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Abstract

Let F be a graph. A graph G is F -free if it does not contain F as a subgraph.
The Turán number of F , written ex(n, F ), is the maximum number of edges in an
F -free graph with n vertices. The determination of Turán numbers of bipartite
graphs is a challenging and widely investigated problem. In this paper we introduce
an ordered version of the Turán problem for bipartite graphs. Let G be a graph
with V (G) = {1, 2, . . . , n} and view the vertices of G as being ordered in the natural
way. A zig-zag Ks,t, denoted Zs,t, is a complete bipartite graph Ks,t whose parts
A = {n1 < n2 < · · · < ns} and B = {m1 < m2 < · · · < mt} satisfy the condition
ns < m1. A zig-zag C2k is an even cycle C2k whose vertices in one part precede
all of those in the other part. Write Z2k for the family of zig-zag 2k-cycles. We
investigate the Turán numbers ex(n,Zs,t) and ex(n,Z2k). In particular we show
ex(n,Z2,2) 6 2

3n
3/2 + O(n5/4). For infinitely many n we construct a Z2,2-free n-

vertex graph with more than (n−
√
n− 1) + ex(n,K2,2) edges.
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1 Introduction

Let F be a family of graphs. A graph G is F-free if G contains no subgraph isomorphic
to a graph in F . The Turán number of F is the maximum number of edges in an n-
vertex graph that is F -free. Write ex(n,F) for this maximum and when F consists of a
single graph F , write ex(n, F ) instead of ex(n, {F}). Turán problems have a rich history
in extremal graph theory. While many Turán problems have been solved, there are still
many open problems such as determining the Turán number of C8, the Turán number
of K4,4, and the Turán number of the family {C3, C4}. The earliest result in this field is
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Mantel’s Theorem proved in 1907. Mantel proved ex(n,K3) = bn
2
cdn

2
e and the n-vertex

K3-free graphs with ex(n,K3) edges are complete bipartite graphs with part sizes as equal
as possible. In 1940 Turán extended Mantel’s Theorem and determined the Turán number
of Kt, t > 3. Turán’s Theorem is considered to be the first theorem of extremal graph
theory. When F consists of non-bipartite graphs the Erdős-Stone-Simonovits Theorem
determines ex(n,F) asymptotically.

Theorem 1 (Erdős, Stone, Simonovits). Let F be a family of graphs and let r =
minF∈F χ(F ). If r > 2 then

ex(n,F) =

(
1− 1

r − 1

)(
n

2

)
+ o(n2).

When F contains bipartite graphs, the Erdős-Stone-Simonovits Theorem gives
ex(n,F) = o(n2). More precise results can be obtained by using different counting argu-
ments and algebraic constructions.

In this paper we introduce an ordered Turán problem for bipartite graphs. Given
an n-vertex graph G, label its vertices with the numbers [n] := {1, 2, . . . , n} using each
number exactly once. This induces a natural ordering of the vertices of G and we use this
ordering to distinguish between different types of a fixed subgraph. This idea is not new
to Turán theory. Czipszer, Erdős, and Hajnal [8] and Dudek and Rödl [9] investigated
Turán problems for increasing paths of length k. An increasing path of length k is a
sequence of k edges n1n2, n2n3, . . . , nknk+1 such that ni < ni+1 for 1 6 i 6 k.

Let H be a bipartite graph with parts A and B. Let f : {1, 2} → {A,B} be a bijection
and call f an ordering of the parts. A zig-zag H relative to f and bipartition {A,B} is a
copy of H in G such that all of the vertices in f(1) precede all of the vertices in f(2) in the
ordering of V (G) = [n]. One of the reason we consider zig-zag complete bipartite graphs
as opposed to complete bipartite graphs that do not zig-zag is because there exist graphs
with 1

8
n2 + o(n2) edges that do not contain increasing paths of length 2. One such graph

is obtained by joining each even vertex to all of the odd vertices that come after it in the
ordering. If a complete bipartite graph does not zig-zag then it will contain an increasing
path of length 2. In contrast, if a zig-zag bipartite graph is forbidden then the number of
edges will not be quadratic in n. Our focus will be on zig-zag complete bipartite graphs
and zig-zag even cycles so we specialize the notation.

As before let G be an n-vertex graph with V (G) = [n] and consider the vertices of
G as being ordered. A zig-zag Ks,t, which will be denoted by Zs,t, is a Ks,t whose parts
A = {n1 < n2 < · · · < ns} and B = {m1 < m2 < · · · < mt} satisfy the condition ns < m1.
A zig-zag 2k-cycle, denoted Z2k, is a 2k-cycle whose vertices are {n1 < n2 < · · · < n2k}
and A = {n1, . . . , nk}, B = {nk+1, . . . , n2k} is the bipartition. Let Z2k be the family of all
zig-zag 2k-cycles. Observe that for k = 2, Z2k consists of a single graph and we simply
write Z4 for this family.
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Figure 1: Z4 = Z2,2, a member of Z6, and Z2,3.

Any n-vertex Ks,t-free graph G can be used to define a Zs,t-free graph so ex(n,Ks,t) 6
ex(n, Zs,t). A non-trivial relation between ex(n,Ks,t) and ex(n, Zs,t) can be viewed as a
compactness result (see [12]) since one is forbidding a special type of Ks,t rather than
forbidding all Ks,t’s. The same remark applies to zig-zag even cycles as well.

Our original motivation for investigating zig-zag bipartite graphs comes from a problem
in additive number theory. A set A ⊂ Z is a B2-set if a1 + a2 = b1 + b2 with ai, bj ∈ A
implies {a1, a2} = {b1, b2}. B2-sets, also called Sidon sets, were introduced in the early
1930’s and since then they have attracted the attention of many researchers. Let F2(n)
be the maximum size of a B2-set contained in [n]. Erdős and Turán [13] proved F2(n) <
n1/2 +O(n1/4). In 1968 Lindström [22], refining the argument of Erdős and Turán, proved
F2(n) < n1/2 + n1/4 + 1. Recently Cilleruelo [6] obtained F2(n) < n1/2 + n1/4 + 1/2 as a
consequence of a more general result. Erdős conjectured F2(n) < n1/2 +O(1) and offered
$500 for a proof or disproof of this conjecture [10]. The error term of n1/4 has not been
improved since the original argument of Erdős and Turán.

The connection between B2-sets and ordered Turán theory is given by the following
construction. Let A ⊂ [n] be a B2-set and define the graph GA by V (GA) = [n] and

E(GA) = {ij : i = j + a, a ∈ A}.

It is easily checked that GA is Z4-free and so bounds on ex(n, Z4) translate to bounds on
F2(n).

Our results are presented in the next section. Proofs are given in Sections 3, 4, and
5. In Section 6 we discuss the interaction between ordered Turán theory and B2-sets. In
the final section we make some concluding remarks.

2 Results

We begin our discussion with zig-zag even cycles. Before stating our result we recall some
of the known bounds for ex(n,C2k). The first general upper bound on ex(n,C2k) is due
to Bondy and Simonovits [3] who proved ex(n,C2k) 6 ckn

1+1/k where ck is a constant
depending only on k. The best known upper bound on ex(n,C2k) for general k is due to
Pikhurko [25] who, using ideas of Verstraëte [26], showed

ex(n,C2k) 6 (k − 1)n1+1/k + 16(k − 1)n.

For k ∈ {2, 3} more precise results are known. By counting pairs of vertices in a common
neighborhood, it is not hard to show ex(n,C4) 6 1

2
n3/2 +O(n) (see [23], Ch. 10, Problem

36). Graphs constructed independently by Erdős, Rényi [11] and Brown [5] show this
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upper bound is essentially best possible. Füredi, Naor, and Verstraëte [17] proved for
sufficiently large n, ex(n,C6) 6 0.6272n4/3. They also gave a construction which shows
ex(n,C6) > 0.5338n4/3 for infinitely many n. Lazebnik, Ustimenko, and Woldar [21], using
a construction of Wenger [27], proved ex(n,C10) > 4/56/5n6/5 + o(n6/5). To summarize,
ex(n,C4) is known asymptotically. For k ∈ {3, 5}, the order of ex(n,C2k) is n1+1/k. For
k /∈ {2, 3, 5}, ex(n,C2k) is O(n1+1/k) but there is no matching lower bound. Our first
theorem gives an upper bound on ex(n,Z2k).

Theorem 2. Let k > 2 be an integer. For any n,

ex(n,Z2k) 6
k − 3/2

21/k − 1
n1+1/k + (2k − 3)n log2 n.

For k = 2 the upper bound given by Theorem 2 will be improved by Theorem 3. Using
the bound ex(n,C2k) 6 ex(n,Z2k), Theorem 2 shows the order of magnitude of ex(n,Z2k)
is n1+1/k for k ∈ {2, 3, 5}, but it is very unlikely that it is asymptotically optimal for any

k. The constant k−3/2
21/k−1 is asymptotic to k2

log 2
whereas the leading coefficient in the upper

bound on ex(n,C2k) is linear in k.
Next we discuss zig-zag complete bipartite graphs. Given integers n,m, t, s with 2 6

t 6 n and 2 6 s 6 m, let z(n,m; t, s) be the maximum number of 1’s in an n by m
0,1-matrix that contains no t by s submatrix of all 1’s. The problem of determining
z(n,m; t, s) is known as the problem of Zarankiewicz. Improving an upper bound of
Kövári, Sós, and Turán [20], Füredi [14] proved

z(n,m; t, s) 6 (t− s+ 1)1/smn1−1/s + sm+ sn2−2/s (1)

for all n > t, m > s, and t > s > 1. The connection between the Zarankiewicz problem
and Turán theory is given by the inequality ex(n,Ks,t) 6 1

2
z(n, n; t, s) (see [2]) so that (1)

implies

ex(n,Ks,t) 6
1

2
(t− s+ 1)1/sn2−1/s +O(n2−2/s) (2)

for t > s. For lower bounds, a construction of Füredi [15] and (2) give ex(n,K2,t) =
1
2

√
t− 1n3/2 + o(n3/2). A construction of Brown [5] and (2) give ex(n,K3,3) = 1

2
n5/3 +

o(n5/3). For other values of s and t the results are not as precise. When t > (s− 1)! + 1,
graphs constructed by Kollár, Rónyai, and Szabó [19] (see also the paper of Alon, Rónyai,
Szabó [1]) show ex(n,Ks,t) > cs,tn

2−1/s. For other values of s and t, there are no lower
bounds that match (2) in order of magnitude.

Theorem 3 gives an upper bound on ex(n, Zs,t) corresponding to (2).

Theorem 3. Let t > s > 2 be integers. For any n,

ex(n, Zs,t) 6
(t− 1)1/s

2− 1/s
n2−1/s +

(
(t− 1)1/s +

1

2
(s− 1)

)
n3/2−1/2s + (s− 1)n.
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It is worth noting that for s 6 t,

lim
s→∞

lim
t→∞

1
2
(t− s+ 1)1/s

(t− 1)1/s/(2− 1/s)
= 1.

For small values of s and t there is certainly a gap between the upper bounds on
ex(n,Ks,t) and ex(n, Zs,t). When s = t = 2 the upper bound of Theorem 3 gives
ex(n, Z2,2) 6 2

3
n3/2 +O(n5/4) whereas (2) gives ex(n,K2,2,) 6 1

2
n3/2 +O(n).

We are able to give a construction using projective planes which shows

lim sup
n→∞

(ex(n, Z4)− ex(n,C4)) =∞.

Unfortunately we were unable to determine whether or not ex(n, Z4) ∼ ex(n,C4) but we
do have the following theorem.

Theorem 4. For any prime p,

ex(p2 + p+ 1, Z4) > p2 + ex(p2 + p+ 1, C4).

The upper bound ex(n, Z4) 6 2
3
n3/2 + o(n3/2) given by Theorem 3 can probably be

improved. We believe the constructions are best possible.

Conjecture 5. The zig-zag Turán number ex(n, Z4) satisfies

ex(n, Z4) 6
1

2
n3/2 + o(n3/2).

The notion of compactness [12] has produced several interesting problems concerning
Turán numbers for bipartite graphs. Similar questions can be asked for our ordered version
of the problem.

Problem 6. Is it true that for any bipartite graph H and any zig-zag ZH we have

ex(n, ZH) = O(ex(n,H))?

A positive answer to Problem 6 is supported by Theorem 3.
Another interesting problem related to compactness is the following. Let Z×2k be the

sub-family of Z2k that consists of all Z2k’s with a longest or shortest edge.

Problem 7. Is ex(n,Z×2k) = O(n1+1/k) for k > 3?

We will discuss Problem 7 in more detail in Section 7. For now we remark that it
is not difficult to show ex(n,Z×2k) > cn1+1/k for all k > 3 which may come as a surprise
considering the difficulty in finding good lower bounds on ex(n,C2k) for k /∈ {2, 3, 5}.

In the next three sections we will prove Theorems 2 - 4. Throughout the paper all
floor and ceiling symbols are omitted whenever they do not affect the asymptotics of the
results.
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3 Proof of Theorem 2

Let k > 2 be an integer. Let G be a Z2k-free graph with V (G) = [n]. Given two
subsets A,B ⊂ V (G), write A < B if all of the elements of A are less than the smallest
element of B. For disjoint subsets A,B ⊂ V (G), let G(A,B) be the subgraph of G with
V (G(A,B)) = A ∪B and

E(G(A,B)) = {ij ∈ E(G) : i ∈ A, j ∈ B}.

For any pair of subsets A,B ⊂ V (G) with A < B, the graph G(A,B) is C2k-free since
G is Z2k-free. Given integers m1 and m2, let ex(m1,m2, C2k) be the maximum number
of edges in a C2k-free bipartite graph with m1 vertices in one part and m2 vertices in the
other. Naor and Verstraëte [24] proved an upper bound on ex(m1,m2, C2k) that implies a
C2k-free bipartite graph with m vertices in each part has at most (2k − 3)(m1+1/k + 2m)
edges. Applying this bound to G(A1, B1) where A1 = {1, 2, . . . , n/2} and B1 = {n/2 +
1, n/2 + 2, . . . , n} gives

e(G(A1, B1)) 6 (2k − 3)((n/2)1+1/k + n).

We repeat the argument on the sets A2,1 = {1, 2, . . . , n/4}, B2,1 = {n/4 + 1, n/4 +
2, . . . , n/2} and on the sets A2,2 = {n/2 + 1, n/2 + 2, . . . , 3n/4}, B2,2 = {3n/4 + 1, 3n/4 +
2, . . . , n}. Continuing in this fashion gives

e(G) 6
log2 n∑
l=1

2l−1ex(n2−l, n2−l, C2k)

6
log2 n∑
l=1

2l−1(2k − 3)
(
(n/2l)1+1/k + 2n/2l

)
6

(k − 3/2)n1+1/k

21/k

∞∑
l=0

(
1

21/k

)l
+ (2k − 3)n log2 n

=
k − 3/2

21/k − 1
n1+1/k + (2k − 3)n log2 n.

4 Proof of Theorem 3

The following lemma was used by Füredi [14] to prove

z(m,n; t, s) 6 (t− s+ 1)1/snm1−1/s + sn+ sm2−2/s

for all m > t, n > s and t > s > 2. The proof of the lemma is an easy application of
Jensen’s Inequality. For k > 1 and x > k − 1 define

(
x
k

)
= 1

k!
x(x − 1) · · · (x − k + 1). If

k − 1 > x > 0 define
(
x
k

)
= 0. For fixed k each of these functions is convex.
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Lemma 8 (Füredi, [14]). If n, k > 1 are integers and c, y, x1, . . . , xk are non-negative real
numbers and

∑n
i=1

(
xi
k

)
6 c
(
y
k

)
then

n∑
i=1

xi 6 yc1/kn1−1/k + (k − 1)n. (3)

Proof. Let s =
∑n

i=1 xi. If s 6 n(k − 1) then the inequality holds so assume s
n
− k + 1 >

0. Apply Jensen’s Inequality to get
∑n

i=1

(
xi
k

)
> n

(
s/n
k

)
which implies c

(
y
k

)
> n

(
s/n
k

)
.

Rearranging this inequality gives

y(y − 1)(y − 2) · · · (y − k + 1)

(s/n)(s/n− 1) · · · (s/n− k + 1)
>
n

c
.

The left hand side can be bounded above by
(

y
s/n−k+1

)k
to get

(
y

s/n−k+1

)k
> n

c
. Solving

this inequality for s gives (3).

Define the back neighborhood of a vertex i ∈ V (G) to be the set

Γ−(i) = {j < i : ji ∈ E(G)}.

Let G be a Zs,t-free graph with V (G) = {1, 2, . . . , n}. Define an n by n bipartite graph
H with parts L = {b1, b2, . . . , bn}, P = {1, 2, . . . , n}, and edge set

E(H) = {{i, bj} : i ∈ Γ−(j)}.

H is the incidence graph of the back neighborhoods {Γ−(i)}ni=1 of G.
It is easy to check that e(H) = e(G) and H has no complete bipartite subgraph with

t vertices in L and s vertices in P . Let k = n1/2−1/2s. For j = 1, 2, . . . , k let

Pj = {1 + (j − 1)n
k
, 2 + (j − 1)n

k
, . . . , jn

k
}.

Any back neighborhood Γ−(i) is a subset of {1, 2, . . . , i− 1} and so the neighbors of bi in
H are contained in the set {1, 2, . . . , i− 1}. If i < (j − 1)n

k
+ 1 then dPj(bi) = 0 hence

e(L, Pj) =
n∑
i=1

dPj(bi) =
n∑

i=1+(j−1)n
k

dPj(bi). (4)

Recall
(
x
s

)
= 0 if 0 6 x < s and so

n∑
i=1

(
dPj(bi)

s

)
=

n∑
i=(j−1)n

k
+1

(
dPj(bi)

s

)
.

Each subset of size s in Pj can be counted at most t − 1 times in the sum
∑n

i=1

(
dPj (bi)

s

)
therefore

(t− 1)

(
n/k

s

)
>

n∑
i=1

(
dPj(bi)

s

)
=

n∑
i=1+(j−1)n

k

(
dPj(bi)

s

)
.
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By Lemma 8,

n∑
i=1+(j−1)n

k

dPj(bi) 6
n

k
(t− 1)1/s

(
n

(
1− j − 1

k

))1−1/s

+ (s− 1)

(
n

(
1− j − 1

k

))
. (5)

Using (4) and (5) we obtain

e(H) =
k∑
j=1

e(L, Pj)

6
(t− 1)1/sn2−1/s

k

k∑
j=1

(1− (j − 1)/k)1−1/s + (s− 1)n
k∑
j=1

(1− (j − 1)/k)

6
(t− 1)1/sn2−1/s

k
(1 +

∫ k

0

(1− x/k)1−1/sdx) + (s− 1)n(1 +

∫ k

0

(1− x/k)dx)

=
(t− 1)1/s

2− 1/s
n2−1/s +

(t− 1)1/sn2−1/s

k
+

(s− 1)nk

2
+ (s− 1)n

=
(t− 1)1/s

2− 1/s
n2−1/s +

(
(t− 1)1/s +

1

2
(s− 1)

)
n3/2−1/2s + (s− 1)n.

Since e(G) = e(H), this completes the proof.

5 A lower bound

Graphs constructed by Erdős, Rényi [11] and Brown [5] show ex(q2+q+1, C4) > 1
2
q(q+1)2

where q is any odd prime power. Since ex(n, Z4) > ex(n,C4), this implies

ex(n, Z4) >
1

2
n3/2 − o(n3/2).

The construction we present improves this lower bound in the error term. Füredi [16]
proved ex(q2 + q+ 1, C4) 6 1

2
q(q+ 1)2 = 1

2
q3 + q2 + 1

2
q for q > 15. Using the constructions

of Erdős, Rényi, and Brown we have the exact result ex(q2 + q + 1, C4) = 1
2
q(q + 1)2 for

prime power q. For each prime p, we construct a Z4-free graph with p2 + p + 2 vertices,
maximum degree p+ 1, and 1

2
p3 + 2p2 + 3

2
p+ 1 edges. It follows that there exists a Z4-free

graph on p2 + p+ 1 vertices with at least 1
2
p3 + 2p2 + 1

2
p edges and so for prime p > 15,

ex(p2 + p+ 1, C4) + p2 6 ex(p2 + p+ 1, Z4).

Before giving the construction we point out a connection between Z4-free graphs on
n-vertices and collections subsets of [n]. Let G be a Z4-free graph on [n]. The back
neighborhoods {Γ−(i)}ni=2 form a collection of subsets of [n] that satisfy

1. Γ−(i) ⊆ [i− 1] for 2 6 i 6 n.
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2. For any i 6= j, |Γ−(i) ∩ Γ−(j)| 6 1.

Conversely any collection of sets {Ai}n−1i=1 that satisfy Ai ⊂ [i] and |Ai ∩Aj| 6 1 for i 6= j
can be used to define a Z4-free graph G by setting Γ−(i + 1) = Ai. We will construct
a family of sets A1, . . . , Ap2+p+1 that satisfies these conditions by labeling the points of
a projective plane using the numbers 1, 2, . . . , p2 + p + 1 and by labeling the lines of the
plane using the numbers 1, 2, . . . , p2 + p + 1. Suppose l is a line that is assigned label i
and we denote this by li. Our goal is to make the sum

p2+p+1∑
i=1

|li ∩ [i]|

as large as possible for if G is defined by setting Γ−(i+ 1) = li ∩ [i] for 1 6 i 6 p2 + p+ 1,
then

e(G) =

p2+p+2∑
i=2

|Γ−(i)| =
p2+p+1∑
i=1

|li ∩ [i]|.

Now we proceed with the construction. Fix a prime p. The number p2 + p+ 1 and the
numbers in the array

p2 + p p2 + p− 1 p2 + p− 2 . . . p2 + 1
p2 p2 − 1 p2 − 2 . . . p2 − p+ 1
...

...
... . . .

...
p p− 1 p− 2 . . . 1

are the points of the projective plane. To define the lines of the plane it is convenient to let
a = p2+p+1 and let ai−1,j be the (i, j)-entry in the array above. The lines of the plane are
l(r) = {a, ar,1, ar,2, . . . , ar,p} where 0 6 r 6 p, and l(r, c) = {a0,r, a1,r+c, a2,r+2c, . . . , ap,r+pc}
where 1 6 r, c 6 p. The second subscript r + jc is reduced modulo p so that its value is
in {1, 2, . . . , p}. These names are used only to define the lines and at this point we are
ready to assign the labels 1, 2, . . . , p2 + p+ 1 to the lines. Each label will be used exactly
once and there are p2 + p + 1 lines so to label the lines we just drop the name after the
label has been assigned. Give l(0) label p2 + p + 1 and for 1 6 r 6 p, give l(r) label
p2 − p(r − 1).

l(0)→ lp2+p+1 l(r)→ lp2−p(r−1) for 1 6 r 6 p.

To determine the label assigned to l(r, c), we look at which point l(r, c) contains from
the (c + 1)-st row of the array. This point, or more precisely its label, will be the label
assigned to l(r, c) unless this element is a multiple of p. Specifically for 1 6 r, c 6 p,

l(r, c)→
{
lac,r+c2 if ac,r+c2 < p2 − (c− 1)p,

lp2+p−(c−1) if ac,r+c2 = p2 − (c− 1)p.

Before going further an example is needed. For p = 3 form the array
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12 11 10
9 8 7
6 5 4
3 2 1

In this case a = 13, a0,1 = 12, a0,2 = 11, a0,3 = 10, a1,1 = 9, . . . , a3,3 = 1. Below we show
the lines before the label assignments are given and the new labels. For lines of the form
l(r, c) we have underlined the point of the line used to determine its label.

l(0) = {13, 12, 11, 10} → l13 l(1) = {13, 9, 8, 7} → l9 l(2) = {13, 6, 5, 4} → l6
l(3) = {13, 3, 2, 1} → l3
l(1, 1) = {12, 8, 4, 3} → l8 l(1, 2) = {11, 7, 5, 3} → l5 l(1, 3) = {10, 9, 6, 3} → l10
l(2, 1) = {12, 7, 6, 2} → l7 l(2, 2) = {11, 9, 4, 2} → l4 l(2, 3) = {10, 8, 5, 2} → l2
l(3, 1) = {12, 9, 5, 1} → l12 l(3, 2) = {11, 8, 6, 1} → l11 l(3, 3) = {10, 7, 4, 1} → l1

To compute
∑p2+p+1

i=1 |li ∩ [i]|, we divide it into three smaller sums. It is easy to check

p∑
i=1

|lip ∩ [ip]| = p · p (6)

and
p2+p+1∑
i=p2+1

|li ∩ [i]| = (p+ 1)(p+ 1). (7)

For fixed j with 0 6 j 6 p− 1,

(j+1)p−1∑
i=jp+1

|li ∩ [i]| = (p− 1)(j + 1). (8)

Putting (6), (7), and (8) together gives

p2+p+1∑
i=1

|li ∩ [i]| = p2 + (p+ 1)2 + (p− 1)

p∑
j=1

j =
1

2
p3 + 2p2 +

3

2
p+ 1.

We summarize this construction as a result on labeling points and lines of a projective
plane. Define a labeling of a projective plane (P ,L) of order q to be a pair of bijections
LP : P → {1, 2, . . . , q2 + q + 1} and LL : L → {l1, l2, . . . , lq2+q+1}.

Proposition 9. Let (P ,L) be a projective plane of order p where p is prime. There
is a labeling of the points LP : P → {1, 2, . . . , p2 + p + 1} and the lines LL : L →
{l1, l2, . . . , lp2+p+1} such that

p2+p+1∑
i=1

|li ∩ [i]| = 1

2
p3 + 2p2 +

3

2
p+ 1.
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An easier way to obtain a labeling of a projective plane of order q is to label the

points and lines randomly. The sum X =
∑q2+q+1

i=1 |li ∩ [i]| is a random variable whose
expectation and variance can be computed exactly as EX = 1

2
q3 + q2 + 3

2
q + 1 and

VarX = n
12

√
n− 3/4 − n

24
+ 1

12

√
n− 3/4 − 1

24
where n = q2 + q + 1. Furthermore X

has a nice symmetry property that allows one to prove that there are outcomes where
X > EX + 1

2

√
VarX. This method produces a labeling with X > 1

2
q3 + q2 + O(q1.5).

When q is prime this matches our construction in the leading term but is not as good in
second term. On the other hand, we do not know of any other method to label projective
planes whose order is not a prime.

One may suspect that with some clever labeling we can find a sequence of projective
planes of order q1 < q2 < . . . such that

q2k+qk+1∑
i=1

|li ∩ [i]| >
(

1

2
+ ε

)
q3k

for a fixed ε > 0. The next result shows that this cannot be done.

Proposition 10. Let (P ,L) be a projective plane of order q. If LP , LL is a labeling of
(P ,L) then

q2+q+1∑
i=1

|li ∩ [i]| = 1

2
q3 + o(q3).

To prove Proposition 10 we need the following lemma (see [18]).

Lemma 11. Let G be a d-regular, n-vertex bipartite graph with parts X, Y and set λ =
maxi 6=1,n |λi| where λ1 > . . . > λn are the eigenvalues of the adjacency matrix of G. For
any S ⊂ X, T ⊂ Y , ∣∣∣∣e(S, T )− 2d|S||T |

n

∣∣∣∣ 6 λ

2
(|S|+ |T |).

Proof of Proposition 10. Let (P ,L) be a projective plane of order q and let LP , LL be a

labeling of (P ,L). Let t = q1/4 and for 1 6 i 6 t, let Si = {1, 2, . . . , iq2
t
} and

Ti = {l
1+(i−1) q2

t

, l
2+(i−1) q2

t

, . . . , l q2
t
+(i−1) q2

t

}.

Let A be the adjacency matrix of the incidence graph of (P ,L). The eigenvalues of A are
q + 1, −(q + 1), each with multiplicity 1, and all other eigenvalues are ±√q. This can

be seen by considering the matrix A2 which has the rather simple form A2 =

(
B 0
0 B

)
where B = I + qJ and J is the all 1’s matrix. Using Lemma 11,

q2+q+1∑
i=1

|li ∩ [i]| 6 (q + 1)2 +

q2∑
i=1

|li ∩ [i]| 6 (q + 1)2 +
t∑
i=1

e(Si, Ti)
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6 (q + 1)2 +
t∑
i=1

(
2(q + 1)q4i

2(q2 + q + 1)t2
+

√
q

2

(
iq2

t
+
q2

t

))
6 (q + 1)2 +

q4(t+ 1)

2(q − 1)t
+
q5/2

2
+
q5/2(t+ 1)

4

=
1

2
q3 + o(q3).

A similar argument gives the lower bound
∑q2+q+1

i=1 |li ∩ [i]| > 1
2
q3 + o(q3).

Proof of Theorem 4. By Proposition 9, there exists a Z4-free graph Gp with p2 + p + 2
vertices and 1

2
p3 + 2p2 + 3

2
p+ 1 edges for prime p. Furthermore this graph has maximum

degree p+1. Let G′p be a subgraph of Gp with p2+p+1 vertices and at least 1
2
p3+2p2+ 1

2
p

edges. Then

ex(p2 + p+ 1, Z4) > e(G′p) >
1

2
p3 + 2p2 +

1

2
p

= ex(p2 + p+ 1, C4) + p2.

6 B2-sets and Z4-free graphs

In this section we show how B2-sets can be used to construct Z4-free graphs. Let A ⊂ [n]
be a B2-set. Define the graph GA by V (GA) = [n] and

E(GA) = {ij : i = j + a, a ∈ A}.

Perhaps the most interesting feature of this construction is that, in general, GA will
contain many C4’s but will still be Z4-free. For each vertex i and pair {a, b} ⊂ A with
i+ a+ b 6 n, the vertices {i, i+ a, i+ b, i+ a+ b} form a C4 in G.

Lemma 12. If A ⊂ [n] is a B2-set, then GA is a Z4-free graph with
∑n−1

i=1 |A∩ [i]| edges.

Proof. Suppose n1 < n2 < n3 < n4 are the vertices of a Z4 in G. There exists a, b, c, d ∈ A
such that n3 = a+n1, n4 = b+n1, n3 = c+n2, and n4 = d+n2. This implies a−c+d−b = 0
so that {a, d} = {b, c}. If a = b then n3 = n4 and if a = c then n1 = n2. In either case we
have a contradiction.

The number of edges of GA is
∑n

i=1 |Γ−(i)| and |Γ−(i)| = |A ∩ [i− 1]|.

Observe that for any such GA,

ex(n, Z4) > e(GA).

If we can accurately estimate
∑n−1

i=1 |A ∩ [i]| then upper bounds on ex(n, Z4) can imply
upper bounds on |A|. We can use the following result of Cilleruelo to show e(GA) =
1
2
n3/2 − o(n3/2) provided A is chosen appropriately.
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Theorem 13 (Cilleruelo, [7]). If A ⊂ [n] is a B2-set with n1/2 − L elements then any
interval of length cn contains c|A|+ eI elements of A where

|eI | 6 52n1/4(1 + c1/2n1/8)(1 + L
1/2
+ n−1/8)

and L+ = max{0, L}.

Theorem 14. For each B2-set A with |A| = n1/2 there exists an n-vertex Z4-free graph
GA with

e(GA) >
1

2
n3/2 −O(n5/4).

Furthermore GA has at least n2

18
−O(n15/8) 4-cycles.

Proof. Suppose A ⊂ [n] is a B2-set with |A| = n1/2. Let k = n1/4 and for 1 6 j 6 k, let

Pj = {1 +
(j − 1)n

k
, 2 +

(j − 1)n

k
, . . . ,

jn

k
}.

Using Theorem 13,

n∑
i=1

|A ∩ [i]| >
k∑
j=2

∑
i∈Pj

|A ∩ [i]| >
k∑
j=2

n

k

∣∣∣∣A ∩ [(j − 1)n

k

]∣∣∣∣ =
n

k

k∑
j=2

(
j − 1

k
|A|+ eIj

)
where eIj satisfies the inequality

eIj > −52n1/4

(
1 +

√
j − 1

k
n1/8

)
.

Now n
k

∑k
j=2

j−1
k
|A| = 1

2
n3/2− n3/2

2k
and so it remains to find a lower bound on the sum

−52n5/4

k

∑k−1
j=1(1 +

√
j/kn1/8). Estimating the sum with an integral gives

−52n5/4

k

k−1∑
j=1

(
1 +

√
j/kn1/8

)
> −52n5/4

k

(
k +

2n1/8k

3

)
= −52n5/4 − 104n11/8

3
.

Thus
n∑
i=1

|A ∩ [i]| > 1

2
n3/2 − n3/2

2k
− 52n5/4 − 104n11/8

3
>

1

2
n3/2 −O(n5/4).

To prove the statement concerning 4-cycles, observe Theorem 13 implies

|A ∩ [1, n/3]| > 1

3
n1/2 − 104n3/8.

For any vertex i ∈ [1, n/3] and pair {a, b} ⊂ A∩[1, n/3], the vertices {i, i+a, i+b, i+a+b}
form a 4-cycle. If α = 1

3
n1/3− 104n3/8, then there are n

3

(
α
2

)
= n2

18
−O(n15/8) such 4-cycles.

For q a prime power, there exists B2-sets A ⊂ [q2] with |A| = q (see [4]). Applying
Theorem 14 to such a B2-set gives a Z4-free graph with 1

2
n3/2+o(n3/2) edges where n = q2.
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7 Concluding Remarks

• One might hope that the idea of using B2-sets to construct Z4-free graphs extends to
using Bk-sets to construct Z2k-free graphs. A set A ⊂ Z is a Bk-set if whenever

a1 + a2 + · · ·+ ak = b1 + b2 + · · ·+ bk with ai, bj ∈ A,

the elements a1, a2, . . . , ak are a permutation of b1, b2, . . . , bk. Unfortunately this does not
work in general. If A ⊂ [n] is a Bk-set with k > 3, then GA, defined the same way as in
Section 6, may not be Z2k-free. For example, if a > b > c are elements of A with a−c < b
then the Z6 shown in Figure 2 can appear in GA.

r r r r r r
a

b

a

c c b

Figure 2: Z6 in GA

For each such triple, there are n−(a+b−c) choices for the first vertex so that deleting
one edge from each such Z6 will remove too many edges. The case for longer even cycles
is more complicated.

If we forbid a subfamily of Z2k’s then Bk-sets can be used to give good constructions.
Let A ⊂ [n] be a Bk-set with k > 3 and consider a Z2k in GA. Suppose this Z2k is
x1y1x2y2 . . . xkykx1 where xi < yj for all i, j. Since A is a Bk-set,

{y1 − x1, y2 − x2, . . . , yk − xk} = {y1 − x2, y2 − x3, . . . , yk − x1}

and so we cannot have an edge that is longer or shorter than all of the other edges. Recall
Z×2k is the family of Z2k’s with a longest or shortest edge. Using Bk-sets constructed in
[4], we obtain the lower bound

ex(n,Z×2k) > cn1+1/k

where c > 0 is a constant independent of k. The difficulty now lies in proving good upper
bounds which is the content of Problem 7.

• The argument used to prove Theorem 2 can be generalized. If F is a bipartite
graph with a unique bipartition and an automorphism interchanging the parts then we
can obtain an upper bound on ex(n,ZF) in terms of ex(n, F ) where ZF is the family of
zig-zag versions of F .

More precisely, if ex(n, F ) 6 cnδ for some constant c > 0 and real δ ∈ (1, 2), then we

can show ex(n,ZF) 6 2δ−1c
2δ−1−1n

δ. For instance, using the bound ex(n,C6) < 0.6272n4/3

for large n [17], we get ex(n,Z6) <
21/3

21/3−1 · 0.6272n4/3 < 3.0403n4/3 for large n which is an
improvement of Theorem 2.
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[8] J. Czipszer, P. Erdős, A. Hajnal, Some extremal problems on infinite graphs, Publi-
cations of the Math. Inst. of the Hungarian Academy of Sci. Ser. A 7 (1962), p. 441-
456.
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[16] Z. Füredi, On the number of edges of quadrilateral-free graphs, J. Combinatorial
Theory B, 68 1 (1974), p. 1-6.

the electronic journal of combinatorics 19(4) (2012), #P43 15
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