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Abstract

The tau constant is an important invariant of a metrized graph. It has con-

nections to other graph invariants such as Kirchhoff index, and it has applications

to arithmetic properties of algebraic curves. We show how the tau constant of a

metrized graph changes under successive edge contractions and deletions. We prove

identities which we call “contraction”, “deletion”, and “contraction-deletion” iden-

tities on a metrized graph. By establishing a lower bound for the tau constant

in terms of the edge connectivity, we prove that Baker and Rumely’s lower bound

conjecture on the tau constant holds for metrized graphs with edge connectivity 5

or more. We show that proving this conjecture for 3-regular graphs is enough to

prove it for all graphs.

1 Introduction

The tau constant τ(Γ) is an invariant of a metrized graph Γ which is a finite compact
topological graph equipped with a distance function on its edges. One can find various
foundational results concerning this invariant in [4] and [5]. Since a metrized graph has
both analytic and combinatorial structure, the tau constant is analytic and combinatorial
in nature, too. One can express [6, Theorem 1.1] τ(Γ) only in terms of the discrete
Laplacian matrix of Γ and its pseudo inverse.

Results of this paper are used in [7] to give an improved upper bound for the Kirch-
hoff index of r-regular graphs in terms of their edge connectivity. In another direction,
applications of the results of this paper to arithmetic of algebraic curves and specifically
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to the Effective Bogomolov Conjecture can be found in [8]. Among other things, in [8],
we relate the tau constant to certain invariants of metrized graphs studied in [14].

Note that there is a 1-1 correspondence [3, Lemma 2.2] between equivalence classes
of finite connected weighted graphs, metrized graphs, and resistive electric circuits. If
an edge ei of a metrized graph has length Li, then the resistance of ei is Li in the
corresponding resistive electric circuit, and the weight of ei is 1

Li
in the corresponding

weighted graph. Therefore, the identities we show in this paper have equivalent forms for
weighted graphs.

The tau constant is a positive real-valued number associated to a given metrized graph
(see §2 for more information). It was initially defined by M. Baker and R. Rumely [3, The-
orem 14.1]. They [3] introduced a measure valued Laplacian operator ∆ which extends
Laplacian operators studied earlier in the articles [9] and [13]. This Laplacian opera-
tor combines the “discrete” Laplacian on a finite graph and the “continuous” Laplacian
−f ′′(x)dx on R. Baker and Rumely [3] studied harmonic analysis on metrized graphs. In
terms of spectral theory, the tau constant is the trace of the inverse operator of ∆ when
Γ has total length 1.

Baker and Rumely posed the following conjecture concerning a lower bound for τ(Γ).

Conjecture 1.1. [3] There is a universal constant C > 0 such that for all metrized graphs
Γ, τ(Γ) > C · ℓ(Γ) where ℓ(Γ) is the total length of Γ.

We call Conjecture 1.1 Baker and Rumely’s lower bound conjecture. Equivalently, we
can state Conjecture 1.1 as follows [5]:

Conjecture 1.2. If ℓ(Γ) =
∫
Γ
dx denotes the total length of Γ, then we have

infΓ
τ(Γ)

ℓ(Γ)
> 0,

taking the infimum over all metrized graphs Γ with ℓ(Γ) 6= 0.

In summer 2003 at the University of Georgia, an REU group (REU at UGA, in short)
lead by Baker and Rumely studied properties of the tau constant and the lower bound
conjecture. We showed in [5] that this conjecture holds for various large classes of metrized
graphs. Next, we briefly describe what we achieved in this paper aiming to prove the lower
bound conjecture.

The first main result in this paper is the following theorem, which gives a lower bound
for τ(Γ) in terms of the edge connectivity of Γ when the edge connectivity is at least 4
(see Theorem 6.10).

Theorem 1.3. Let Γ be a metrized graph with v vertices, and let Λ(Γ) be the edge con-
nectivity of Γ. Then we have

1. τ(Γ) > ℓ(Γ)
(

1
12
(1 − 4

Λ(Γ)
)2 + 4(Λ(Γ)−2)

(v+6)Λ(Γ)2

)
, if Λ(Γ) > 4. In particular, τ(Γ) > ℓ(Γ)

108
if

Λ(Γ) > 6, and τ(Γ) > ℓ(Γ)
300

if Λ(Γ) = 5.
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2. τ(Γ) > ℓ(Γ)
2(v+6)

. In particular, τ(Γ) > ℓ(Γ)
108

if v 6 48.

Interestingly, Theorem 1.3 not only shows that Conjecture 1.1 holds for graphs with
edge connectivity more than 4, but also gives more refined information about the possible
values of τ(Γ). The results of this theorem should be compared with the following upper
bound: [5, Corollary 5.8 and Remark 2.15]:

τ(Γ) 6
ℓ(Γ)

12
, whenever Γ has edge connectivity at least two. (1)

It follows from Theorem 1.3 and Equation (1) as an example that 27
400

ℓ(Γ) < τ(Γ) 6 1
12
ℓ(Γ)

for any graph with edge connectivity 40 and any edge lengths assignment.
The proof of Theorem 1.3 involves establishing a set of identities, which we call “con-

traction”, “deletion”, and “contraction-deletion” identities on a metrized graph (see §4).
By using these identities, we show how the tau constant changes after successive edge
deletions and contractions. In particular, when we consider successive edge contractions
until we are left with only two vertices, we use our previous results [5] about the tau
constant to obtain a set of inequalities between the terms adding up to the tau constant.
In this way, we transform the tau lower bound problem into an optimization problem.
The results here extend those obtained in [4, Sections 3.6, 3.7, 3.9, 3.10 and 3.12] in a
coherent and systematic manner.

The second main result of this paper (see Theorem 7.2) is the following theorem:

Theorem 1.4. If there is a constant C > 0 such that for all 3-regular metrized graphs Γ,
τ(Γ) > C · ℓ(Γ) , then τ(β) > C · ℓ(β) for all metrized graphs β.

We think that Conjecture 1.1 can be refined as follows (see the last part of §7):

Conjecture 1.5. For all metrized graphs Γ, τ(Γ) > 1
108

· ℓ(Γ).

2 Metrized graphs and their tau constants

In this section, we recall a few facts about metrized graphs and their tau constants.
“Metrized graph” as a term was introduced by Rumely [12], and developed further in

[9] and [13]. Here is a rigorous definition of a metrized graph:

Definition. [13][3, Definition 2.1] A metrized graph Γ is a compact, connected metric
space such that for each p ∈ Γ, there exist a radius rp > 0 and an integer υ(p) > 1 such
that p has a neighborhood Vp(rp) isometric to the star-shaped set

S(υ(p), rp) = {z ∈ C : z = tek·2πi/υ(p) for some 0 6 t < rp and some k ∈ Z},

equipped with the path metric.
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A leisurely survey on metrized graphs can be found in [2]. Moreover, we have the
following intuitional description of a metrized graph:

A metrized graph Γ is a finite connected graph with a distinguished parametrization
of each of its edges. Γ can be considered as a one-dimensional manifold except at finitely
many “branch points”, where it looks locally like an n-pointed star. A metrized graph
Γ can have multiple edges and self-loops. Networks, metric graphs and quantum graphs
are more or less the same as metrized graphs. We refer to [3, Section 1.9] to see various
references for related work.

For any given p ∈ Γ, the number υ(p) of directions emanating from p will be called
the valence of p. By definition, there can be only finitely many p ∈ Γ with υ(p) 6= 2.

For a metrized graph Γ, we will denote a vertex set for Γ by V (Γ). We require that
V (Γ) be finite and non-empty and that p ∈ V (Γ) for each p ∈ Γ if υ(p) 6= 2. For a given
metrized graph Γ, it is possible to enlarge the vertex set V (Γ) by considering additional
valence 2 points as vertices.

For a given metrized graph Γ with vertex set V (Γ), the set of edges of Γ is the set of
closed line segments with end points in V (Γ). We will denote the set of edges of Γ by
E(Γ). However, if ei is an edge, by Γ − ei we mean the graph obtained by deleting the
interior of ei.

Let v := #(V (Γ)) and e := #(E(Γ)). We define the genus of Γ to be the first Betti
number g(Γ) := e−v+1 of the graph Γ. Note that the genus is a topological invariant of Γ.
In particular, it is independent of the choice of the vertex set V (Γ). Since Γ is connected,
g(Γ) coincides with the cyclomatic number of Γ in combinatorial graph theory. We will
simply use g to denote g(Γ) when there is no danger of confusion. One should note that
our definition of genus is different from the minimum integer m for which the graph can be
embedded into a compact connected 2-dimensional manifold homeomorphic to a sphere
with m handles. Our definition of genus is motivated by the fact that metrized graphs
arise as dual graphs of special fibers of algebraic curves.

We denote the length of an edge ei ∈ E(Γ) by Li, which represents a positive real
number. The total length of Γ, which will be denoted by ℓ(Γ), is given by ℓ(Γ) =

∑e
i=1 Li.

Let Γ be a metrized graph. If we scale each edge in Γ by multiplying its length by
1

ℓ(Γ)
, we obtain a new graph which is called the normalization of Γ and denoted by ΓN .

Note that Γ and ΓN have the same topology, and ℓ(ΓN) = 1. If Γ = ΓN , we call Γ be a
normalized graph.

A metrized graph Γ is called n-regular if it has a vertex set V (Γ) such that υ(p) = n
for all vertices p ∈ V (Γ).

We will denote the minimum of the valences of vertices in V (Γ) by δ(Γ). The minimum
number of edges whose deletion disconnects Γ is called the “edge connectivity” of Γ and
denoted by Λ(Γ). The minimum number of vertices whose deletion disconnects Γ is called
the “vertex connectivity” of Γ and denoted by κ(Γ).

In the article [9], a kernel jx(y, z) giving a fundamental solution of the Laplacian is
defined and studied as a function of x, y, z ∈ Γ. For fixed x and z it has the following
physical interpretation: When Γ is viewed as a resistive electric circuit with terminals at
x and z, with the resistance in each edge given by its length, then jx(y, z) is the voltage
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difference between y and x, when unit current enters at z and exits at x (with reference
voltage 0 at x).

For any x, y, z in Γ, the voltage function jx(y, z) on Γ is a symmetric function in y
and z, and it satisfies jx(x, z) = 0 and jx(y, y) = r(x, y), where r(x, y) is the resistance
function on Γ. For each vertex set V (Γ), jx(y, z) is continuous on Γ as a function of 3
variables. As the physical interpretation suggests, jx(y, z) > 0 for all x, y, z in Γ. For
proofs of these facts, see the articles [9], [3, sec 1.5 and sec 6], and [13, Appendix]. The
voltage function jx(y, z) and the resistance function r(x, y) on a metrized graph were also
studied in the articles [2] and [5].

The tau constant of a metrized graph was initially defined by Baker and Rumely [3,
Section 14]. The following lemma gives a description of the tau constant. In particular,
it implies that the tau constant is positive. We refer [5] and references cited therein for
more information about the tau constant.

Lemma 2.1. [3, Lemma 14.4] For any fixed y in Γ, τ(Γ) = 1
4

∫
Γ

(
∂
∂x
r(x, y)

)2
dx.

We will use the following results frequently in later sections.

Lemma 2.2. [3, pg. 37] [5, Corollaries 2.17 and 2.22] If Γ is a tree, i.e. a graph without

cycles, then τ(Γ) = ℓ(Γ)
4
. If Γ is a circle graph, then τ(Γ) = ℓ(Γ)

12
.

Remark 2.3. Whenever a graph Γ has a vertex p such that removing p disconnects Γ,
i.e. p is a cut-vertex of Γ, then Γ = Γ1 ∪ Γ2 for subgraphs Γ1 and Γ2 with Γ1 ∩ Γ2 = {p}.
In this case, we have τ(Γ1 ∪ Γ2) = τ(Γ1) + τ(Γ2), which we call the additive property of
the tau constant. It was initially noted in the REU at UGA.

Therefore, proving Conjecture 1.1 for graphs with vertex connectivity κ(Γ) > 2 yields
it for all graphs.

Remark 2.4. [3] If we multiply all lengths on Γ by a positive constant c, we obtain a graph
Γ′ of total length c · ℓ(Γ). Then τ(Γ′) = c · τ(Γ). This will be called the scale-independence
of the tau constant. By this property, to prove Conjecture 1.1, it is enough to consider
normalized metrized graphs.

Remark 2.5. For any metrized graph Γ, the tau constant τ(Γ) is independent of the
vertex set V (Γ) chosen. In particular, enlarging V (Γ) by including points p ∈ Γ with
υ(p) = 2 does not change τ(Γ). Thus, τ(Γ) depends only on the topology and the edge
length distribution of the metrized graph Γ. This will be called the valence property of the
tau constant.

We will denote by Ri(Γ), or by Ri if there is no danger of confusion, the resistance
between the end points of an edge ei of a graph Γ when the interior of the edge ei is
deleted from Γ. Recall that Ri := 0 if ei is a bridge. We will use the following notation
in the rest of this paper:

z(Γ) =
∑

ei∈E(Γ)

L2
i

Li +Ri
, r(Γ) =

∑

ei∈E(Γ)

LiRi

Li +Ri
. (2)
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Note that ℓ(Γ) = z(Γ) + r(Γ).
Chinburg and Rumely [9, page 26] showed that

∑

ei∈E(Γ)

Li

Li +Ri
= g, equivalently

∑

ei∈E(Γ)

Ri

Li +Ri
= v − 1. (3)

Notation. Define Ap,q,Γ :=
∫
Γ
jx(p, q)(

d
dx
jp(x, q))

2dx for any p, q ∈ Γ.

Properties of Ap,q,Γ were studied in the article [5, Sections 4 and 7]. For any p, q ∈ Γ,

0 6 Ap,q,Γ 6 r(p, q)
(
rΓ(p) − r(p,q)

2

)
, where rΓ(p) = max{r(p, x)|x ∈ Γ} and r(x, y) is the

resistance function in Γ. Here, the upper bound follows by combining [5, Theorem 4.3
part (vi)] and [5, Corollary 2.19].

We call an edge ei ∈ E(Γ) a bridge if Γ− ei is disconnected. If Γ− ei is connected for
every ei ∈ E(Γ), we call Γ a bridgeless graph.

Theorem 2.6. [5, Theorem 5.7] Let Γ be a bridgeless graph. Suppose that pi, qi are the
end points of the edge ei, for each i = 1, 2, . . . , e. Then,

τ(Γ) =
ℓ(Γ)

12
−

e∑

i=1

LiApi,qi,Γ−ei

(Li +Ri)2
.

Theorem 2.7. [5, Theorem 2.21] For any p, q ∈ Γ, τ(Γ) = 1
4

∫
Γ
( d
dx
jx(p, q))

2dx+ 1
4
r(p, q).

3 Edge contractions and deletions

Let Γi be the graph obtained by contracting the i-th edge ei, i ∈ {1, 2, . . . , e}, of a given
graph Γ to its end points. If ei ∈ Γ has end points pi and qi, then in Γi, these points
become identical, i.e., pi = qi. Let Γ̃i be the graph obtained by identifying the end points
of the i-th edge ei ∈ E(Γ). This makes ei into a loop in Γ̃i. Note that τ(Γi) = τ(Γ̃i)− Li

12

by the additive property of the tau constant and Lemma 2.2.
The following lemma sheds light on how the tau constant changes by contraction of

an edge:

Lemma 3.1. [5, Lemma 6.2] Let ei ∈ E(Γ) be such that Γ − ei is connected. Then we
have

τ(Γ) = τ(Γi) +
Li

12
− LiApi,qi,Γ−ei

Ri(Li + Ri)
.

Note that Lemma 3.1 involves terms containing Api,qi,Γ−ei, which are fairly difficult to
understand. One wants to understand the effect of edge contraction in a better way. An
important step in this direction is provided by Proposition 3.2 and Theorem 3.3, which
depend on Theorem 2.6.

Proposition 3.2. Let Γ be a bridgeless graph with v:= #(V (Γ)) > 3. Then,

τ(Γ) =
1

v − 2

e∑

i=1

Ri

Li + Ri
τ(Γi)−

z(Γ)

12(v − 2)
, τ(Γ) =

1

v − 2

e∑

i=1

Ri

Li +Ri
τ(Γ̃i)−

ℓ(Γ)

12(v − 2)
.
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Proof. Multiply both sides of the equation in Lemma 3.1 by Ri

Li+Ri
, sum over all edges of

Γ, and use the fact that
∑e

i=1
Ri

Li+Ri
= v − 1 (see Equation (3)) to obtain

(v − 1)τ(Γ) =

e∑

i=1

Ri

Li +Ri
τ(Γi) +

r(Γ)

12
−

e∑

i=1

LiApi,qi,Γ−ei

(Li +Ri)2
.

Recall that z(Γ) and r(Γ) are defined in Equation (2). We obtain the first formula by using

Theorem 2.6. Then the second formula follows from the fact that τ(Γi) = τ(Γ̃i)− Li

12
.

In the proof of Proposition 3.2, we used the fact that Γ is bridgeless when we worked
with terms Api,qi,Γ−ei. We will now extend the result of Proposition 3.2 to any connected
graph Γ. For an edge ei which is a bridge in Γ, the end points pi and qi become dis-
connected in Γ − ei, and so Ri = ∞. In such cases, if we use the limiting values of the
corresponding terms, it is possible to extend Proposition 3.2 to a metrized graph with
bridges. More precisely, note that

τ(Γ) =
1

v − 2

e∑

i=1

[
lim
t→Ri

t

Li + t

]
τ(Γi)−

1

12(v − 2)

e∑

i=1

[
lim
t→Ri

L2
i

Li + t

]
.

In short, we set Ri

Li+Ri
:= 1 and Li

Li+Ri
:= 0 whenever Ri = ∞.

Theorem 3.3. Let Γ be a metrized graph with v:= #(V (Γ)) > 3. Then we have

τ(Γ) =
1

v − 2

e∑

i=1

Ri

Li + Ri
τ(Γi)−

z(Γ)

12(v − 2)
, τ(Γ) =

1

v − 2

e∑

i=1

Ri

Li +Ri
τ(Γ̃i)−

ℓ(Γ)

12(v − 2)
.

Proof. We already dealt with the case in which Γ is bridgeless. Suppose that Γ has
bridges. Let B = {ei1 , ei2, . . . , eik} be the set of all bridges in Γ, for some positive integer
k. Let γ be the graph obtained from Γ by contracting all of its bridges to their end points.
Thus, an edge ei belongs to E(γ) iff ei 6∈ B. By the additive property of τ(Γ) (i.e., by
Remark 2.3) and Lemma 2.2,

τ(Γ) = τ(γ) +
1

4

∑

ej∈B

Lj . (4)

Clearly, γ is connected and bridgeless with v − k vertices. Note that if ei ∈ B, then

τ(Γi) = τ(γ) +
1

4

∑

ej∈B

Lj −
Li

4
, (5)

and if ei 6∈ B, then

τ(Γi) = τ(γi) +
1

4

∑

ej∈B

Lj . (6)
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We have

z(Γ) = z(γ), and
∑

ei∈E(Γ)−B

Ri(Γ)

Li +Ri(Γ)
=

∑

ei∈E(γ)

Ri(γ)

Li +Ri(γ)
= v − k − 1. (7)

Since γ is bridgeless, we can apply Proposition 3.2 to obtain

τ(γ) =
1

v − k − 2

∑

ei∈E(γ)

Ri

Li +Ri
τ(γi)−

z(γ)

12(v − k − 2)
. (8)

Then by Equations (5) and (6)

∑

ei∈E(Γ)

Ri · τ(Γi)

Li +Ri
=
∑

ei 6∈B

Ri

Li +Ri

(
τ(γi) +

∑

ej∈B

Lj

4

)
+
∑

ei∈B

Ri

Li +Ri

(
τ(γ) +

∑

ej∈B

Lj

4
− Li

4

)
,

=
∑

ei 6∈B

Ri

Li +Ri
τ(γi) +

(1
4

∑

ej∈B

Lj

)(∑

ei 6∈B

Ri

Li +Ri

)
+ kτ(γ)

+
k − 1

4

∑

ej∈B

Lj ,

= (v − 2)τ(γ) +
z(γ)

12
+

v − 2

4

∑

ej∈B

Lj , by Equations (8) and (7).

= (v − 2)τ(Γ) +
z(Γ)

12
, by Equations (4) and (7).

This is equivalent to the first formula we wanted to show. By using the fact that τ(Γ̃i) =
τ(Γi)+

Li

12
, for all ei ∈ E(Γ), along with the first formula, we obtain the second formula.

The following lemma shows how the tau constant changes by deletion of an edge when
the remaining graph is connected.

Lemma 3.4. [5, Corollary 5.3] Suppose that Γ is a metrized graph such that Γ− ei, for
some edge ei ∈ E(Γ) with length Li and end points pi and qi, is connected. Then we have

τ(Γ) = τ(Γ− ei) +
Li

12
− Ri

6
+

Api,qi,Γ−ei

Li +Ri
.

We can combine Lemma 3.1 and Lemma 3.4 to obtain the following Lemma:

Lemma 3.5. Suppose that Γ is a graph such that Γ − ei, for some edge ei ∈ E(Γ) with
length Li is connected. Then we have

τ(Γ) =
Li

Li +Ri
τ(Γ− ei) +

Ri

Li +Ri
τ(Γi) +

L2
i − LiRi

12(Li +Ri)
.

Proof. Multiply the formula in Lemma 3.1 by Ri

Li+Ri
and the formula in Lemma 3.4 by

Li

Li+Ri
. Then add the results.
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To show the effect of edge deletion on the tau constant without using any terms with
Api,qi,Γ−ei, we have the following theorem:

Theorem 3.6. Let Γ be a bridgeless graph with edges {e1, e2, . . . , ee}. Then,

τ(Γ) =
1

g + 1

e∑

i=1

Li

Li +Ri

τ(Γ− ei) +
ℓ(Γ)

6(g + 1)
− r(Γ)

4(g + 1)
.

Proof. Multiply both sides of the equation given in Lemma 3.4 by Li

Li+Ri
, sum over all

edges of Γ, and use the fact that

e∑

i=1

Li

Li +Ri
= g (see Equation (3)) to obtain

g · τ(Γ) =
e∑

i=1

Li

Li +Ri
τ(Γ− ei) +

z(Γ)

12
− r(Γ)

6
+

e∑

i=1

LiApi,qi,Γ−ei

(Li +Ri)2
.

Finally, we use Theorem 2.6 and the fact that z(Γ)+r(Γ) = ℓ(Γ) to complete the proof.

As a corollary, we obtain a lower bound to the tau constant in terms of the genus g.

Corollary 3.7. Let Γ be a bridgeless metrized graph. Let edge ei have end points pi and
qi. For the voltage function jix(pi, qi) on Γ− ei, we have

τ(Γ) =
1

4(g + 1)

∑

ei∈E(Γ)

Li

Li +Ri

∫

Γ−ei

(
d

dx
jix(pi, qi))

2dx+
ℓ(Γ)

6(g + 1)
.

In particular, τ(Γ) > ℓ(Γ)
6(g+1)

.

Proof. Applying Theorem 2.7 to Γ− ei gives τ(Γ− ei) =
1
4

∫
Γ−ei

( d
dx
jix(pi, qi))

2dx+ Ri

4
for

any edge ei. Thus, we obtain what we want by substituting this into Theorem 3.6.

The results given in Theorem 3.3 and Theorem 3.6 allow us to compare τ(Γ) with

τ(Γi), τ(Γ̃i) and τ(Γ − ei). This suggests that one may apply induction arguments on
the number of edges or vertices of Γ to prove Conjecture 1.1. We attempted to follow
this strategy without a satisfactory outcome. Based on our computations, we believe
that we need further improvements on the results about Api,qi,Γ−ei to make the induction
arguments applicable.

4 Contraction and deletion identities

In this section, we will prove a number of identities, which we call “contraction identities”,
“deletion identities” and “contraction-deletion” identities. These identities are interesting
in their own right. One way to relate these identities to the tau constant can be explained
as follows:
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We know the exact values of the tau constant when the metrized graph is a tree or
circle (see Lemma 2.2). If a metrized graph has vertex connectivity 1 or 2, we can express
its tau constant in terms of the tau constants of its subgraphs (see Remark 2.3 and [5,
Theorems 5.1 and 7.3]). After a sequence of edge deletions and contractions we can pass
to these type of graphs from an arbitrary metrized graph. In the previous section, we
gave formulas expressing τ(Γ) in terms of τ(Γ − ei)’s or τ(Γi)’s by considering all edge
deletions or contractions of depth 1 (see Theorem 3.3 and Theorem 3.6). One wonders if
it is possible to generalize these two theorems with further depths of edge deletions and
contractions. The solution is given by the identities shown in this section. The identities
of this section have crucial roles in generalizing the results of the previous section, as in
the following section where we deal with the successive edge contractions.

Some of these “contraction identities”, “deletion identities” and “contraction-deletion”
identities were proven in [4, Sections 3.6 and 3.7] using different methods. Our approach
in this paper is to utilize Euler’s formula for homogeneous functions as in the proof of
Theorem 2.6 in [5, pg 35].

Let Γ be a graph with edges E(Γ) = {e1, e2, . . . , ee}, and let Γ − ei be the graph
obtained by deleting the i-th edge ei ∈ E(Γ). As before Li is the length of edge ei. Let
ΓDA be the graph obtained from Γ by replacing each edge ei ∈ E(Γ) by 2 edges ei,1, ei,2
of equal lengths Li

2
. Here DA stands for “Double Adjusted”. Then, V (Γ) = V (ΓDA) and

ℓ(Γ) = ℓ(ΓDA).
Given a graph Γ, we will compare τ -constants of the following graphs: Γ, Γ− ei, Γ

DA,
(Γ − ei)

DA, ΓDA − ei,j and ΓDA − {ei,1, ei,2}. It will turn out that by doing so, we will
obtain non-trivial identities for τ(Γ), z(Γ) and r(Γ).

The graphs in Figure 1 illustrate what we will do. Graph I shows Γ with an edge
ei ∈ E(Γ). II shows Γ− ei, III shows (Γ− ei)

DA, IV shows ΓDA with edges ei,1 and ei,2,
V shows ΓDA − ei,2 and V I shows ΓDA − {ei,1, ei,2}.

Note that (Γ − ei)
DA and Γdi := ΓDA − {ei,1, ei,2} are the same graphs. In Figure 1,

they are the graphs in III and V I.

Theorem 4.1. Let Γ be a metrized graph, and let ei ∈ E(Γ) with end points pi and qi. If
Γ− ei is connected, we have

τ(ΓDA) = τ((Γ− ei)
DA) +

2L2
i − R2

i

24(Li +Ri)
+

4

Li +Ri
Api,qi,Γdi .

Proof. By applying Lemma 3.4 to ΓDA for the edge ei,1 ∈ E(ΓDA) and using Ri,1(Γ
DA) =

1
2

LiRi

2Li+Ri
from [5, Lemma 3.10 with n = 2], we get

τ(ΓDA) = τ(ΓDA − ei,1) +
Li

24
− 1

12

LiRi

2Li +Ri
+

Api,qi,ΓDA−ei,1

Li

2
+ 1

2
LiRi

2Li+Ri

. (9)

By applying [5, Lemma 7.5] to Api,qi,ΓDA−ei,1 with edge ei,2, we obtain

Api,qi,ΓDA−ei,1 =
4L2

iApi,qi,Γdi

(2Li +Ri)2
+

1

24
(

LiRi

2Li +Ri
)2. (10)
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I II III

IV V
VI

ei

ei,1

ei,1ei,2

Figure 1: Graphs used to obtain the deletion identities.

Next, applying Lemma 3.4 to ΓDA−ei,1 with respect to the edge ei,2 and using Ri,2(Γ
DA−

ei,1) =
Ri

4
gives

τ(ΓDA − ei,1) = τ(Γdi) +
Li

24
− Ri

24
+

4Api,qi,Γdi

2Li +Ri
. (11)

Since Γdi = (Γ− ei)
DA, substituting Equations (10) and (11) into Equation (9) gives the

result.

Notation. Let Γ be a metrized graph. For each edge ei ∈ E(Γ) such that Γ − ei is
connected, we set

Ki(Γ) :=
∑

ej∈ E(Γ)
j 6=i

L2
j

Lj +Rj
−

∑

ej∈ E(Γ−ei)

L2
j

Lj +Rj(Γ− ei)
.

Remark 4.2. Let Γ be a metrized graph and let ei ∈ E(Γ). For every j 6= i and j ∈
{1, 2, . . . , e}, Rj(Γ−ei) > Rj by Rayleigh’s Cutting law, which states that cutting branches
can only increase the effective resistance between any two points in a circuit (See [10] for

more information). Therefore,
L2
j

Lj+Rj(Γ−ei)
6

L2
j

Lj+Rj
. Hence, Ki(Γ) > 0.

Theorem 4.3. Let Γ be a metrized graph, and let ei ∈ E(Γ) with end points pi and qi. If
Γ− ei is connected, we have

Api,qi,Γ−ei

Li +Ri
=

16Api,qi,Γdi

Li +Ri
− Ki(Γ)

6
.
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Proof. Note that ℓ(ΓDA) = ℓ(Γ). Applying [5, Corollary 3.5] to ΓDA, we obtain

τ(ΓDA) =
ℓ(Γ)

48
+

τ(Γ)

4
+

z(Γ)

24
. (12)

Applying [5, Corollary 3.5] to (Γ− ei)
DA, we obtain

τ((Γ− ei)
DA) =

ℓ(Γ− ei)

48
+

τ(Γ− ei)

4
+

z(Γ− ei)

24
. (13)

Substituting Equation (12) and Equation (13) into Theorem 4.1, and recalling that ℓ(Γ−
ei) = ℓ(Γ)− Li gives

τ(Γ) = τ(Γ− ei) +
Li

12
− Ri

6
− Ki(Γ)

6
+

16Api,qi,Γdi

Li +Ri
. (14)

Comparing Equation (14) with Lemma 3.4 gives the result.

Let p, q be any two points in Γ, and let e0 be a line segment of length L. By identifying
the end points of e0 with p and q of Γ we obtain a new graph which we denote by Γ(p,q).
Then ℓ(Γ(p,q)) = ℓ(Γ) + L. Also, by identifying p and q with each other in Γ we obtain
a graph which we denote by Γpq. Then ℓ(Γpq) = ℓ(Γ). If p and q are end points of

an edge ei ∈ Γ, then Γpq = Γ̃i. The following corollary is the initial step towards the
contraction-deletion identities (Theorems 4.9 and 4.5).

Corollary 4.4. Let Γ be a metrized graph with resistance function r(x, y), and let p, q,
e0 and Γ(p,q) be as above. Corresponding to the edge e0, suppose that we have the pair of
edges e0,1 and e0,2 in E((Γ(p,q))

DA). Then we have

Ap,q,Γ

L+ r(p, q)
=

16Ap,q,ΓDA

L+ r(p, q)
− 1

6

( ∑

ej∈ E(Γ(p,q))
ej 6=e0

L2
j

Lj +Rj(Γ(p,q))
−

∑

ei∈ E(Γ)

L2
i

Li +Ri

)
.

Proof. Theorem 4.3 applied to Γ(p,q) with edge e0 gives

Ap,q,Γ(p,q)−e0

L+ r(p, q)
=

16Ap,q,(Γ(p,q))DA−{e0,1, e0,2}

L+ r(p, q)
− 1

6

∑

ej∈ E(Γ(p,q))
ej 6=e0

L2
j

Lj +Rj(Γ(p,q))

+
1

6

∑

ei∈ E(Γ(p,q)−e0)

L2
i

Li +Ri
.

On the other hand, we have Γ(p,q)− e0 = Γ and (Γ(p,q))
DA −{e0,1, e0,2} = ΓDA. This gives

the result.
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Let Γ′
(p,q) be a metrized graph obtained from Γ by connecting the points p and q of Γ

with line segment e′0 of length L′. Then, Γ(p,q) − e0 = Γ′
(p,q) − e′0. Let L = t1 · r(p, q) and

L′ = t2 · r(p, q) for some positive real numbers t1 and t2. By applying Corollary 4.4 to
Γ(p,q) and Γ′

(p,q), we obtain

(1 + t1)
(
z(Γ(p,q))−

L2

L+ r(p, q)
− z(Γ)

)
= (1 + t2)

(
z(Γ′

(p,q))−
(L′)2

L′ + r(p, q)
− z(Γ)

)
.

(15)

As t2 → 0, we have L′ → 0 and Γ′
(p,q) → Γpq, and so z(Γ′

(p,q)) → z(Γpq). We substitute

t1 =
L

r(p,q)
into Equation (15). Then we obtain the following relation as t2 → 0:

z(Γ(p,q)) =
L2

L+ r(p, q)
+

L

L+ r(p, q)
z(Γ) +

r(p, q)

L+ r(p, q)
z(Γpq). (16)

We use Equation (16) to obtain the following Theorem:

Theorem 4.5. Let Γ be a metrized graph. For each edge ei ∈ E(Γ) such that Γ − ei is
connected, we have

z(Γ) =
L2
i

Li +Ri
+

Li

Li +Ri
z(Γ− ei) +

Ri

Li +Ri
z(Γi).

Proof. In Equation (16), replace Γ(p,q) by Γ, L by Li, Γ by Γ − ei. This gives what we
wanted to show.

We call the identity in Theorem 4.5 the contraction-deletion identity for z(Γ).
If ei is a bridge (i.e., Ri = ∞), z(Γ) = z(Γi), which can also be seen from Theorem 4.5

as Ri → ∞.
Moreover, for any metrized graph Γ and for each edge ei ∈ E(Γ) such that Γ −

ei is connected, we obtain the expression below for Ki(Γ) by using its definition and
Theorem 4.5:

Ki(Γ) =
Ri

Li +Ri

(
z(Γi)− z(Γ− ei)

)
. (17)

A function f : Rn → R is called homogeneous of degree k if

f(λx1, λx2, . . . , λxn) = λkf(x1, x2, . . . , xn), for λ > 0.

A continuously differentiable function f : Rn → R which is homogeneous of degree k has
the following property:

k · f =
n∑

i=1

xi
∂f

∂xi

. (18)

Equation (18) is called Euler’s formula.
For a given metrized graph Γ with #(E(Γ)) = e, let {L1, L2, . . . , Le} be the edge

lengths. Then z : Re
>0 → R given by z(L1, L2, . . . , Le) = z(Γ) is a continuously differen-

tiable homogeneous function of degree 1, when we consider all possible length distributions
without changing the topology of the graph Γ.
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Lemma 4.6. Let Γ be a metrized graph, and let ei ∈ E(Γ) be an edge of length Li such
that Γ− ei is connected. Then we have

∂z(Γ)

∂Li
=

Li(Li + 2Ri)

(Li +Ri)2
+

Ri

(Li +Ri)2
z(Γ− ei)−

Ri

(Li +Ri)2
z(Γi).

Proof. Note that z(Γi), z(Γ− ei) and Ri are independent of Li. Thus, taking the partial
derivatives of the both sides of the identity in Theorem 4.5 with respect to Li gives the
result.

Theorem 4.7. Let Γ be a bridgeless metrized graph. Then we have

∑

ei∈E(Γ)

LiKi(Γ)

Li +Ri
=

∑

ei∈E(Γ)

LiRi

(Li +Ri)2
(
z(Γi)− z(Γ− ei)

)
=

∑

ei∈E(Γ)

L2
iRi

(Li +Ri)2
.

Proof. The first equality follows from Equation (17). By Euler’s formula,

z(Γ) =
∑

ei∈E(Γ)

Li ·
∂z(Γ)

∂Li
.

Then the second equality follows from Lemma 4.6.

For a given metrized graph Γ with #(E(Γ)) = e, let {L1, L2, . . . , Le} be the edge
lengths. Then r : Re

>0 → R given by r(L1, L2, . . . , Le) = r(Γ) is a continuously differen-
tiable homogeneous function of degree 1, when we consider all possible length distributions
without changing the topology of the graph Γ.

Lemma 4.8. Let Γ be a metrized graph, and let ei ∈ E(Γ) be an edge of length Li such
that Γ− ei is connected. Then we have

∂r(Γ)

∂Li

=
R2

i

(Li +Ri)2
+

Ri

(Li +Ri)2
r(Γ− ei)−

Ri

(Li +Ri)2
r(Γi).

Proof. Since ℓ(Γ) = z(Γ) + r(Γ) for any graph, and ℓ(Γ − ei) = ℓ(Γi) = ℓ(Γ) − Li,
Theorem 4.5 is equivalent to

r(Γ) =
LiRi

Li +Ri
+

Li

Li +Ri
r(Γ− ei) +

Ri

Li +Ri
r(Γi). (19)

Note that r(Γi), r(Γ−ei) andRi are independent of Li. Thus, taking the partial derivatives
of the both sides of Equation (19) with respect to Li gives the result.

Let Γ − ei be a connected graph for an edge ei ∈ E(Γ) of length Li. Suppose pi and
qi are the end points of ei, and p ∈ Γ − ei. By applying circuit reductions, Γ − ei can
be transformed into a Y -shaped graph with the same resistances between pi, qi, and p
as in Γ− ei (see the articles [9] and [5, Section 2]). The resulting graph is shown by the
first graph in Figure 2, with the corresponding voltage values on each segment, where
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 Rbi,p := j
`

qi
Hp, piL

pi qi

p

G - ei

pi qi

p

G
x Li - x

x

Rai,p := j
`

pi
Hp, qiL Rai,p := j

`

pi
Hp, qiL Rbi,p := j

`

qi
Hp, piL

Rci,p := j
`

p Hpi, qiL

Rci,p := j
`

p Hpi, qiL

Figure 2: Circuit reduction of Γ− ei with reference to pi, qi and p.

ĵx(y, z) is the voltage function in Γ− ei. Since Γ− ei has such circuit reduction, Γ has the
circuit reduction as the second graph in Figure 2. From now on, we will use the following
notation: Rai,p := ĵpi(p, qi), Rbi,p := ĵqi(pi, p), Rci,p := ĵp(pi, qi). Let Ri be the resistance
between pi and qi in Γ− ei. Note that Rai,p +Rbi,p = Ri for each p ∈ Γ.

If Γ − ei is not connected, we set Rbi,p = Ri = ∞ and Rai,p = 0 if p belongs to the
component of Γ− ei containing pi, and we set Rai,p = Ri = ∞ and Rbi,p = 0 if p belongs
to the component of Γ− ei containing qi.

In the rest of the paper, for any metrized graph Γ and a fixed vertex p ∈ V (Γ) we will
use the following notation:

y(Γ) =
1

4

∑

ei ∈E(Γ)

LiR
2
i

(Li +Ri)2
+

3

4

∑

ei ∈E(Γ)

Li(Rai,p −Rbi,p)
2

(Li +Ri)2
,

x(Γ) =
∑

ei ∈E(Γ)

L2
iRi

(Li +Ri)2
+

3

4

∑

ei ∈E(Γ)

LiR
2
i

(Li +Ri)2
− 3

4

∑

ei ∈E(Γ)

Li(Rai,p −Rbi,p)
2

(Li +Ri)2
.

Note that x(Γ) and y(Γ) do not depend on the choice of vertices p [5, Lemma 2.11]. If
Γ − ei is not connected for an edge ei, i.e. Ri is infinite (and (Rai,p − Rbi,p)

2 = R2
i ), the

summands should be considered as their corresponding limits as Ri −→ ∞.
It follows from [5, Proposition 2.9] that

τ(Γ) =
ℓ(Γ)

12
− x(Γ)

6
+

y(Γ)

6
. (20)

It is easy to see that

r(Γ) = x(Γ) + y(Γ), and so ℓ(Γ) = x(Γ) + y(Γ) + z(Γ). (21)

We call the following identities the contraction-deletion identities for x(Γ) and y(Γ).
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Theorem 4.9. Let Γ be a metrized graph with an edge ei ∈ E(Γ) such that Γ − ei is
connected. Then we have

x(Γ) =
LiRi

Li +Ri

+
Li

Li +Ri

x(Γ− ei) +
Ri

Li +Ri

x(Γi),

y(Γ) =
Li

Li +Ri

y(Γ− ei) +
Ri

Li +Ri

y(Γi).

Proof. By Equations (19) and (21),

x(Γ) + y(Γ) =
LiRi

Li +Ri

+
Li

Li +Ri

(
x(Γ− ei) + y(Γ− ei)

)
+

Ri

Li +Ri

(
x(Γi) + y(Γi)

)
.

(22)

On the other hand, by Lemma 3.5 and Equation (20) applied to each of Γ, Γ− ei and Γi

we have

x(Γ)− y(Γ) =
LiRi

Li +Ri

+
Li

Li +Ri

(
x(Γ− ei)− y(Γ− ei)

)
+

Ri

Li +Ri

(
x(Γi)− y(Γi)

)
.

(23)

Hence, the result follows from Equation (22) and Equation (23).

Lemma 4.10. Let Γ be a metrized graph with an edge ei ∈ E(Γ) such that Γ − ei is
connected. Let pi and qi be the end points of ei. Then we have

x(Γ)− y(Γ) = x(Γi)− y(Γi) + 6
LiApi,qi,Γ−ei

Ri(Li +Ri)
.

Proof. It follows from Lemma 3.1 and Lemma 3.4 that

τ(Γi) = τ(Γ− ei)−
Ri

6
+

Api,qi,Γ−ei

Ri
. (24)

From Equation (24) and Equation (20) applied to both Γi and Γ− ei, we get

x(Γi)− y(Γi) = x(Γ− ei)− y(Γ− ei) +Ri − 6
Api,qi,Γ−ei

Ri
. (25)

Therefore, we obtain the result by solving Equation (25) for x(Γ − ei) − y(Γ − ei) and
substituting into Equation (23).

For a given metrized graph Γ with #(E(Γ)) = e, let {L1, L2, . . . , Le} be the edge
lengths. Both of the functions x : Re

>0 → R given by x(L1, L2, . . . , Le) = x(Γ) and y :
Re

>0 → R given by y(L1, L2, . . . , Le) = y(Γ) are continuously differentiable homogeneous
functions of degree 1, when we consider all possible length distributions without changing
the topology of Γ.
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Theorem 4.11. Let Γ be a bridgeless metrized graph. Then we have

x(Γ) =
∑

ei∈E(Γ)

LiR
2
i

(Li +Ri)2
+
∑

ei∈E(Γ)

LiRi

(Li +Ri)2
(
x(Γ− ei)− x(Γi)

)
,

y(Γ) =
∑

ei∈E(Γ)

LiRi

(Li +Ri)2
(
y(Γ− ei)− y(Γi)

)
.

Proof. By taking the partial derivatives of the both sides of the equalities in Theorem 4.9
with respect to Li gives

∂x(Γ)

∂Li
=

R2
i

(Li +Ri)2
+

Ri

(Li +Ri)2
x(Γ− ei)−

Ri

(Li +Ri)2
x(Γi),

∂y(Γ)

∂Li

=
Ri

(Li +Ri)2
y(Γ− ei)−

Ri

(Li +Ri)2
y(Γi).

(26)

Therefore, by applying Euler’s formula we obtain the equalities we wanted.

We call the following identities the contraction identities for x(Γ) and y(Γ).

Theorem 4.12. Let Γ be a bridgeless metrized graph with v = #(V (Γ)) > 2. Then we
have

(v − 2)x(Γ) =
∑

ei∈E(Γ)

Ri

Li +Ri
x(Γi), (v − 2)y(Γ) =

∑

ei∈E(Γ)

Ri

Li +Ri
y(Γi),

Proof. Multiplying both sides of the equalities in Theorem 4.9 by Ri

Li+Ri
, and using the

fact that
∑

ei∈E(Γ)
Ri

Li+Ri
= v − 1 (see Equation (3)) we obtain

(v − 1)x(Γ) =
∑

ei∈E(Γ)

LiR
2
i

(Li +Ri)2
+
∑

ei∈E(Γ)

LiRi

(Li +Ri)2
x(Γ− ei) +

∑

ei∈E(Γ)

R2
i

(Li +Ri)2
x(Γi),

(v − 1)y(Γ) =
∑

ei∈E(Γ)

LiRi

(Li +Ri)2
y(Γ− ei) +

∑

ei∈E(Γ)

R2
i

(Li +Ri)2
y(Γi).

(27)

Thus, the result follows from Equation (27) and Theorem 4.11.

We call the first identity in the corollary below the contraction identity for z(Γ).

Corollary 4.13. Let Γ be a bridgeless metrized graph with v = #(V (Γ)) > 2. Then we
have

(v − 1)z(Γ) =
∑

ei∈E(Γ)

Ri

Li +Ri
z(Γi), (v − 2)r(Γ) =

∑

ei∈E(Γ)

Ri

Li +Ri
r(Γi).
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Proof. The second equality follows by adding the expressions in Theorem 4.12 and using
Equation (21). Using the second equality along with the facts that z(Γ) = ℓ(Γ) − r(Γ),

z(Γi) = ℓ(Γ) − Li − r(Γi) and
∑

ei∈E(Γ)

Ri

Li +Ri
= v − 1 (see Equation (3)), we obtain the

first equality.

Corollary 4.14. Let Γ be a bridgeless metrized graph with v = #(V (Γ)) > 3. Then we
have

τ(Γ) =
ℓ(Γ)

12
− 1

6(v − 2)

∑

ei∈E(Γ)

Ri

Li +Ri

(
x(Γi)− y(Γi)

)
.

Proof. By Theorem 4.12, we have

(v − 2)(x(Γ)− y(Γ)) =
∑

ei∈E(Γ)

Ri

Li +Ri

(
x(Γi)− y(Γi)

)
. (28)

Thus, the result follows from Equation (20).

We call the identities in Theorem 4.15 and Corollary 4.16 the deletion identities.

Theorem 4.15. Let Γ be a bridgeless metrized graph. Then we have

g · x(Γ) = y(Γ) +
∑

ei∈E(Γ)

Li

Li +Ri

x(Γ− ei), (g + 1)y(Γ) =
∑

ei∈E(Γ)

Li

Li +Ri

y(Γ− ei).

Proof. Multiplying both sides of the equalities in Theorem 4.9 by Li

Li+Ri
, and using the

fact that
∑

ei∈E(Γ)
Li

Li+Ri
= g (see Equation (3)) we obtain

g · x(Γ) =
∑

ei∈E(Γ)

L2
iRi

(Li +Ri)2
+
∑

ei∈E(Γ)

L2
i

(Li +Ri)2
x(Γ− ei) +

∑

ei∈E(Γ)

LiRi

(Li +Ri)2
x(Γi),

g · y(Γ) =
∑

ei∈E(Γ)

L2
i

(Li +Ri)2
y(Γ− ei) +

∑

ei∈E(Γ)

LiRi

(Li +Ri)2
y(Γi).

(29)

The first equality is obtained by adding the first equalities in Theorem 4.11 and Equa-
tion (29) and using the fact that r(Γ) = x(Γ) + y(Γ).

Similarly, the second equality is obtained by adding the second equalities in Theo-
rem 4.11 and Equation (29).

Corollary 4.16. Let Γ be a bridgeless metrized graph. Then we have

(g − 1)z(Γ) =
∑

ei∈E(Γ)

Li

Li +Ri

z(Γ− ei), g · r(Γ) =
∑

ei∈E(Γ)

Li

Li +Ri

r(Γ− ei).
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Proof. Adding the identities in Theorem 4.15 and using the fact that r(Γ) = x(Γ) + y(Γ)
give the second formula.

Then the first formula is obtained by using the second formula, Equation (3) and the
fact that ℓ(Γ) = z(Γ) + r(Γ).

Corollary 4.17. Let Γ be a bridgeless metrized graph. Then we have

τ(Γ) =
ℓ(Γ)

12
− 1

6(g + 1)

∑

ei∈E(Γ)

Li

Li +Ri

(
x(Γ− ei)− y(Γ− ei)

)

− 1

6(g + 1)g

∑

ei∈E(Γ)

Li

Li +Ri
r(Γ− ei).

Proof. By Theorem 4.15 and the fact that r(Γ) = x(Γ) + y(Γ), we have

(g + 1) · (x(Γ)− y(Γ)) = r(Γ) +
∑

ei∈E(Γ)

Li

Li +Ri

(
x(Γ− ei)− y(Γ− ei)

)
. (30)

Thus, the result follows from Equation (20) and the second identity in Corollary 4.16.

In this section, we proved the following identities among other things:
By Theorem 4.9 and Theorem 4.5, the contraction-deletion identities for a metrized

graph Γ and for an edge ei ∈ E(Γ) with connected Γ− ei are

x(Γ) =
LiRi

Li +Ri
+

Li

Li +Ri
x(Γ− ei) +

Ri

Li +Ri
x(Γi),

y(Γ) =
Li

Li +Ri
y(Γ− ei) +

Ri

Li +Ri
y(Γi),

z(Γ) =
L2
i

Li +Ri

+
Li

Li +Ri

z(Γ− ei) +
Ri

Li +Ri

z(Γi).

(31)

By Theorem 4.12 and Corollary 4.13, the contraction identities for a bridgeless metrized
graph with v = #(V (Γ)) > 2 are

(v − 2)x(Γ) =
∑

ei∈E(Γ)

Ri

Li +Ri
x(Γi), (v − 2)y(Γ) =

∑

ei∈E(Γ)

Ri

Li +Ri
y(Γi),

(v − 1)z(Γ) =
∑

ei∈E(Γ)

Ri

Li +Ri
z(Γi), (v − 2)r(Γ) =

∑

ei∈E(Γ)

Ri

Li +Ri
r(Γi).

(32)

By Theorem 4.15 and Corollary 4.16, the deletion identities for a bridgeless Γ are

g · x(Γ) = y(Γ) +
∑

ei∈E(Γ)

Li

Li +Ri
x(Γ− ei), (g + 1)y(Γ) =

∑

ei∈E(Γ)

Li

Li +Ri
y(Γ− ei),

(g − 1)z(Γ) =
∑

ei∈E(Γ)

Li

Li +Ri

z(Γ− ei), g · r(Γ) =
∑

ei∈E(Γ)

Li

Li +Ri

r(Γ− ei).

(33)
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Also, for a bridgeless Γ the following identity of Theorem 4.7 deserves attention:

∑

ei∈E(Γ)

LiKi(Γ)

Li +Ri

=
∑

ei∈E(Γ)

LiRi

(Li +Ri)2
(
z(Γi)− z(Γ− ei)

)
=

∑

ei∈E(Γ)

L2
iRi

(Li +Ri)2
. (34)

5 Successive edge contraction

In this section, we will successively contract edges in E(Γ) for any metrized graph Γ. The
contraction identities developed in the previous section will enable us to generalize the
results of §3 and some of the results of §4. The results of this section will help us to
understand the effects of topological properties of Γ, such as the edge connectivity, on
τ(Γ).

Let Γ be a metrized graph and let Γi be the metrized graph obtained by contracting
i-th edge ei ∈ E(Γ) to its end points. Similarly, for any integer k > 2, let Γi1,i2,...,ik be the
metrized graph obtained by contracting ik-th edge eik ∈ E(Γi1,i2,...,ik−1

) to its end points.

Note that E(Γi1,i2,...,ik) = E(Γ)− {ei1 , ei2, . . . , eik} for any k. Let Γi0 := Γ.
Let eik ∈ E(Γ) be an edge of index ik. Recall that we denote the resistance between

the end points of eik in Γ− eik by Rik and that we use Lik to denote the length of eik .
Now, we generalize Equation (28) as follows:

Lemma 5.1. Let Γ be a bridgeless metrized graph with (k + 2) 6 v = #(V (Γ)) for some
integer k > 1. Then

(v − 2)!

(v − k − 2)!

(
x(Γ)− y(Γ)

)
=

∑

ei1∈ E(Γ)

Ri1

Li1 +Ri1

∑

ei2∈

E(Γi1
)

Ri2

Li2 +Ri2

. . .

∑

eik∈ E(Γi1,...,ik−1
)

Rik

Lik +Rik

(
x(Γi1,...,ik)− y(Γi1,...,ik)

)
.

Proof. Note that if an edge of a bridgeless graph is contracted the resulting graph will
be also bridgeless. Contraction of a self loop does not change the number of vertices.

However, if an edge eij is a self loop, then
Rij

Lij
+Rij

= 0. Thus, contraction of self loops

does not contribute to sums in contraction identities. Hence, we can inductively apply
Equation (28) to obtain the result.

Multiple edges or self loops may appear after contracting an edge, but this does not
cause any problem for any of the contraction identities.

We can generalize Corollary 4.14 as follows:

Theorem 5.2. Let Γ be a bridgeless metrized graph with (k+2) 6 v = #(V (Γ)) for some
integer k > 1. Then we have
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τ(Γ) =
ℓ(Γ)

12
− (v − k − 2)!

6(v − 2)!

∑

ei1∈ E(Γ)

Ri1

Li1 +Ri1

∑

ei2∈

E(Γi1
)

Ri2

Li2 +Ri2

. . .

∑

eik∈ E(Γi1,...,ik−1
)

Rik

Lik +Rik

(
x(Γi1,...,ik)− y(Γi1,...,ik)

)
.

Proof. We can use Lemma 5.1 and Equation (20) to obtain the result.

Here is another formula for r(Γ):

Proposition 5.3. Let Γ be a bridgeless graph with 3 6 v = #(V (Γ)). Then for any k
with k + 2 6 v,

k(v − 2)!

(v − k − 1)!
r(Γ) =

∑

ei1∈E(Γ)

Ri1

Li1 +Ri1

· · ·
∑

eik∈

E(Γi1,...,ik−1
)

Rik

Lik +Rik

k∑

t=1

Lit . (35)

Proof. By applying the second part of Corollary 4.13 successively, we obtain

(v − 2)!

(v − k − 2)!
r(Γ) =

∑

ei1∈E(Γ)

Ri1

Li1 +Ri1

· · ·
∑

eik∈

E(Γi1,...,ik−1
)

Rik

Lik +Rik

r(Γi1,...,ik).
(36)

Now, we can use induction on k to show the identity in the proposition. When k = 1, the
result holds trivially by the definition of r(Γ). Suppose the result is true for k = n where
n+ 3 6 v. Let A be the right hand side of Equation (35) for k = n+ 1. By splitting the
sum

∑n+1
t=1 Lit =

(∑n
t=1 Lit

)
+ Lin+1 we have

A =
∑

ei1∈

E(Γ)

Ri1

Li1 +Ri1

· · ·
∑

ein∈

E(Γi1,...,in−1
)

Rin

Lin +Rin

n∑

t=1

Lit

∑

ein+1
∈

E(Γi1,...,in
)

Rin+1

Lin+1 +Rin+1

+
∑

ei1∈

E(Γ)

Ri1

Li1 +Ri1

· · ·
∑

ein∈

E(Γi1,...,in−1
)

Rin

Lin +Rin

r(Γi1,...,in)

= (v − n− 1)
∑

ei1∈
E(Γ)

Ri1

Li1 +Ri1

· · ·
∑

ein∈

E(Γi1,...,in−1
)

Rin

Lin +Rin

n∑

t=1

Lit +
(v − 2)!

(v − n− 2)!
r(Γ)

by Equation (3) applied to Γi1,...,in, and by Equation (36).

=
(n+ 1)(v − 2)!

(v − n− 2)!
r(Γ), by the induction assumption.

Hence the result follows.
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Note that Equation (36) generalizes the second equation in Corollary 4.13.

Corollary 5.4. Let Γ be a bridgeless graph with 3 6 v = #(V (Γ)). Then

(v − 2)(v − 2)!r(Γ) =
∑

ei1∈

E(Γ)

Ri1

Li1 +Ri1

· · ·
∑

eiv−2
∈

E(Γi1,...,iv−3
)

Riv−2

Liv−2 +Riv−2

v−2∑

t=1

Lit .

Proof. The result follows from Proposition 5.3 with k = v − 2.

Corollary 5.5. Let Γ be a bridgeless graph with 3 6 v = #(V (Γ)) and e edges. For any
k ∈ {1, 2, . . . , v − 2}, let Ak = {

∑k
t=1 Lit |{i1, . . . , ik} ⊆ {1, 2, . . . , e}}. Let Ck = max (Ak)

and ck = min (Ak). Then we have

(v − 1)

k
ck 6 r(Γ) 6

(v − 1)

k
Ck, and in particular,

v − 1

v − 2
cv−2 6 r(Γ) 6

v − 1

v − 2
Cv−2.

Proof. The result follows from Proposition 5.3 and Equation (3).

Note also that successive application of the first part of Corollary 4.13 gives

(v − 1)!

(v − k − 1)!
z(Γ) =

∑

ei1∈

E(Γ)

Ri1

Li1 +Ri1

· · ·
∑

eik∈

E(Γi1,...,ik−1
)

Rik

Lik +Rik

z(Γi1,...,ik).
(37)

The following theorem generalizes Theorem 3.3.

Theorem 5.6. Let Γ be a bridgeless metrized graph with (k+2) 6 v = #(V (Γ)) for some
integer k > 1. Then

τ(Γ) =
(v − k − 2)!

(v − 2)!

∑

ei1∈ E(Γ)

Ri1

Li1 +Ri1

· · ·
∑

eik∈

E(Γi1,...,ik−1
)

Rik

Lik +Rik

τ(Γi1,...,ik)−
k · z(Γ)

12(v − k − 1)

Proof. First, we note that τ(Γi1,...,ik) =
ℓ(Γi1,...,ik

)

12
− x(Γi1,...,ik

)−y(Γi1,...,ik
)

6
by Equation (20),

and ℓ(Γi1,...,ik) = ℓ(Γ) −
∑k

t=1 Lit . Then the result follows by applying Theorem 5.2 and
Proposition 5.3.

Corollary 5.7. Let Γ be a bridgeless metrized graph with 3 6 v = #(V (Γ)). Then

τ(Γ) =
1

(v − 2)!

∑

ei1∈

E(Γ)

Ri1

Li1 +Ri1

· · ·
∑

eiv−2
∈

E(Γi1,...,iv−3
)

Riv−2

Liv−2 +Riv−2

τ(Γi1,...,iv−2)−
v − 2

12
z(Γ).

Proof. The result follows from Theorem 5.6 with k = v − 2.
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p q

Figure 3: A Banana graph with self loops.

Recall that Theorem 3.3 is valid for graphs with more than 2 vertices. If an edge eik
is not a self loop in Γi1,i2,...,ik−1

, then #(V (Γi1,i2,...,ik)) = #(V (Γi1,i2,...,ik−1
)) − 1. We call

Γi1,i2,...,iv−2 an admissible contraction of Γ, if it is obtained from Γ by contracting edges
with distinct end points, i.e., if we have #(V (Γi1,i2,...,iv−2)) = 2. Note that such graphs
are the only ones that contribute to the sum in Corollary 5.7.

Let Γi1,i2,...,iv−2 be an admissible contraction of Γ, and let V (Γi1,...,iv−2) = {p, q}.
Let n′ := n(i1, . . . , iv−2) be the number of multiple edges in Γi1,...,iv−2 , and let B′ :=
{ej1, ej2 , . . . ejn′

} be the set of multiple edges in Γi1,...,iv−2. Note that Γi1,...,iv−2 possibly has

self-loops at p or q. Figure 3 illustrates Γi1,...,iv−2. For the resistance function r′(x, y) in
Γi1,...,iv−2, we have r′(p, q) = 1

∑n′

t=1
1

Ljt

by circuit theory. Therefore,

Proposition 5.8. Let Γ be a bridgeless metrized graph. Using the notation above, for
each admissible contraction Γi1,...,iv−2 of Γ, we have

x(Γi1,...,iv−2) = (n′ − 1) · r′(p, q), y(Γi1,...,iv−2) = r′(p, q).

Proof. First note that r′(p, q) = LtRt

Lt+Rt
for each et ∈ B′, and Rit = 0 if eit 6∈ B′.

r(Γi1,...,iv−2) =
∑

et ∈B′

LtRt

Lt +Rt

= n′ · r′(p, q). (38)

Moreover, (Rai,p −Rbi,p)
2 = R2

i for each ei ∈ E(Γi1,...,iv−2). Thus, by definition

x(Γi1,...,iv−2) =
∑

eiv−1
∈E(Γi1,...,iv−2

)

L2
iv−1

Riv−1

(Liv−1 +Riv−1)
2
=
∑

et ∈B′

L2
tRt

(Lt +Rt)2

= r′(p, q)
∑

et ∈B′

Lt

Lt +Rt

= r′(p, q)(n′ − 1),

where the last equality follows from Equation (3). This proves the first equality, and the
second equality follows from the first equality and Equation (38).

The following theorem gives another formula for the tau constant, and it is in some
sense an improved version of Theorem 2.6.
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Theorem 5.9. Let Γ be a bridgeless metrized graph with 3 6 v = #(E(Γ)). Let p, q, n′

and B′ be as defined above.

τ(Γ) =
ℓ(Γ)

12
− 1

6 · (v − 2)!

∑

ei1∈ E(Γ)

Ri1

Li1 +Ri1

· · ·
∑

eiv−2
∈

E(Γi1,...,iv−3
)

Riv−2

Liv−2 +Riv−2

(n′ − 2)r′(p, q).

Proof. We have x(Γi1,...,iv−2)− y(Γi1,...,iv−2) = (n′ − 2) · r′(p, q), by Proposition 5.8. There-
fore, we obtain what we want by using Theorem 5.2 with k = v − 2.

6 Edge connectivity and the tau constant

In this section, we will prove that Conjecture 1.1 holds with C = 1
108

for any graph Γ
with edge connectivity more than or equal to 6, and we will give a lower bound to the tau
constant in terms of edge connectivity.

Let Γ be a bridgeless metrized graph, and let Γi1,...,iv−2, n
′, p, q, r′(p, q) and B′ be as

in §5. Recall that n′ := n(i1, . . . , iv−2) is the number of multiple edges in Γi1,...,iv−2 and
that B′ := {e1, e2, . . . , en′} is the set of multiple edges in Γi1,...,iv−2 . We will show that a
lower bound for

N(Γ) := min{n′|{i1, . . . , iv−2} ⊂ {1, 2, . . . , e}}.
gives a lower bound for τ(Γ). We will make some observations about N(Γ) after recalling
some basic definitions from graph theory.

We recall the following inequality between the edge connectivity Λ(Γ) , vertex connec-
tivity κ(Γ), and the minimum degree of the valences δ(Γ).

Lemma 6.1. [1, pg. 3] For a graph Γ, we have κ(Γ) 6 Λ(Γ) 6 δ(Γ).

Recall that a metrized graph is connected by definition.

Lemma 6.2. Let Γ be a graph. Then N(Γ) = Λ(Γ).

Proof. If #V (Γ) = 2, then Γ is a banana graph with possibly self-loops. Then N(Γ) =
Λ(Γ) clearly.

Note that when we contract an edge of a graph Γ with V (Γ) > 3, the edge connectivity
either does not change or increases. Therefore, Λ(Γi1,...,iv−2) > Λ(Γ) for the contraction of
any edges ei1 , . . . , eiv−2. Since n′ = Λ(Γi1,...,iv−2) > Λ(Γ), we have N(Γ) > Λ(Γ).

Let k = Λ(Γ), and let e1, e2, . . . , ek be edges such that Γ − {e1, e2, . . . , ek} is discon-
nected but Γ− ({e1, e2, . . . , ek}− ej) is connected for each ej where 1 6 j 6 k. Also, let p
and q be the end points of the edge ek. Note that ek is a bridge in Γ− {e1, e2, . . . , ek−1}.
That is, Γ − {e1, e2, . . . , ek−1} = β ∪ ek ∪ γ for some graphs β and γ with β ∩ ek = {p}
and γ ∩ ek = {q}. Let β and γ have s + 1 and t + 1 vertices, respectively. Contract
edges in E(β), say ei1, ei2 , . . . , eis, one by one until β has 1 vertex. This can be done by
contracting only the edges that are not self loops at any step of this contraction process.
Similarly, contract edges in E(γ), say el1 , el2 , . . . , elt , one by one until γ has 1 vertex. Then,
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s+t = v−2 and n(i1, i2, . . . , is, l1, l2, . . . , lt) = k for the contraction graph Γi1,i2,...,is,l1,l2,...,lt .
That is, we obtain a banana graph with vertices p and q, and bridges e1, e2, . . . , ek after
the contractions. Thus, N(Γ) 6 Λ(Γ).

Hence, the result follows.

We will need the following computation before we relate the edge connectivity Λ(Γ)
to τ(Γ).

Corollary 6.3. Let Γ be a bridgeless metrized graph with genus g. Then for any admissible
contraction Γi1,...,iv−2 of Γ we have

g · y(Γi1,...,iv−2) > x(Γi1,...,iv−2) > (Λ(Γ)− 1) · y(Γi1,...,iv−2).

Proof. Since Γi1,...,iv−2 has e − (v − 2) = g + 1 edges, g + 1 > max{n′|{i1, . . . , iv−2} ⊂
{1, 2, . . . , e}}. Then the first inequality follows from Proposition 5.8. The second inequal-
ity follows from Lemma 6.2 and Proposition 5.8.

When k = v − 2, Equation (37) becomes

(v − 1)!z(Γ) =
∑

ei1∈

E(Γ)

Ri1

Li1 +Ri1

· · ·
∑

eiv−2
∈

E(Γi1,...,iv−3
)

Riv−2

Liv−2 +Riv−2

∑

eiv−1
∈

E(Γi1,...,iv−2
)

L2
iv−1

Liv−1 +Riv−1

.
(39)

Lemma 6.4. For each admissible contraction Γi1,...,iv−2 of Γ as above we have

∑

et∈B′

L2
t

Lt +Rt
> n′ · (n′ − 1)r′(p, q).

Proof. We have 1
n′

∑
et∈B′ Lt >

n′

∑
et∈B′

1
Lt

by Arithmetic-Harmonic Mean inequality. On

the other hand,
∑

et∈B′ Lt =
∑

et∈B′

L2
t

Lt+Rt
+
∑

et∈B′

LtRt

Lt+Rt
, and r′(p, q) = 1

∑n′

t=1
1

Ljt

. Thus

the result follows from Equation (38).

Lemma 6.5. Let Γ be a bridgeless metrized graph. Then we have z(Γ) > Λ(Γ)
v−1

x(Γ).

Proof. If we apply the first part of Theorem 4.12 successively, we derive the following
expression:

x(Γ) =
1

(v − 2)!

∑

ei1∈E(Γ)

Ri1

Li1 +Ri1

· · ·
∑

eiv−2
∈

E(Γi1,...,iv−3
)

Riv−2

Liv−2 +Riv−2

x(Γi1,...,iv−2).
(40)

On the other hand, for each admissible contraction Γi1,...,iv−2 of Γ, x(Γi1,...,iv−2) = (n′ −
1)r′(p, q) by Proposition 5.8. Then the result follows from Equation (39), Lemma 6.2,
Lemma 6.4, and Equation (40).
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Set

w(Γ) :=
1

(v − 2)!

∑

ei1∈

E(Γ)

Ri1

Li1 +Ri1

· · ·
∑

eiv−2
∈

E(Γi1,...,iv−3
)

Riv−2

Liv−2 +Riv−2

∑

eiv−1
∈

E(Γi1,...,iv−2
)

L3
iv−1

(Liv−1 +Riv−1)
2
.

Then we have

Lemma 6.6. Let Γ be a bridgeless metrized graph. Then (v − 1)z(Γ) = w(Γ) + x(Γ).

Proof. The result follows from Equations (39) and (40), and using the fact that

x(Γi1,...,iv−2) =
∑

eiv−1
∈E(Γi1,...,iv−2

)

L2
iv−1

Riv−1

(Liv−1 +Riv−1)
2

(cf. proof of Proposition 5.8).

Lemma 6.7. [5, Lemma 2.26] Let Γ be a normalized metrized graph. Then

∑

ei∈E(Γ)

LiR
2
i

(Li +Ri)2
>

( ∑

ei∈E(Γ)

LiRi

Li +Ri

)2
.

Lemma 6.8. [5, Lemma 2.12] Let Γ be a metrized graph and p ∈ V (Γ). Then if ei ∼ p
indicates that edge ei is incident to vertex p

∑

ei∈E(Γ)

Li(Rai,p − Rbi,p)
2

(Li +Ri)2
=

2

v

∑

ei∈E(Γ)

LiR
2
i

(Li +Ri)2
+

1

v

∑

p∈V (Γ)

(
∑

ei 6∼p
ei∈E(Γ)

Li(Rai,p −Rbi,p)
2

(Li +Ri)2

)
.

We have the following relations between x(Γ) and y(Γ):

Theorem 6.9. Let Γ be a normalized bridgeless metrized graph with #(V (Γ)) = v, and
let x = x(Γ), y = y(Γ). Then we have

1. τ(Γ) = 1
12

− x
6
+ y

6
,

2. 1 >
Λ(Γ)+v−1

v−1
x+ y, x > 0, and y > 0,

3. y >
v+6
4v

(x+ y)2,

4. g · y > x > (Λ(Γ)− 1)y.

Proof. Since Γ is normalized, ℓ(Γ) = 1. Thus, part (1) follows from Equation (20).
Part (2) follows from Lemma 6.5 and Equation (21).
By Lemma 6.8 and the definition of y, we have

y >
v + 6

4v

∑

ei∈E(Γ)

LiR
2
i

(Li +Ri)2
. (41)
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Figure 4: The lower bound for τ(Γ) when Λ(Γ) > 6 and v → ∞. A = (5
9
, 1
9
), B = (3

4
, 1
4
),

C = (13
18
, 5
18
). Shaded part illustrates x+ y 6 1 and 2

√
y > x+ y.

Thus, part (3) follows from Equation (41) and Lemma 6.7.
We have g · y(Γi1,...,iv−2) > x(Γi1,...,iv−2) > (Λ(Γ)−1) · y(Γi1,...,iv−2) by Corollary 6.3. We

inductively apply Theorem 4.12 to obtain

(v − 2)!y(Γ) =
∑

ei1∈ E(Γ)

Ri1

Li1 +Ri1

∑

ei2∈

E(Γi1
)

Ri2

Li2 +Ri2

· · ·
∑

eiv−2
∈

E(Γi1,...,iv−3
)

Riv−2

Liv−2 +Riv−2

y(Γi1,...,iv−2).

Thus, using Equation (40) we have part (4).

Now, we can state the main result of this paper:

Theorem 6.10. Let Γ be a metrized graph with v vertices. Then we have

1. τ(Γ) > ℓ(Γ)
(

1
12
(1 − 4

Λ(Γ)
)2 + 4(Λ(Γ)−2)

(v+6)Λ(Γ)2

)
, if Λ(Γ) > 4. In particular, τ(Γ) > ℓ(Γ)

108
if

Λ(Γ) > 6, and τ(Γ) > ℓ(Γ)
300

if Λ(Γ) = 5.

2. τ(Γ) > ℓ(Γ)
2(v+6)

. In particular, τ(Γ) > ℓ(Γ)
108

if v 6 48.

Proof. If an edge ei ∈ E(Γ) is a bridge of length Li, then it contributes to τ(Γ) by Li

4
(see

[5, Corollaries 2.22 and 2.23] for more information). Therefore, we can assume that Γ is
bridgeless by using Remark 2.3. On the other hand, by using the scale-independence of
the tau constant (see Remark 2.4), we can assume that Γ is normalized.
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Now, we look for x and y values that satisfy the inequalities in parts (2), (3), and (4)
of Theorem 6.9 and minimize 1

12
− x

6
+ y

6
. This optimization problem can be solved by the

following two ways using elementary calculus.
First way:
Figure 4 illustrates some of the inequalities given in Theorem 6.9. The lines x+ y = 1

and x = 3y intersect at a point B with coordinates (3
4
, 1
4
). Whenever Λ(Γ) > 4, we see

that the line x = (Λ(Γ) − 1)y and the parabola y = v+6
4v

(x + y)2 intersect at the point

with coordinates x = 4v(Λ(Γ)−1)
(v+6)Λ(Γ)2

and y = 4v
(v+6)Λ(Γ)2

, and that these give a lower bound to
1
12

− x
6
+ y

6
. This proves the first inequality in part (1).

The line 1
12
− x

6
+ y

6
= c is tangential to the parabola y = v+6

4v
(x+ y)2 at the point with

coordinates x = 3v
4(v+6)

and y = v
4(v+6)

, and that these give a lower bound to 1
12

− x
6
+ y

6
.

This proves the first inequality in part (2).
The remaining parts are immediate from what we have shown.
Second way:

Using the inequalities in parts (3) and (4) of Theorem 6.9, we obtain
√

4v
v+6

y > x+y >

Λ(Γ)y and
√

4v
v+6

y−2y > x−y. Therefore, we obtain y 6
4v

(v+6)Λ(Γ)2
and τ(Γ) = 1

12
− x−y

6
>

1
12

− 1
6

√
4v
v+6

y + y
3
. Since the minimum value of the parabola f(y) = 1

12
− 1

6

√
4v
v+6

y + y
3

on [0, 4v
(v+6)Λ(Γ)2

] occurs at y = v/(4(6 + v)) for Λ(Γ) 6 3, and at y = 4v
(v+6)Λ(Γ)2

when

Λ(Γ) > 4, one obtains the proof of the theorem.

Theorem 6.11. Let Γ be a normalized bridgeless metrized graph. If all the edge lengths
are equal to each other, then we have

1

12
− v − 1

6e
+

v − 1

3eΛ(Γ)
> τ(Γ) >

1

12

(g
e

)2
+

1

2v

(v − 1

e

)2
.

In particular, if Γ is an n-regular metrized graph and Λ(Γ) = n, we have

1

12
− (v − 1)(n− 2)

3vn2
> τ(Γ) >

1

12
− (v − 1)((n− 1)v2 − 5v + 6)

3n2v3
.

Proof. Since Li =
1
e
for each edge, x(Γ)+ y(Γ) = v−1

e
by Equation (3) and Equation (21).

Therefore, parts (3) and (4) of Theorem 6.9 are equivalent to v−1
Λ(Γ)e

> y >
v+6
4v

(v−1
e
)2, and

Equation (20) is equivalent to τ(Γ) = 1
12

− v−1
6e

+ y
3
. These give the first two inequalities.

The final two inequalities follow from the fact that e = nv
2

when Γ is n-regular.

7 Cubic graphs

In this section, we will show that Conjecture 1.1 holds for all metrized graphs if it holds
for cubic metrized graphs. We call a 3-regular metrized graph a “cubic metrized graph”
or “cubic graph” for short. We will consider the metrized graphs with κ(Γ) > 2 where
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 p     p      p      p

Figure 5: Transforming a non-cubic graph Γ to a cubic graph.

κ(Γ) is the vertex connectivity. By Remark 2.3, this would be enough to prove Conjecture
1.1.

We will use the following notation and graph constructions.
Suppose Γ is a normalized metrized graph, i.e., ℓ(Γ) = 1, and p ∈ V (Γ) is a vertex with

valence n > 4. We want to transform Γ into another normalized metrized graph, ΓN
p,(n−3),

by adding new edges and new vertices of valence 3 to Γ in such a way that the valence of the
vertex p becomes 3 in ΓN

p,(n−3). In ΓN
p,(n−3), we add n−3 new vertices p1, p2, . . . , pn−3 and n−

3 new edges ep,1, ep,2, . . . , ep,(n−3) with pairs of end points {p1, p2}, {p2, p3}, . . . , {pn−3, p},
respectively. Figure 5 shows the details of the transformation. The first graph in Figure
5 shows Γ.

Suppose the edges with end point p are given in a specified order. We disconnect the
first and the second edges from p. Then we reconnect them to p via adding edge ep,1,
with end points {p1, p} and of length εp,1, so that the new vertex p1 becomes the end
point of the first edge, the second edge and the new edge ep,1. We denote this graph by
Γp,1. Note that ℓ(Γp,1) = ℓ(Γ) + εp,1 = 1 + εp,1 and if we contract the new edge ep,1, we
obtain Γ. Also, the valence of p in Γp,1 is n− 1. Then we obtain ΓN

p,1 by normalizing Γp,1.
ΓN
p,1 is the second graph in Figure 5. Note that the graphs Γp,1 and ΓN

p,1 have the same
shape, i.e. the same topology. At the next step, we disconnect ep,1 and the third edge
with vertex p from p, then we reconnect them via adding the edge ep,2, with end points
{p2, p} and of length εp,2, so that the new vertex p2 becomes the end point of third edge,
ep,1 and ep,2. We denote this graph by Γp,2. Note that the valence of p in Γp,2 is n − 2.
Then by normalizing Γp,2 we obtain ΓN

p,2 which is shown by the third graph in Figure 5.
We continue this process until the valence of p becomes 3, i.e., until we obtain the graphs
Γp,(n−3) and ΓN

p,(n−3).

Note that εp,k > 0 for each k = 1, 2, . . . , n− 3. Since κ(Γ) > 2, Γp,k − ep,k is connected
for each k = 1, 2, . . . , n− 3. Let ΓN

p,0 := Γ.

Lemma 7.1. Let k ∈ {0, 1, . . . , n−4} and let ΓN
p,k+1, Γ

N
p,k, p and εp,k+1 be as above. Then

τ(ΓN
p,k+1) 6 τ(ΓN

p,k) +
εp,k+1

1 + εp,k+1
· ( 1
12

− τ(ΓN
p,k)).

Proof. Let ep,k+1, p
k, pk+1, Γ, ΓN

p,k, Γp,k+1, Γ
N
p,k+1, εp,k+1 be as above.

Note that we can obtain ΓN
p,k from Γp,k+1 by contracting the edge ep,k+1 to its end
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points. Since Γp,k − ep,k is connected, we can apply Lemma 3.1. This gives

τ(Γp,k+1) = τ(ΓN
p,k) +

εp,k+1

12
− εp,k+1Ak

R̄k+1(εp,k+1 + R̄k+1)
, (42)

where Ak := Apk,pk+1,Γp,k+1−ep,k+1
and R̄k+1 is the resistance, in Γp,k+1− ep,k+1, between pk

and pk+1.
Since ℓ(Γp,k+1) = 1 + εp,k+1,

τ(Γp,k+1) = (1 + εp,k+1) · τ(ΓN
p,k+1). (43)

Substituting Equation (43) into Equation (42) gives

τ(ΓN
p,k+1) =

τ(ΓN
p,k)

1 + εp,k+1
+

εp,k+1

1 + εp,k+1
· ( 1
12

− Ak

R̄k+1(εp,k+1 + R̄k+1)
)

= τ(ΓN
p,k) +

εp,k+1

1 + εp,k+1
· ( 1
12

− Ak

R̄k+1(εp,k+1 + R̄k+1)
− τ(ΓN

p,k))

6 τ(ΓN
p,k) +

εp,k+1

1 + εp,k+1

· ( 1
12

− τ(ΓN
p,k)),

(44)

since Ak > 0, R̄k+1 > 0 and εp,k+1 > 0. This proves the result.

Theorem 7.2. If there exists a positive constant C such that τ(β) > C for any normalized
cubic graph β, then τ(Γ) > C for any normalized graph Γ.

Proof. Let Γ be an arbitrary normalized metrized graph. By the additive property of
the tau constant (Remark 2.3) we can assume that Γ has no cut vertices. If Γ is a loop,
then τ(Γ) = 1

12
. Thus, we can assume that Γ has a vertex with valence at least 3. After

removing all vertices of valence 2 from V (Γ), we can assume that all vertices have valence
at least 3. Suppose Γ is not a cubic graph. Then by basic graph theory e > 3

2
v, where

e = #(E(Γ)) and v = #(V (Γ)) More precisely, this follows from the fact that the sum of
the degrees of vertices equals twice the number of edges in any graph [11, pg 7, Theorem
1.12]. Let ε0 :=

ε
2e−3v

, for some arbitrary ε > 0.
Since Γ is not cubic, there exists a vertex p ∈ V (Γ) with υ(p) > 4. We construct the

graphs Γp,k+1 and ΓN
p,k+1 for each k = 0, 1, . . . υ(p) − 4 as mentioned at the beginning of

this section. In these constructions, for each k we take

εp,k+1 =

{
ε0

1
12

−τ(ΓN
p,k

)
, if 1

12
6= τ(ΓN

p,k)

a positive number, otherwise.

Note that 1
12

> τ(ΓN
p,k) by [5, Corollary 5.8]. Then in both cases we have

τ(ΓN
p,k+1) 6 τ(ΓN

p,k) + ε0. (45)
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By considering Equation (45) for each k = 0, 1, . . . υ(p)− 4, we obtain

τ(ΓN
p,υ(p)−3) 6 τ(Γ) + (υ(p)− 3) · ε0.

By following the same procedure for each p ∈ V (Γ) with υ(p) > 4, we obtain a
normalized cubic graph β such that

τ(β) 6 τ(Γ) +
∑

p∈V (Γ)

(υ(p)− 3) · ε0 = τ(Γ) + (2e− 3v) · ε0 = τ(Γ) + ε.

Thus τ(Γ) > C − ε. Since ε > 0 is arbitrary, τ(Γ) > C.

Remark 7.3. Theorem 7.2 shows that to prove Conjecture 1.1, it is enough to establish
it for cubic graphs.

Theorem 7.4. Let Γ be a metrized graph with Λ(Γ) = 2. Then there exists a metrized
graph β such that τ(Γ) = τ(β), ℓ(Γ) = ℓ(β), #(E(Γ)) > #(E(β)), g(Γ) = g(β), and

either Λ(β) > 3 or τ(β) = ℓ(β)
12

.

Proof. Since Λ(Γ) = 2, there is an edge ei ∈ E(Γ) such that Λ(Γ− ei) = 1, and let Li be
the length of ei. Let C(ei) = {ei1 , ei2 , . . . , eis} be the set of bridges in Γ−ei, and let Lij be
the edge length of eij for each 1 6 j 6 s. Let γ be the metrized graph obtained from Γ by
contracting all of the edges in C(ei) to their end points, and by extending the length Li of
the edge ei to Li+

∑s
j=1 Lij . We have ℓ(Γ) = ℓ(γ), and τ(Γ− ei) = τ(γ− ei)+

1
4

∑s
j=1Lij

by additive property of the tau constant (see Remark 2.3), Ri(Γ) = Ri(γ) +
∑s

j=1Lij by
elementary circuit reductions, and Li(γ) = Li +

∑s
j=1Lij by our construction. Moreover,

Api,qi,Γ−ei = Api,qi,γ−ei by the additive property of Ap,q,Γ (see [5, Proposition 4.6]) and
by [5, Proposition 4.5]. By our construction, #(E(Γ)) > #(E(γ)), and g(Γ) = g(γ). If
we apply Lemma 3.4 to τ(Γ) and τ(γ) and use the equalities we derived, we see that
τ(Γ) = τ(γ).

Note that either γ has only one vertex in which case τ(β) = ℓ(β)
12

by [5, Proposition
2.28] (and Γ is a cycle with possible loops) or Λ(γ − ei) > 2. If γ has a single vertex or
Λ(γ) > 3, we take β = γ. Otherwise, Λ(γ) = 2 in which case we can apply the same
process to γ. We can repeat this process until we obtain a graph β with the properties
we wanted. Figure 6 shows an example in which this process applied four times.

Remark 7.5. One of the implications of Theorem 7.4 is that if Conjecture 1.1 holds for
metrized graphs with edge connectivity at least 3, then it holds for all metrized graphs.

We show in [6] that τ(Γ) can be computed by using the discrete Laplacian of Γ and
its pseudo inverse. In [4, Chapter 6], we constructed families of metrized graphs with

the tau constants between ℓ(Γ)
107

and ℓ(Γ)
108

, and the computations suggest that we can have

sequences of metrized graphs with the tau constants approaching (but not equal) to ℓ(Γ)
108

.
We recall that if Conjecture 1.1 holds with a constant C, then there is no metrized graph
Γ with τ(Γ) = C · ℓ(Γ) (see [5, Theorem 1.11]).

Based on our theoretical and computational investigations, we refine Conjecture 1.1
as follows:

Conjecture 7.6. For all metrized graphs Γ, τ(Γ) > ℓ(Γ)
108

.
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Figure 6: All of these graphs have equal tau constant. The last graph has edge connectivity
3, and the others have edge connectivity 2. The length of the extended edges are shown,
the other edges have length 1.
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