
Theory, volume 84 of Graduate Texts in Mathematics. Springer-Verlag, New York,
second edition, 1990.

[10] T. Khovanova and J.B. Lewis. A186313. oeis.org/A186313. [Online; accessed 10
March 2012].

[11] T. Khovanova and J.B. Lewis. Baron Münchhausen redeems himself: Bounds for a
coin-weighing puzzle. The Electronic Journal of Combinatorics, 18(1):37, 2011.

the electronic journal of combinatorics 19(4) (2012), #P40 26

oeis.org/A186313


[12] Tanya Khovanova, Konstantin Knop, and Alexey Radul. Baron Münchhausen’s se-
quence. J. Integer Seq., 13(8):Article 10.8.7, 18, 2010.

[13] D.E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching,
Section 5.3.1: Minimum-Comparison Sorting, pages 180–197. Addison-Wesley, 2nd
edition, 1997.

[14] Alexander M. Mood. On Hotelling’s weighing problem. Ann. Math. Statistics, 17:432–
446, 1946.

[15] C.A.B. Smith. The counterfeit coin problem. Mathematical Gazette, 31:31–39, 1947.

[16] H. Steinhaus. Mathematical Snapshots. Dover Publications, 3rd edition, 1999.

the electronic journal of combinatorics 19(4) (2012), #P40 27


	Introduction and definitions
	Weigh-sets
	The Baron's omni-sequence
	The Baron's homogeneous omni-sequence

	Special n values
	Monotonicity
	Balance
	The basic idea
	Constructing a base matrix

	General n values
	Bounding B(n) and B'(n)

