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Abstract

The combinatorial Hopf algebra on building sets BSet extends the chromatic
Hopf algebra of simple graphs. The image of a building set under canonical mor-
phism to quasi-symmetric functions is the chromatic symmetric function of the
corresponding hypergraph. By passing from graphs to building sets, we construct a
sequence of symmetric functions associated to a graph. From the generalized Dehn-
Sommerville relations for the Hopf algebra BSet, we define a class of building sets
called eulerian and show that eulerian building sets satisfy Bayer-Billera relations.
We show the existence of the cd−index, the polynomial in two noncommutative
variables associated to an eulerian building set. The complete characterization of
eulerian building sets is given in terms of combinatorics of intersection posets of
antichains of finite sets.

Keywords: Hopf algebra, building set, graph, symmetric function, Dehn-
Sommerville relations, cd-index, simplicial complex

1 Introduction

Many combinatorial objects may be endowed with a Hopf algebra structure. The best
known examples are Rota’s Hopf algebra of finite graded posets [9] and the chromatic
Hopf algebra of simple graphs [17].

The theory of combinatorial Hopf algebras is developed in [2]. In Section 2 we recall
the basic definitions and properties of combinatorial Hopf algebras and of quasi-symmetric
functions. The Hopf algebra of quasi-symmetric functions QSym is the terminal object in
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the category of combinatorial Hopf algebras. It explains the ubiquity of quasi-symmetric
functions as generating functions in enumerative combinatorics.

The notion of a building set is originated in the work of De Concini and Procesi [6] in
the context of subspace arrangement and developed by Feichtner and Sturmfels [8] and
Postnikov [10]. The concept of a building set appears as a combinatorial condition that
polytopes from the certain class, called nestohedra, are simple. An example of a building
set is provided by the collection of the vertex sets of connected subgraphs in a given graph.
Building sets are a kind of Whitney systems. The Hopf algebra on Whitney systems is
constructed in [18]. In Section 3, based on Schmitt’s work, we introduce the Hopf algebra
of building sets BSet that extends the chromatic Hopf algebra G of simple graphs.

In Section 4 we define the chromatic symmetric function of a building set as the image
under the canonical morphism from building sets to quasi-symmetric functions. To a
building set B = B(C) is uniquely associated the collection Cmin of minimal elements of the
generating collection C, which is an antichain of finite sets. The building sets may be seen
as hypergraphs and colorings of building sets are equivalent to colorings of hypergraphs.
The chromatic symmetric function of a building set B(C) depends only on the associated
hypergraph Cmin. In the setting of building sets, we use the expansion of the chromatic
symmetric function of a hypergraph in the basis of the power sum symmetric functions,
given in [13]. The derived formulas for the induced chromatic polynomial of a building
set are analogues to the classical Whitney’s formulas for the chromatic polynomial of a
graph [20].

In Section 5 we construct a sequence of algebra morphisms βn from graphs to building
sets, that produces a sequence of symmetric functions associated to graphs. Two numer-
ical invariants of graphs, the numbers of acyclic and of totally cyclic orientations, arises
from this construction.

Every combinatorial Hopf algebra (H, ζ) possesses the canonical odd Hopf subalgebra
S−(H, ζ) on which the character ζ is odd. This subalgebra is characterized by certain
canonical relations, called the generalized Dehn-Sommerville relations. In the case of
H = QSym, the generalized Dehn-Sommerville relations are precisely the Bayer-Billera
relations for flag f−vectors of eulerian posets [3]. In Section 6, by analogy with eulerian
posets, we use the generalized Dehn-Sommerville relations for the Hopf algebra BSet
to characterize a class of building sets called eulerian. There is no analogues notion of
eulerian graphs, because no particular graph satisfies the generalized Dehn-Sommerville
relations for the chromatic Hopf algebra of graphs. We derive that eulerian building sets
satisfy the Bayer-Billera relations.

The cd− index of an eulerian poset is a polynomial in noncommutative variables,
firstly introduced by Fine (see [4]). Its existence is equivalent to the Bayer-Billera relations
for the flag f−vector. The cd−index is defined for elements of the eulerian subalgebra
of an infinitesimal Hopf algebra by a construction given in [1]. In Section 7, by analogy
with eulerian posets, we construct the cd−index of eulerian building sets.

In Section 8, we consider how the algebraic condition of being eulerian is related to
combinatorics of antichains of finite sets. We obtain the complete characterization and
show that eulerian building sets corresponds to clique complexes of chordal graphs.
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2 Combinatorial Hopf algebras

In this section we recall the basic definitions and properties of combinatorial Hopf algebras,
developed in [2]. Throughout, n is a non-negative integer, [n] denotes the set {1, . . . , n}
and |X| denotes the cardinality of a finite set X. A composition α |= n is a sequence
α = (a1, . . . , ak) of positive integers with a1 + · · ·+ak = n. A partition λ ` n is a multiset
λ = {l1, . . . , lk} such that l1 + · · ·+ lk = n.

A combinatorial Hopf algebra (H, ζ) is a graded connected Hopf algebra H over a
field K equipped with a multiplicative linear functional ζ : H → K, called character. A
morphism of combinatorial Hopf algebras (H1, ζ1) and (H2, ζ2) is a morphism of graded
Hopf algebras φ : H1 → H2 such that ζ2 ◦ φ = ζ1.

Characters Let X(H) be the set of characters of an arbitrary Hopf algebra H. The set
X(H), under the convolution product

ϕψ = mK ◦ (ϕ⊗ ψ) ◦∆H,

is a group with the unit εH and the inverse ϕ−1 = ϕ◦SH, where εH and SH are the counit
and the antipode of the Hopf algebra H.

Let Hn be the homogeneous component of the grading n of a graded Hopf algebra
H. Denote by ϕn = ϕ|Hn the restriction of a character ϕ on the component Hn. The
conjugate character ϕ is defined on homogeneous elements by ϕ(h) = (−1)nϕ(h), h ∈ Hn.
A character ϕ is said to be even if ϕ = ϕ and it is said to be odd if ϕ−1 = ϕ. Every character
ϕ on a graded connected Hopf algebra decomposes uniquely as a product of characters
ϕ = ϕ+ϕ−, with ϕ+ even and ϕ− odd ([2],Theorem 1.5.).

The odd subalgebra S−(H, ζ) of a combinatorial Hopf algebra (H, ζ) is defined as the
largest graded subcoalgebra on which the character ζ is odd. If φ : (H1, ζ1)→ (H2, ζ2) is
a morphism of combinatorial Hopf algebras then

φ(S−(H1, ζ1)) ⊂ S−(H2, ζ2).

For a character ϕ and a composition α = (a1, . . . , ak) |= n, denote by ϕα the convolu-
tion product

ϕa1 · · ·ϕak : H ∆(k−1)

−→ H⊗k proj−→ Ha1 ⊗ · · · ⊗ Hak

ϕ⊗k

−→ K. (1)

Quasi-symmetric functions The basic reference for quasi-symmetric functions is [11].
The algebra QSym of quasi-symmetric functions is a graded subalgebra of the algebra
K[[x1, x2, . . .]] of formal power series of finite degree in countably variables. It is linearly
spanned by monomial quasi-symmetric functions

Mα =
∑

i1<i2<···<ik

xa1i1 x
a2
i2
· · ·xakik ,
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where α = (a1, a2, . . . ak) |= n is a composition of an integer n ∈ N. It is a graded Hopf
algebra with coproduct

∆(Mα) =
∑
α=βγ

Mβ ⊗Mγ,

where βγ is the concatenation of compositions β and γ.
Let ζ : K[[x1, x2, . . .]]→ K be an algebra morphism defined on variables by ζ(x1) = 1

and ζ(xi) = 0 for i 6= 1. The universal character ζQ on QSym is the restriction ζQ =
ζ|QSym. It is determined on the monomial basis by

ζQ(Mα) =

{
1, α = (n) or ()
0, otherwise

.

One of the main results of ([2],Theorem 4.1.) is that for an arbitrary combinatorial Hopf
algebra (H, ζ), there is a unique morphism of combinatorial Hopf algebras Ψ : (H, ζ) −→
(QSym, ζQ), which is defined on homogeneous elements h ∈ Hn by

Ψ(h) =
∑
α|=n

ζα(h)Mα. (2)

The morphism Ψ we call the canonical morphism of the combinatorial Hopf algebra (H, ζ).
Given a composition α = (a1, . . . , ak) |= n, let s(α) = {a1, . . . , ak} ` n be the corre-

sponding partition. The Hopf algebra of symmetric functions Sym is a Hopf subalgebra
of QSym linearly spanned by monomial symmetric functions mλ =

∑
s(α)=λMα, where λ

runs over all partitions. The principal specialization of symmetric functions is an assign-
ment of the value at x1 = x2 = · · · = xm = 1, xm+1 = xm+2 = · · · = 0 to a symmetric
function φ ∈ Sym. It is a polynomial in m denoted by φ(1m).

3 Building sets

Definition 3.1. A collection B ⊂ P(X) of non-empty subsets of a finite set X is a
building set on X if it satisfies two conditions:

(B1) If S, S ′ ∈ B and S ∩ S ′ 6= ∅ then S ∪ S ′ ∈ B
(B2) {i} ∈ B for all i ∈ X.

We write BX to indicate the ground set X. If we do not require the condition (B2),
a family B is called a Whitney system on X [18]. Building sets on X are ordered by
inclusion. The minimal building set contains only singletons DX = {{i}|i ∈ X}. We call
DX the discrete building set on X. The maximal building set PX = P(X) \ {∅} contains
all non-empty subsets of X. The rank rank(B) of a building set B is the cardinality of
the ground set X. The restriction of a building set B to a subset I ⊂ X is a building set
on I defined by B|I = {S ∈ B|S ⊂ I}.

Let BX and BY be building sets on finite sets X and Y . A map f : X −→ Y is a map
of building sets if f−1(S) ∈ BX for all S ∈ BY . We say that building sets BX and BY are
equivalent if there is a bijection f : X −→ Y such that f(S) ∈ BY ⇔ S ∈ BX .
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The elements of a building set are ordered by inclusion. The restriction B|I to a
maximal element I ∈ B is called a connected component of B. Every building set is a
disjoint union of its connected components. A building set BX is connected if X ∈ BX .
The minimal connected building set that contains B is B = B ∪ {X}.

Suppose that is given an arbitrary collection C ⊂ P(X) of subsets of a finite set X,
such that every S ∈ C has at least two elements. Define inductively the sequence of
collections

C0 = C, Ck+1 = Ck ∪ {S ∪ S ′|S ∈ C0, S
′ ∈ Ck, S ∩ S ′ 6= ∅}, k > 0.

The union B(C) =
⋃
k>0 Ck, with all singletons {x}, x ∈ X added, is a building set on

X. For a building set B on X there is a unique minimal collection C ⊂ P(X) such that
B = B(C). We call such collection the generating collection of a building set B.

The motivating example of a building set comes from graph theory.

Example 3.2. The graph Γ = (V,E), with the sets of vertices V and edges E, is called
simple if there are no either multiple edges nor loops. For a simple graph Γ = (V,E) a
collection B(Γ) = {I ⊂ V |Γ|I is connected} is a building set on V . We call B(Γ) the
graphical building set corresponding to the graph Γ. Note that the graphical building set
B(Γ) is connected if and only if the graph Γ is connected. Also for each subset of vertices
I ⊂ V the restriction B(Γ)|I is the graphical building set B(Γ|I) corresponding to the
induced subgraph Γ|I . The set of edges E is the generating collection of the graphical
building set B(Γ).

Let BSet be the vector space over the field K of characteristic zero, spanned by all
equivalence classes of building sets and BSetn its subspace spanned by equivalence classes
of building sets of rank n. The space BSet, endowed with product BX · BY = BX t BY ,
where BX t BY = {S ⊂ X t Y |S ∈ BX or S ∈ BY } is a building set on disjoint union
X t Y , and coproduct

∆(BX) =
∑
I⊂X

(BX)|I ⊗ (BX)|Ic

is a graded, connected commutative and cocommutative Hopf algebra. The unit is the
building set B∅ on the empty set. Denote by Conn the family of all equivalence classes
of connected building sets. Then, as the algebra, BSet is isomorphic to the polynomial
algebra K[Conn] generated by the family Conn. As a graded, connected bialgebra, BSet
possesses the antipode S : BSet→ BSet, determined by

S(BX) =
∑
k>1

(−1)k
∑

J1t...tJk=X

k∏
j=1

(BX)|Jj , (3)

for building sets on X 6= ∅, where the inner sum is over all ordered k-tuples (J1, . . . , Jk)
of non-empty disjoint subsets, whose union is equal to X.
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4 Chromatic symmetric function of a building set

Let ζ be a character on the Hopf algebra of building sets BSet defined by

ζ(B) =

{
1, B is discrete
0, otherwise

.

For a building set BX on the set X with n elements and a composition α = (a1, . . . , ak) |=
n, the value of the convolution product ζα(BX), defined by (1), is the number of ordered
decompositions X = J1 t . . . t Jk such that (BX)|Ji is discrete and |Ji| = ai, for all i =
1, . . . , k. We call a function f : X → N a proper coloring of a building set BX if for every
set S ∈ BX with at least two elements, there are i, j ∈ S such that f(i) 6= f(j). For each
ordered decomposition X = J1t. . .tJk such that (BX)|Ji is discrete for all i = 1, . . . k and
positive integers n1 < · · · < nk, there is a proper coloring f given by f |Ji = ni. Conversely,
each proper coloring f : X → N of the building set BX , with f(X) = {n1 < · · · < nk},
defines an ordered decomposition X = f−1({n1}) t . . . f−1({nk}), where (BX)|f−1({ni}) is
discrete for all i = 1, . . . k.

Definition 4.1. The chromatic symmetric function of a building set BX ∈ BSetn is its
image under the canonical morphism Ψ : (BSet, ζ)→ (QSym, ζQ), given by (2) with

Ψ(BX) =
∑
α|=n

ζα(BX)Mα.

The function Ψ(BX) is obviously symmetric. The principal specialization of the function
Ψ(BX) counts proper colorings with finite number of colors.

Definition 4.2. The chromatic polynomial χ(BX ,m) of a building set BX is the principal
specialization

χ(BX ,m) = Ψ(BX)(1m).

Since the principal specialization on monomial basis is given by Mα(1m) =
(
m
k(α)

)
, where

k(α) is the length of a composition α |= n, we obtain

χ(BX ,m) =
∑
α|=n

ζα(BX)

(
m

k(α)

)
.

We are especially interested in the value of the chromatic polynomial of a building set at
m = −1, which is

χ(BX ,−1) =
∑
α|=n

(−1)k(α)ζα(BX). (4)

It defines some numerical invariant, which we call the (−1)−invariant of building sets.
Recall the definition of the Hopf algebra of simple graphs, considered by Schmitt, [17].

Let G be the K−vector space spanned by all equivalence classes of finite simple graphs,

the electronic journal of combinatorics 19(4) (2012), #P42 6



graded by the number of vertices of a graph. The space G is a graded, commutative and
cocommutative Hopf algebra with product Γ1 ·Γ2 = Γ1tΓ2 (the disjoint union of graphs)
and coproduct

∆(Γ) =
∑
I⊂V

Γ|I ⊗ Γ|Ic ,

where V is the set of vertices of a graph Γ and Γ|I its restriction on vertices I ⊂ V . Let
ζG : G → K be

ζG(Γ) =

{
1, Γ is discrete
0, otherwise

.

The canonical morphism ΨG : (G, ζG)→ (QSym, ζQ), given by (2) with

ΨG(Γ) =
∑
α|=n

(ζG)α(Γ)Mα, Γ ∈ Gn

is Stanley’s chromatic symmetric function of a graph, constructed in [12]. Its principal
specialization produces the chromatic polynomial χ(Γ,m) = ΨG(Γ)(1m) of a graph. Let
β : G → BSet be the map that sends a graph Γ to the corresponding graphical building
set B(Γ).

Theorem 4.3. The map β : G → BSet is a monomorphism of combinatorial Hopf
algebras such that Ψ ◦ β = ΨG.

Proof. First we show that β is an algebra morphism. Indeed, β(Γ1 · Γ2) is the graphical
building set corresponding to the disjoint union Γ1 t Γ2. It contains all subsets S ⊂
V (Γ1)tV (Γ2) such that the restriction (Γ1tΓ2)|S is connected. It is exactly the product
of graphical building sets B(Γ1) · B(Γ2). Recall that B(Γ|I) = B(Γ)|I . Therefore,

∆(β(Γ)) =
∑

I⊂V (Γ)

B(Γ)|I ⊗ B(Γ)|Ic =
∑

I⊂V (Γ)

B(Γ|I)⊗ B(Γ|Ic) = (β ⊗ β)(∆(Γ)).

Thus, the map β is a coalgebra morphism. Since the graphical building set B(Γ) is discrete
if and only if the graph Γ is discrete, we have ζ ◦ β = ζG. The correspondence of graphs
and graphical building sets is bijective, so the map β is a monomorphism.

It follows from Theorem 4.3 that chromatic polynomials of graphical building sets and
chromatic polynomials of graphs coincide

χ(B(Γ),m) = χ(Γ,m).

A classical theorem of Stanley asserts that evaluating the chromatic polynomial of a graph
at −1 gives the number of acyclic orientation [14]. Therefore the (−1)−invariant (4) is a
generalization of the number of acyclic orientations to building sets.

An arbitrary collection of subsetsH ⊂ P(X) of the ground set X is called a hypergraph
on X. A proper coloring of a hypergraph H is a map f : X → N, such that for any S ∈ H
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with at least two elements, f is not monochromatic on S. The chromatic symmetric
function of a hypergraph is defined as

Ψ(H) =
∑

properf :X→N

∏
i∈X

xf(i).

It depends only on minimal elements of a hypergraph, which form an antichain in the
boolean poset P(X). The specialization

χ(H,m) = Ψ(H)(1m)

is the chromatic polynomial, which counts the number of proper colorings of H with m
colors.

The following theorem, which is a simple consequence of definitions, shows in what
extent the chromatic symmetric function distinguishes building sets.

Theorem 4.4. Let Cmin be the collection of minimal elements of the generating collection
C of a building set B(C). Then

Ψ(B(C)) = Ψ(Cmin),

where Ψ(Cmin) is the chromatic symmetric function of the hypergraph Cmin.

Proof. A coloring f : X → N is a proper coloring of B(C) if and only if f is not monochro-
matic on an arbitrary S ∈ Cmin. Thus, the building set B(C) and the hypergraph Cmin

have the same sets of proper colorings, so their chromatic symmetric functions are equal.

Define the minimalization of a building set B = B(C) as the building set B̌ = B(Cmin).
By Theorem 4.4, building sets B(C ′) and B(C ′′), with the same minimalizations, have the
same chromatic symmetric functions

Ψ(B(C ′)) = Ψ(B(C ′′)).
The fundamental property of chromatic polynomials of graphs is the deletion-

contraction property

χ(Γ,m) = χ(Γ \ e,m)− χ(Γ/e,m),

where Γ \ e is Γ with an edge e ∈ E(Γ) deleted and Γ/e is Γ with e contracted to a
point. The deletion-contraction recurrence was proved for the chromatic polynomial of a
hypergraph in [19]. We state the deletion-contraction property in the setting of building
sets. Let S ∈ Cmin be a minimal element of the generating collection C of a building
set B = B(C) on the ground set X. The deletion is a building set B(C \ {S}) on X,
generated by the collection C \ {S}. We denote it by B \ S without confusing with the
set-theoretic deletion. Denote by X/S = X \ S ∪ {S}. For a subset A ⊂ X denote

by A/S =

{
A, A ∩ S = ∅
A \ S ∪ {S}, A ∩ S 6= ∅ , which is a subset of X/S. The contraction is a

building set B/S = B(C/S) on X/S, generated by the collection C/S = {A/S|A ∈ C}.

the electronic journal of combinatorics 19(4) (2012), #P42 8



Figure 1: The contraction of a building set

Theorem 4.5. Let S ∈ Cmin be a minimal element of the generating collection C of a
building set B = B(C). Then chromatic polynomials of the building set B and its deletion
B \ S and contraction B/S are related by

χ(B,m) = χ(B \ S,m)− χ(B/S,m).

Proof. Every proper coloring f : X → [m] of B is a proper coloring of B \ S. A proper
coloring f : X → [m] of B \S is a proper coloring of B if and only if f(i) 6= f(j) for some
i, j ∈ S. The formula follows from the fact that the set of proper colorings f : X → [m]
of B \ S which are monochromatic on S and the set of all proper colorings of B/S have
the same number of elements.

Definition 4.6. Let L be a finite antichain of nonempty finite sets. We say that a set
S ∈ L is a free set of L if S ∩ ∪(L \ {S}) has at most one element.

The next proposition is an immediate consequence of the deletion-contraction property
of chromatic polynomials of building sets.

Proposition 4.7. Given a building set B = B(C) and its minimalization B̌ = B(Cmin). If
S ∈ Cmin is a free set of Cmin then

(i) χ(B,m) = χ(B̌ \ S,m)(m|S| −m) if S ∩ ∪(Cmin \ {S}) = ∅
(ii) χ(B,m) = χ(B̌ \ S,m)(m|S|−1 − 1) if S ∩ ∪(Cmin \ {S}) has one element.

In the following two theorems are given expansions of chromatic symmetric functions
of building sets in the power sum basis of symmetric functions. These expansions are
just restatements in the setting of building sets of Stanley’s expansions of chromatic
symmetric functions of hypergraphs [13]. They are analogues to the power sum expansions
of chromatic symmetric functions of graphs [12]. The derived formulas for the chromatic
polynomial of a building set extend the classical Whitney’s formulas for the chromatic
polynomial of a graph [20].
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Theorem 4.8. ([13], Theorem 3.5) Let Cmin be the collection of minimal elements of
the generating collection C of a building set B = B(C) on the ground set X. For a
subcollection S ⊂ Cmin, let λ(S) be the partition of rank(B) whose parts are equal to the
ranks of connected components of the building set B(S) on X. Then

Ψ(B) =
∑
S⊂Cmin

(−1)|S|pλ(S).

The principal specializations of the power sum symmetric functions are given by
pλ(1

m) = m|λ|, where |λ| is the size of a partition λ. For a subcollection S ⊂ Cmin

denote by c(S) = |λ(S)|, the number of connected components of the building set B(S)
on the ground set X. We obtain the following formula for the chromatic polynomials of
building sets

χ(B,m) =
∑
S⊂Cmin

(−1)|S|mc(S),

which is also a direct consequence of the deletion-contraction property. It gives the fol-
lowing interpretation of the (−1)−invariant of building sets

χ(B,−1) =
∑
S⊂Cmin

(−1)|S|+c(S). (5)

Let L = {S1, . . . , Sm} be an antichain of the boolean poset P(X). Denote by LI =
{Si|i ∈ I} the subcollection of L determined by a subset I ⊂ [m]. The intersection poset
P (L) of the collection L is the set P (L) = {I ⊂ [m]| ∩ LI 6= ∅} ordered by inclusion.

Proposition 4.9. Let L′ = {S ′1, . . . , S
′
m} and L′′ = {S ′′1 , . . . , S

′′
m} be antichains of finite

sets with the same intersection poset P (L′) = P (L′′). If | ∩ L′I | = | ∩ L′′I | mod 2 for all
I ∈ P then

χ(B(L′),−1) = χ(B(L′′),−1).

Proof. Given an antichain of finite sets L = {S1, . . . , Sm}, denote by SI = ∩i∈ISi andXI =
∪i∈ISi for all I ⊂ [m]. Let c(I) and cI be the numbers of connected components of building
sets B(LI) on the ground sets X[m] and XI respectively. Since c(I) = cI + |X[m]| − |XI |,
by inclusion-exclusion, we obtain

c(I) = cI + |X[m]|+
∑
J⊂I

(−1)|J ||SJ |.

By formula (5), we have that χ(B(L),−1) =
∑

I⊂[m](−1)|I|+c(I), which depends only on

the intersection poset P (L) and the parity of |SI | for all I ∈ P (L).
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To a building set B = B(C) on the ground set X is associated the lattice LB of con-
nected partitions of its minimalization B̌ = B(Cmin). For a partition π = {A1, A2, . . . , Ak}
of X let type(π) be a partition of |X| whose components are sizes of blocks. A partition
π of X is said to be connected if the restrictions to blocks B̌|A, A ∈ π are connected as
building sets. A set of all connected partitions is ordered by refinement of partitions, with
the unique minimal element 0̂, which is the partition of X in one-element blocks. Denote
by |π| the number of blocks of a partition π. Let µ be the Moebius function of a lattice
LB.

Theorem 4.10. ([13], Theorem 3.4) Let LB be the lattice of connected partitions of the
building set B(Cmin) associated to a building set B = B(C). Then

Ψ(B) =
∑
π∈LB

µ(0̂, π)ptype(π).

By the principal specialization of the power sum symmetric functions, we obtain from
Theorem 4.10 the following interpretation of the chromatic polynomial and (−1)− invari-
ant of a building set

χ(B,m) =
∑
π∈LB

µ(0̂, π)m|π|,

χ(B,−1) =
∑
π∈LB

µ(0̂, π)(−1)|π|.

5 Symmetric functions of graphs derived from build-

ing sets

To a simple graph Γ = (V,E) and an integer n > 2 we associate a collection of sets CΓ,n

in the following way. To an edge e ∈ E we associate a set of new objects {e1, . . . , en−2}.
Define Se = {u, v, e1, . . . , en−2}, where e = {u, v} ∈ E is an edge on vertices u, v ∈ V .
The collection CΓ,n = {Se|e ∈ E} is an antichain on the ground set X = V ∪{ei|e ∈ E, i ∈
[n− 2]}. It generates uniquely the building set BΓ,n = B(CΓ,n) on X, see Fig. 2.

Figure 2: The building set β3(K3)
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Define a sequence of maps βn : G → BSet, n > 2, by βn(Γ) = BΓ,n, for Γ ∈ G.
Note that β2 is the Hopf algebra monomorphism β in Theorem 4.3. It is clear from the
construction that all βn are algebra monomorphisms. To each graph Γ we associate chro-
matic symmetric functions Ψ(βn(Γ)) of building sets βn(Γ) and corresponding chromatic
polynomials χ(βn(Γ),m). We obtain a sequence of multiplicative invariants of graphs.

By Proposition 4.9, if n1 = n2 mod 2 then χ(βn1(Γ),−1) = χ(βn2(Γ),−1) for any
simple graph Γ. We obtain two numerical multiplicative invariants of graphs, derived
from (−1)−invariant of building sets, namely χ(β2(Γ),−1) and χ(β3(Γ),−1).

Denote by c(S) the number of connected components of the spanning subgraph (V, S)
with edge set S ⊂ E. The correspondence between subsets S ⊂ E of edges of a graph
Γ and subcollections S = {Se|e ∈ S} of the generating collection CΓ,n of the building set
βn(Γ) is bijective. From the construction, we have

c(S) = c(S) + (n− 2)(|E| − |S|),
where c(S) is the number of connected components of the building set B(S). For n = 2, 3
it follows from (5) that

χ(β2(Γ),−1) =
∑
S⊂E

(−1)|S|+c(S),

χ(β3(Γ),−1) =
∑
S⊂E

(−1)|E|+c(S).

These formulas appears to be evaluations of the Tutte polynomial of a graph Γ

TΓ(x, y) =
∑
S⊂E

(x− 1)c(S)−c(E)(y − 1)c(S)+|S|−|V |.

We obtain χ(β2(Γ),−1) = (−1)|V |TΓ(2, 0) and χ(β3(Γ),−1) = (−1)|E|+c(E)TΓ(0, 2). The
combinatorial interpretation of these invariants is well known. The values TΓ(2, 0) and
TΓ(0, 2) are the numbers of acyclic and of totally cyclic orientations of Γ (see, e.g. [5]).
Recall that an oriented graph is acyclic if it contains no directed cycles and that it is
totally cyclic if every edge is contained in some directed cycle.

Example 5.1. In [12], Stanley gave the example of nonisomorphic five-vertex graphs that
have the same chromatic symmetric function, Fig. 3. By direct calculation we obtain

Ψ(β3(Γ1))−Ψ(β3(Γ2)) = −p5,3,1,1,1 + p6,3,1,1 + p7,1,1,1,1 − 2p8,1,1,1 + 2p9,1,1 − p10,1.

The invariant χ(β3(Γ),−1), derived from the chromatic symmetric function Ψ(β3(Γ)),
distinguishes those graphs.

Remark 5.2. It is natural to ask in what extant chromatic symmetric functions Ψ(βn(Γ))
distinguish graphs. The previous example shows that they are at least incomparable with
the chromatic symmetric function of a graph.
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Figure 3: Stanley’s example of graphs with the same chromatic symmetric function

Remark 5.3. The invariant χ(β3(Γ),−1) takes values of both signs on graphs of the same
rank, in the range −2|E| < χ(β3(Γ),−1) < 2|E|. Hence there is not an analogous result to
the reciprocity theorem for the chromatic polynomials of graphs, [15].

6 Generalized Dehn-Sommerville relations for build-

ing sets

Let S−(H, ζ) be the odd subalgebra of the combinatorial Hopf algebra (H, ζ). It is proved
in ([2],Theorem 5.3.) that a homogeneous element h ∈ H belongs to S−(H, ζ) if and only
if

(id⊗ (ζ − ζ−1)⊗ id) ◦∆(2)(h) = 0. (6)

We refer to the previous equation as the generalized Dehn-Sommerville relations for the
combinatorial Hopf algebra (H, ζ).

For the Hopf algebra of quasi-symmetric functions (QSym, ζQ), these relations are
described in ([2],Example 5.10.) as follows. Let h =

∑
α|=n fα(h)Mα be a homogeneous

element of order n ∈ N. It satisfies the generalized Dehn-Sommerville relations if and
only if

ai∑
j=0

(−1)jf(a1,...,ai−1,j,ai−j,ai+1,...,ak)(h) = 0, (7)

for each composition α = (a1, . . . , ak) |= n and i ∈ {1, . . . , k(α)}. By k(α) is denoted the
number of parts of the composition α. It is understood that zero parts in compositions
are omitted. We refer to the relations (7) as the Bayer-Billera relations [3].

Denote by Hcop the coopposite Hopf algebra of a Hopf algebra H (see [7] as the
general reference for Hopf algebras). It is defined by the coproduct ∆cop = τ ◦∆, where
τ : H⊗H → H⊗H is the twist map τ(x⊗y) = y⊗x, x, y ∈ H. Let H be a commutative
Hopf algebra. A map φ : H → H is an antimorphism of H if it is a morphism of Hopf
algebras φ : H → Hcop.

Lemma 6.1. Let (H, ζ) be a commutative combinatorial Hopf algebra. Then the antipode
SH : (Hcop, ζ−1)→ (H, ζ) is a morphism of combinatorial Hopf algebras.
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Proof. The antipode SH : H → H is an antimorphism of coalgebras. AsH is commutative,
we have that SH : Hcop → H is a morphism of Hopf algebras. Since the inverse of a
character ζ is the composition ζ−1 = ζ ◦ SH, the claim follows.

Lemma 6.2. Let SQ and SB be antipodes of Hopf algebras QSym and BSet respectively.
Then the following diagram is a commuting diagram of morphisms of combinatorial Hopf
algebras:

(BSetcop, ζ−1)
SB−→ (BSet, ζ)

↓ Ψ ↓ Ψ

(QSymcop, ζ−1
Q )

SQ−→ (QSym, ζQ)

Proof. The map Ψ commutes with antipodes as a morphism of Hopf algebras, so we need
only prove that the above maps are morphisms of combinatorial Hopf algebras. The
Hopf algebras QSym and BSet are commutative. By Lemma 6.1, we have that both
SQ : (QSymcop, ζ−1

Q ) → (QSym, ζQ) and SB : (BSetcop, ζ−1) → (BSet, ζ) are morphisms
of combinatorial Hopf algebras. The map Ψ : BSetcop → QSymcop is a morphism of Hopf
algebras. It follows from

ζ−1
Q ◦Ψ = ζQ ◦ SQ ◦Ψ = ζQ ◦Ψ ◦ SB = ζ ◦ SB = ζ−1,

that Ψ : (BSetcop, ζ−1) → (QSymcop, ζ−1
Q ) is a morphism of combinatorial Hopf algebras

as well.

We obtain the following formula for the inverse of the character ζ on the Hopf algebra
of building sets.

Proposition 6.3. The value ζ−1(BX) is the (−1)−invariant of a building set BX ∈ BSetn

ζ−1(BX) = χ(BX ,−1).

Proof. The inverse of the universal character ζQ on the Hopf algebra of quasi-symmetric
functions QSym, calculated in ([2],Example 4.8.), is given on the monomial basis by

ζ−1
Q (Mα) = (−1)k(α).

Hence, by Lemma 6.2, we have

ζ−1(BX) = ζ−1
Q ◦Ψ(BX) = ζ−1

Q (
∑
α|=n

ζα(BX)Mα) =
∑
α|=n

(−1)k(α)ζα(BX).

This is precisely, by (4), the (−1)−invariant of a building set BX .
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Example 6.4. Let dn = ζ−1(Dn), n ∈ N be values of ζ−1 on discrete building sets
Dn, n ∈ N. Setting Dn, n ∈ N in the identity ζ−1 ∗ ζ = ε gives the following recursive
relation

∑n
i=0 di

(
n
i

)
= 0, n ∈ N, where d0 = ζ−1(B∅) = 1, which is uniquely satisfied by

dn = (−1)n, n ∈ N. The same is obtained by calculating the chromatic polynomial of a
discrete building set χ(Dn,m) = mn at m = −1. Denote by

(
n
α

)
=
(

n
a1 a2···ak

)
= n!

a1!a2!···ak!

the multinomial coefficient corresponding to the composition α = (a1, a2, . . . , ak) |= n.
For a discrete building set Dn and a composition α |= n, we have ζα(Dn) =

(
n
α

)
. We

obtain the following identity ∑
α|=n

(−1)k(α)

(
n

α

)
= (−1)n. (8)

By Theorem 4.5, we have that the inverse character ζ−1 satisfies the deletion-
contraction property. Let C be the generating collection of a building set B = B(C)
and S ∈ Cmin be a minimal element of collection C. Then

ζ−1(B) = ζ−1(B \ S)− ζ−1(B/S).

The following lemma is an immediate consequence of Proposition 4.7.

Lemma 6.5. Let B = B(C) be a building set such that the minimal collection Cmin contains
a free set of odd cardinality. Then ζ−1(B) = 0.

The conjugate character ζ on BSet is given by

ζ(BX) =

{
(−1)n, BX is discrete of rank n

0, otherwise
. (9)

According to the generalized Dehn-Sommerville relations (6) for the combinatorial Hopf
algebra of building sets (BSet, ζ), we have

BX ∈ S−(BSet, ζ) if and only if (id⊗ (ζ−1 − ζ)⊗ id) ◦∆(2)(BX) = 0.

It follows from

(id⊗ (ζ−1 − ζ)⊗ id) ◦∆(2)(BX) =
∑

ItJtK=X

(BX)|I ⊗ (ζ−1 − ζ)((BX)|J)⊗ (BX)|K =

∑
J⊂X(ζ−1 − ζ)((BX)|J)∆((BX)|Jc), that

BX ∈ S−(BSet, ζ) if (ζ−1 − ζ)((BX)|J) = 0 for all J ⊂ X. (10)

Definition 6.6. A building set BX is an eulerian building set if for all subsets J ⊂ X,
either (BX)|J is discrete or ζ−1((BX)|J) = 0.
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By Proposition 6.3 and formula (5), the property of being eulerian for the building set
B = B(C) depends only on the collection of minimal elements Cmin, i.e B is eulerian if
and only if its minimalization B̌ = B(Cmin) is eulerian. From (9) and (10) we obtain the
following property.

Proposition 6.7. If BX is an eulerian building set then BX ∈ S−(BSet).

It follows from the definition that for any eulerian building set BX and a subset J ⊂ X,
the restriction (BX)|J is an eulerian building set as well. Let ESet be the subspace of
BSet spanned by all eulerian building sets. Restrictions of an eulerian building set and
disjoint unions of eulerian building sets are again eulerian, so the subspace ESet is a Hopf
subalgebra of the Hopf algebra of building sets BSet.

Example 6.8. Let Dn = {{1}, {2}, . . . , {n}, [n]}. From (8) we obtain ζ−1(Dn) = (−1)n+
1. The same is a simple consequence of the deletion-contraction property. Thus, Dn is
eulerian if and only if n is odd. Let C be the generating collection of an eulerian building
set B = B(C) and S ∈ Cmin be a minimal element of the collection C. The restriction
B|S = D|S| is eulerian, so S has an odd number of elements. Specially, nondiscrete
graphical building sets are not eulerian. It means that there is no analogues notion of
eulerian graphs in the combinatorial Hopf algebra (G, ζG).

Theorem 6.9. Let BX be an eulerian building set. Then

ai∑
j=0

(−1)jζ(a1,...,ai−1,j,ai−j,ai+1,...,ak)(BX) = 0, (11)

where α = (a1, . . . , ak) |= |X| and i ∈ {1, . . . , k(α)}.

Proof. Let Ψ : (BSet, ζ) −→ (QSym, ζQ) be the canonical morphism of the Hopf algebra
BSet. Since

ESet ⊂ S−(BSet, ζ)

and
Ψ(S−(BSet, ζ)) ⊂ S−(QSym, ζQ),

relations (11) follow from the Bayer-Billera relations (7).

7 The cd-index of eulerian building sets

The cd− index ΦP (c,d) of an eulerian poset P is a polynomial in noncommutative vari-
ables, which efficiently encodes the flag f−vector. Its existence is equivalent to the
Bayer-Billera relations ([4], Theorem 4.). There is a general result for the existence
of the cd−index which is known from [1]. The algebra of noncommutative polynomials
K < a,b > with the comultiplication defined by ∆(a) = ∆(b) = 1 ⊗ 1 is the terminal
object in the category of infinitesimal Hopf algebras. The canonical morphism sends the
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eulerian subalgebra of an infinitesimal Hopf algebra to the subalgebra of polynomials gen-
erated by variables c = a+b and d = ab+ba. In this section we construct the cd−index
of eulerian building sets directly, by analogy with Stanley’s proof of the existence of the
cd−index of eulerian posets ([16], Theorem 1.1).

To a composition α = (a1, a2, . . . , ak) |= n is associated the set S(α) = {a1, a1 +
a2, . . . , a1 + · · · + ak−1} ⊂ [n− 1]. The compositions are ordered by β � α if and only if
S(β) ⊂ S(α). Let uα be a monomial in two noncommutative variables a and b defined
by

uα =
∏
i=1,n

uα,i, where uα,i =

{
a, i /∈ S(α)
b, i ∈ S(α)

.

Given a building set B of the rank n. Define the flag f−vector of B to be (ζα(B))α|=n and
the flag h−vector (ηα(B))α|=n to be a regular linear transformation

ηα(B) =
∑
β�α

(−1)k(α)−k(β)ζβ(B). (12)

The ab−index of B is the generating function of the flag h−vector

ΨB(a,b) =
∑
α|=n

ηα(B)uα.

Theorem 7.1. If B ∈ ESet is an eulerian building set then there is a polynomial ΦB(c,d)
in variables c = a + b and d = ab + ba, called the cd−index of B, such that

ΨB(a,b) = ΦB(c,d).

Proof. Let B be an eulerian building set of the rank n on the ground set X. It is an
immediate consequence of (12) that

ΨB(a + b,b) =
∑
α|=n

ζα(B)uα.

Therefore,

ΨB(a,b) =
∑
k>1

∑
S1t...tSk=X

(a− b)|S1|−1b(a− b)|S2|−1b · · · (a− b)|Sk|−1, (13)

where the inner sum is over all ordered decompositions X = S1 t . . . t Sk, such that
the restrictions B|Si

, i = 1, . . . , k are discrete. Let I(BSet) be the incidence algebra of
BSet over the ring of noncommutative polynomials Q〈a,b〉. Define functionals f, g, h ∈
I(BSet) by

f(B) = aΨB(a,b), g(B) = bΨB(a,b),

h(B) =

{
(a− b)n, B is discrete of rank n

0, otherwise
.
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From the equation (13) follows

ΨB(a,b) =
∑

∅6=I⊂X:B|I discrete

(a− b)|I|−1bΨB|Ic (a,b), (14)

which gives f = h ∗ g. By the formula (3) for the antipode S of the Hopf algebra BSet,
we obtain the inverse of h

h−1(B) = h ◦ S(B) = h(
∑
k>1

(−1)k
∑

J1t...tJk=X

∏
i=1,k

B|Ji) =

= (a− b)|X|
∑
k>1

(−1)k|{J1 t . . . t Jk = X|B|Ji discrete, i = 1, k}| = ζ−1(B)(a− b)|X|.

Hence for eulerian building sets we have

h−1(B) =

{
(−1)n(a− b)n, B is discrete of rank n

0, otherwise
, B ∈ ESet.

By definition, the restrictions B|I , I ⊂ X of an eulerian building set B satisfy either
ζ−1(B|I) = 0 or B|I is discrete. Therefore the identity g = h−1 ∗ f gives the following

ΨB(a,b) =
∑

∅6=I⊂X:B|I discrete

(−1)|I|−1(a− b)|I|−1aΨB|Ic (a,b). (15)

Summing up the equations (14) and (15) gives the following recursive formula

ΨB(a,b) =
1

2

∑
|I| odd

(c2 − 2d)
|I|−1

2 cΨB|Ic (a,b)− 1

2

∑
|I| even

(c2 − 2d)
|I|
2 ΨB|Ic (a,b), (16)

where the sums are over all nonempty subsets I ⊂ X such that B|I is discrete. Since
the restrictions of eulerian building sets are eulerian, the statement of theorem follows by
induction of the rank of B.

Let ᾱ |= n be the opposite composition of a composition α |= n, defined by S(ᾱ) =
[n− 1] \ S(α). It is an immediate corollary of Theorem 7.1 that the flag h−vector of an
eulerian building set is symmetric

ηα(B) = ηᾱ(B), for all α |= n and B ∈ ESetn.

This is equivalent to ΨB(a,b) = ΨB(b, a), which is a consequence of ΨB(a,b) = ΦB(a +
b, ab + ba).

For j > 1 define ω(j) =

{
1
2
(c2 − 2d)

j−1
2 c, j odd

−1
2
(c2 − 2d)

j
2 , j even

and δj =

{
0, j even

(c2 − 2d)
j−1
2 , j odd

.

By iterating the recursive formula (16) we obtain more explicitly
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ΦB(c,d) =
∑
k>1

∑
α=(a1,...,ak)|=n

ζα(B)ω(a1) · · ·ω(ak−1)δak , B ∈ ESetn. (17)

Example 7.2. Let Φn = ΦDn(c,d) be the cd−index of the discrete building set Dn.
From the recursive formula (16) we obtain

Φn =
1

2

∑
k odd

(
n

k

)
(c2 − 2d)

k−1
2 cΦn−k −

1

2

∑
k even

(
n

k

)
(c2 − 2d)

k
2 Φn−k + δn. (18)

For instance,

Φ2 = c, Φ3 = c2 + d, Φ4 = c3 + 2(cd + dc), Φ5 = c4 + 3(c2d + dc2) + 5cdc + 4d2.

The following numerical identity is obtained from (16) and (17) by calculating the coeffi-
cient by cn−1 in Φn

[cn−1]Φn = 1 =
∑

α |= n,
ak(α) odd

(
n

α

)
(−1)e(α)

2k(α)−1
.

By compering (18) with the similar recurrence relation satisfied by the cd−index UBn(c,d)
of boolean posets Bn ([16], Corollary 1.3), we obtain

ΦDn(c,d) = UBn(c,d),

which is recognized as the certain combinatorially defined polynomial, called Andre poly-
nomial. The generating function of Φn ([16], Corollary 1.4) is given by

∑
n>1

Φn
xn

n!
=

2 sinh(a− b)x

a− b

(
1− c sinh(a− b)x

a− b
+ cosh(a− b)x

)−1

.

8 The geometric characterization of eulerian building

sets

In this section we give the complete characterization of the class of eulerian building
sets by some geometric conditions. To an antichain L of subsets of the ground set X is
associated its nerve ∆(L), which is an abstract simplicial complex on the vertex set L,
defined by

∆(L) = {S ⊂ L| ∩ S 6= ∅}.
Let |∆(L)| be the geometric realization of the nerve ∆(L) and link∆(L)({S}) = {S ∈
∆(L)|S /∈ S, (∩S) ∩ S 6= ∅} and star∆(L)({S}) = {S ∈ ∆(L)|S ∈ S} be the link and the
star of a vertex {S} in the complex ∆(L).
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Definition 8.1. Let eL : ∆(L) → N be an assignment eL(S) = | ∩ S| of the number of
elements in the intersection ∩S to a simplex S ∈ ∆(L). The collection L is odd if eL(S)
is odd for all S ∈ ∆(L). A simplex S ∈ ∆(L) is close to a vertex S ∈ L if S

′ ∩ S 6= ∅ for
all S

′ ∈ S. A simplex S is far from a vertex S if it is not close to S.

The following lemma is clear from definitions.

Lemma 8.2. Given an element S ∈ L of an antichain L, then

∆(L \ {S}) = ∆(L) \ star∆(L)({S}),

eL\{S}(S) = eL(S), for all S ∈ ∆(L \ {S}),

∆(L/S) = ∆(L \ {S}) ∪ P({S ′ ∈ L|S ′ ∩ S 6= ∅}),

eL/S(S/S) =

{
eL(S), if S is far from S

eL(S)− eL(S ∪ {S}) + 1, if S is close to S
.

Definition 8.3. An antichain L = {S1, . . . , Sk} of subsets of X is a k−clique if ∩L 6= ∅,
i.e. the nerve ∆(L) is a simplex on the vertex set L.

Lemma 8.4. Let L = {S1, . . . , Sk} be a k−clique on X. The building set B(L) is eulerian
if and only if L is an odd collection.

Proof. We prove the statement by induction on k. For k = 1, we have B({S}) = D|S|.
Hence, by example 6.8, B({S}) is eulerian if and only if |S| is odd. Suppose the statement
is true for any (k− 1)−clique. Let a k−clique L = {S1, . . . , Sk} be an odd collection and
B = B(L). By the deletion-contraction property we have

ζ−1(B) = ζ−1(B \ Sk)− ζ−1(B/Sk).

By Lemma 8.2, collections L \ {Sk} and L/Sk are odd (k − 1)−cliques, so ζ−1(B) = 0 by
induction. For an arbitrary proper subset J ⊂ X let I = {i ∈ [k]|Si ⊂ J}, XI = ∪i∈ISi
and LI = {Si|i ∈ I}. We have

B|J = B(LI) t D|J |−|XI |.

The collections LI , I ⊂ [k] are odd cliques, so B is eulerian by induction.
Suppose that L = {S1, . . . , Sk} is a k−clique such that eL(S) is odd for all proper

subcollections S ⊂ L and eL(L) is even. We say that such collection is almost odd. The
collection L \ {Sk} is an odd (k − 1)−clique. Hence by the deletion-contraction property
we have

ζ−1(B(L)) = −ζ−1(B(L)/Sk).
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By Lemma 8.2, the collection L/Sk is almost odd. We obtain by induction on k that
ζ−1(B(L)) = (−1)k−1ζ−1(Dd), for some even d. Therefore ζ−1(B(L)) = (−1)k−12 and
B(L) is not eulerian.

Let L = {S1, . . . , Sk} be a k−clique which is neither odd nor almost odd and S ⊂ L
be a minimal almost odd subcollection. The building set B(S) is a restriction of B(L)
such that ζ−1(B(S)) 6= 0. Consequently, B(L) is not eulerian.

A simplicial complex ∆ on the set of vertices V is a flag complex if for an arbitrary
subset of vertices S ⊂ V , such that {i, j} ∈ ∆ for all i, j ∈ S, it follows that S ∈ ∆.

Proposition 8.5. Let L be an antichain of subsets of the ground set X, such that the
corresponding building set B(L) is eulerian. Then L is odd and the nerve ∆(L) is a flag
complex.

Proof. Let S ∈ ∆(L) be a clique. The building set B(S) is eulerian as a restriction
of B(L). Hence, by Lemma 8.4, S is an odd collection. Thus eL(S) is odd for every
S ∈ ∆(L), so the collection L is odd.

We have to prove that all minimal non-simplices of the complex ∆(L) are edges.
Suppose that there is a collection S = {S1, . . . , Sk} ⊂ L, where k > 2, which is a
minimal non-simplex of ∆(L). It means that ∩S = ∅ and ∩Si 6= ∅ for all subcollections
Si = S \ {Si}, i ∈ [k]. Since ζ−1(B(Sk)) = 0, it follows from the deletion-contraction
property that

ζ−1(B(S)) = −ζ−1(B(S)/Sk).

By Lemma 8.2, we obtain eS/Sk
(Sk/Sk) = eS(Sk) + 1, which is even, and eS/Sk

(S ′/Sk) =
eS(S ′)−eS(S ′∪{Sk})+1, for all S ′ ⊂ Sk, which are odd. Hence the clique S/Sk is almost
odd. From the proof of Lemma 8.4, we have ζ−1(B(S)/Sk) = (−1)k−22 and consequently
ζ−1(B(S)) = (−1)k−12, which contradicts the condition that B(L) is eulerian.

To an antichain L = {S1, . . . , Sm} is associated the intersection graph Γ(L), with the
set of vertices V (Γ(L)) = L and the set of edges E(Γ(L)) = {{Si, Sj}|Si 6= Sj, Si∩Sj 6= ∅},
which is a simple graph. To a simple graph Γ = (V,E) we associate an abstract simplicial
complex ∆(Γ), called a clique complex. A subset of vertices S ⊂ V is a clique of Γ if {i, j} ∈
E for all i, j ∈ S. The clique complex is defined by ∆(Γ) = {S ⊂ V |S is a clique of Γ}.
We have that a flag complex is a clique complex of its 1−skeleton. By Proposition 8.5, for
eulerian building set B(L), the nerve ∆(L) of an antichain L is a clique complex ∆(Γ(L))
of the intersection graph Γ(L).

Lemma 8.6. Let L be an odd antichain of finite sets such that the nerve ∆(L) is a
1-dimensional cycle on n = |L| vertices. Then ζ−1(B(L)) = 2(−1)n−1.

Proof. By Proposition 4.9, we have ζ−1(B(L)) = ζ−1(β3(Cn)), where Cn is the cycle graph
on n vertices. It follows from the deletion-contraction property that
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ζ−1(β3(Cn)) = −ζ−1(β3(Ln))− ζ−1(β3(Cn−1)),

where Ln is the path on n vertices. Since ζ−1(β3(Ln)) = 0 by Lemma 6.5, we ob-
tain ζ−1(β3(Cn)) = (−1)n−3ζ−1(β3(C3)) by induction on n. The direct calculation gives
ζ−1(β3(C3)) = 2.

Let ∆ be an abstract simplicial complex on the vertex set V . A restriction ∆|I of
the complex ∆ to a subset of vertices I ⊂ V is defined by ∆|I = {σ ∈ ∆|σ ⊂ I}. A
subcomplex of the form ∆|I is called full subcomplex.

Definition 8.7. We say that an abstract simplicial complex ∆ is fully acyclic if it does
not contain any full subcomplex which is a 1-dimensional cycle.

Note that the 1−skeleton of a fully acyclic simplicial complex is a chordal graph. Recall
that a graph Γ is called chordal if for each of its cycles on more than three vertices there
is an edge joining two vertices that are not adjacent in the cycle.

Proposition 8.8. Let L be an antichain of finite sets such that the building set B(L) is
eulerian. Then the nerve ∆(L) is a fully acyclic complex.

Proof. Suppose that there is a subcollection S ⊂ L such that the nerve ∆(S) is a full
subcomplex of ∆(L) which is a 1-dimensional cycle. By Proposition 8.5, S is odd as a
subcollection of the odd collection L. By Lemma 8.6, we have ζ−1(B(S)) 6= 0, which
contradicts the condition that B(L) is eulerian.

Remark 8.9. A flag simplicial complex is fully acyclic if and only if its 1−skeleton is
chordal. The class of fully acyclic flag complexes is closed under taking restrictions of a
simplicial complex.

Proposition 8.10. Let L be an odd antichain of finite sets such that the nerve ∆(L) is
a fully acyclic flag complex. Then, the building set B(L) is eulerian.

Proof. We prove the statement by induction on the number of elements n = |L| of an
antichain L. The statement is true for n = 2 by direct consideration. Suppose that the
statement is true for any antichain with at most n − 1 elements. Let L be a connected
odd antichain of n finite sets, such that the nerve ∆(L) is a fully acyclic flag complex.
The restrictions ∆(S) are fully acyclic flag complexes for all subcollection S ⊂ L. Hence,
by induction, we only need to prove that ζ−1(B(L)) = 0. Let S0 ∈ L be an arbitrary
element. Since ζ−1(B(L) \ S0) = 0 by induction, we obtain by the deletion-contraction
property

ζ−1(B(L)) = −ζ−1(B(L)/S0).

Let S0 = {S ∈ L \ {S0}|S ∩ S0 6= ∅} be the collection of close vertices to the vertex S0,
σ = |P(S0)| be the geometrical simplex on vertices S0 and ∆(S0) be the nerve of the
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collection S0. By Lemma 8.2, the geometric realization of the nerve ∆(L/S0) is obtained
as

|∆(L/S0)| = |∆(L \ {S0})| ∪|∆(S0)| σ.

The nerve ∆(S0 ∪{S0}) of the collection S0 ∪{S0} is a flag complex as a full subcomplex
of the flag complex ∆(L). Hence, by Lemma 8.2 and the fact that L is odd, we obtain
that eL/S0(S/S0) is odd for all simpleces S/S0 ∈ ∆(L/S0), where S ⊂ L \ {S0}. If
S/S0 ∈ ∆(L/S0) is a collection which is not in ∆(L \ {S0}), we have eL/S0(S/S0) = 1.
Thus, L/S0 is an odd collection.

Suppose that S ⊂ L is a collection such that S/S0 is a minimal non-simplex of the
nerve ∆(L/S0) with at least three vertices. The collection S is divided by S = Sc ∪ Sf ,
where Sc = {S ∈ S|S ∩ S0 6= ∅} and Sf = {S ∈ S|S ∩ S0 = ∅}. By the condition
that S/S0 is a non-simplex, we have that Sf 6= ∅ and |Sc| > 2. We can find two vertices
S
′
, S
′′ ∈ Sc such that S

′∩S ′′ = ∅ and a vertex S ∈ Sf such that S∩S ′ 6= ∅ and S∩S ′′ 6= ∅.
Then {S0, S, S

′
, S
′′} form a full cycle in ∆(L), contrary to the condition that ∆(L) is fully

acyclic.
Suppose that there is a collection S ⊂ L\{S0} such that ∆(S/S0) is a full subcomplex

of ∆(L/S) which is a 1-dimensional cycle. Then ∆(S ∪ {S0}) is a 1-dimensional cycle
which is a full subcomplex of ∆(L), contrary to the condition that ∆(L) is fully acyclic.

We obtain that ∆(L/S0) is fully acyclic flag complex. By induction, B(L)/S0 is
eulerian. Hence, ζ−1(B(L)/S0) = 0, which implies ζ−1(B(L)) = 0.

By Propositions 8.5, 8.8 and 8.10 and Remark 8.9 we obtain the complete characteri-
zation of eulerian building sets in terms of combinatorics of nerves of antichains of finite
sets.

Figure 4: The eulerian building set B ∈ ESet11

Theorem 8.11. Let L be an antichain of finite sets. The building set B(L) is eulerian if
and only if the collection L is odd and its nerve ∆(L) is the clique complex of a chordal
graph.
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Example 8.12. A flag 1-dimensional fully acyclic complex is a tree. Let L be an antichain
of finite sets such that the nerve ∆(L) is a tree. By Theorem 8.11, B(L) is eulerian if and
only if the collection L is odd.

Example 8.13. Let β2k+1(Γ) be a building set formed by a simple graph Γ = (V,E), for
k > 1. The nerve of the collection {Se|e ∈ E} is the clique complex ∆(Γ∗) of the dual
graph Γ∗, which is fully acyclic if and only if Γ is a tree. Thus β2k+1(Γ) is eulerian if and
only if Γ is a tree.

Remark 8.14. The building sets produce simple polytopes called nestohedra [8], [10]. The
natural question to ask is how the property of being eulerian reflects on combinatorics of
nestohedra produced from eulerian building sets.
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