1

On cross-intersecting families
of set partitions

Cheng Yeaw Ku * Kok Bin Wong
Department of Mathematics Institute of Mathematical Sciences
National University of Singapore University of Malaya
Singapore 117543. 50603 Kuala Lumpur, Malaysia
matkcy@nus.edu.sg kbwong@Qum.edu.my

Submitted: Mar 29, 2012; Accepted: Dec 8, 2012; Published: Dec 31, 2012
Mathematics Subject Classifications: 05D05

Abstract

Let B(n) denote the collection of all set partitions of [n]. Suppose Aj, A2 C B(n)
are cross-intersecting i.e. for all 47 € A; and As € Ay, we have Ay N Ay # @. Tt is
proved that for sufficiently large n,

|ALl|A2| < B2

where B,, is the n-th Bell number. Moreover, equality holds if and only if A; = As
and Ay consists of all set partitions with a fixed singleton.
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Introduction

1.1 Finite sets

Let [n] = {1,...,n} and ([Z]) denote the family of all k-subsets of [n]. A fundamental
result in extremal combinatorial set theory is the Erdds-Ko-Rado theorem ([6], [7], [22])
which asserts that if a family A4 C ([Z}) is t-intersecting (i.e. |ANB| > t for any A, B € A),
then |A| < (77}) for n > (k—t-+1)(¢t+1). Recently, there are several Erdés-Ko-Rado type
results (see [2, 4, 5, 9, 11, 13, 15, 17, 20, 21]), most notably is the result of Ellis, Friedgut
and Pilpel [5], which states that for sufficiently large n depending on t, a t-intersecting
family A of permutations has size at most (n — t)!, with equality if and only if A is a
coset of the stabilizer of ¢ points, thus settling an old conjecture of Deza and Frankl [3].
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Let A; C ([k"j) fori=1,2,...,r. We say that the families A;, Ao, ..., A, are r-cross
t-intersecting if |[A1NAsN---NA,| >t holds for all A; € A;. When t = 1, we will just say
r-cross intersecting instead of r-cross 1-intersecting. Furthermore when r = 2 and t = 1,
we will just say cross-intersecting instead of 2-cross intersecting. It has been shown by
Frankl and Tokushige [8] that if A;, As,..., A, C ([Z]) are r-cross intersecting, then for

n=rk/(r—1),
- n—1\"
H|-Ai|< (k—l) :

=1

For differing values of k’s, we have the following result.

Theorem 1.1 (Bey [1], Matsumoto and Tokushige [18], Pyber [19]). Let A; C ([knl]) and
A, C (E:;]) be cross-intersecting. If ki, ko < n/2, then

n—1 n—1
Al ] < (k1 - 1) (k;g - 1)'

Equality holds for ki + ko < n if and only if A1 and As consist of all ki-element resp.
ko-element sets containing a fixed element.

1.2 Set partitions

A set partition of [n] is a collection of pairwise disjoint nonempty subsets (called blocks)
of [n] whose union is [n]. Let B(n) denote the family of all set partitions of [n]. It is
well-known that the size of B(n) is the n-th Bell number, denoted by B,,. A block of size
one is also known as a singleton. We denote the number of all set partitions of [n| which
are singleton-free (i.e. without any singleton) by B,.

A family A C B(n) is said to be t-intersecting if any two of its members have at least
t blocks in common. Ku and Renshaw [14, Theorem 1.7 and Theorem 1.8] proved the
following analogue of the Erdés-Ko-Rado theorem for set partitions.

Theorem 1.2 (Ku-Renshaw). Suppose A C B(n) is a t-intersecting family. Then, for
n = ng(t),
|A| < Bn—ta

with equality if and only if A consists of all set partitions with t fized singletons.

Recently, Ku and Wong [16, Theorem 1.4] proved a generalization of Theorem 1.2,
which is an analogue of the Hilton-Milner Theorem [10] for set partitions.
In this paper, we will prove the following analogue of Theorem 1.1 for set partitions.

Theorem 1.3. Let Ay, As C B(n) be cross-intersecting. Then, for n = ng,
|A[Az| < By

Moreover, equality holds if and only if Ay = Ay and Ay consists of all set partitions with
a fized singleton.
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2 Splitting operation

In this section, we will prove some important results regarding the splitting operation for
r-cross t-intersecting families of set partitions. These results are the ‘cross’ version of [14,
Proposition 3.1, 3.2, 3.3, 3.4].

Let i,j € [n], i # j, and P € B(n). Denote by Py the block of P which contains i.
We define the (i, j)-split of P to be the following set partition:

P\{PqatU{{i}, Py \ {i}} ifj € Py,
5i(P) = { P ! ' otilerwi[sle.

For a family A C B(n), let s;;(A) = {s;;(P) : P € A}. Any family A of set partitions
can be decomposed with respect to given i, j € [n] as follows:

A = (A\Ay)UA,
where A;; = {P € A: s;;(P) ¢ A}. Define the (i, j)-splitting of A to be the family
Sij(A) = (AN Aij) U sij(Aij).

It is not hard to see that |S;;(A)| = |Al.
Let I(n,r,t) denote the set of all r-cross t-intersecting families of set partitions of [n].
Let A ={A;, As,..., A} € I(n,rt). We set

Sij(A) = {8;(A1), Sij(A2), . .., Sij(A)

and write S;;(A) = A if S;;(A) = A for 1 =1,2,...,r.
We define |A| = [],_, [A/l. It is not hard to see that

A = H S35 (Ab)|-
=1

An element A = {A;, Ay, ..., A.} € I(n,r,t) is said to be trivial, if Ay = Ay =--- =
A, and A; consists of all set partitions containing ¢ fixed singletons.

Proposition 2.1. Leti,j € [n], i # j. If A € I(n,r,t), then S;;(A) € I(n,r,t).

Proof. Let A = {A;, Ay,..., A, }. For each | = 1,2,...,r, choose an A; € S;;(A).
If A; € A, for all [, then |[A; N Ay N---N A,.| > t. Without loss of generality, suppose
A € 5i((Ay)ij) forl =1,...,q,and A; € A\ (A);; forl =q+1,...,r. Then A, = s;;(P)
for l=1,...,q, where P, € (A));; C A

Now there are at least t blocks, say Mi, Ms, ..., M,, that are all contained in P, N
NP N A NN AL IE i g € M, fory = 1,...,t, then My, My, ..., M, € A for
l=1,...,q. Thisimplies that M;, Mo, ..., M, are contained in A;N---NA,NAz1N---NA,,
and thus |A; N---NA| >t

Suppose one of the M, contains {7,j}. We may assume that {i,j} C M;. If ¢ =,
then {i}, My, ..., M; are contained in A;N---NA,, and thus [A;N---NA,| >t. Suppose
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1 <g<r. Since A4 € A\ (A);; for I > ¢+ 1, we must have s;;(A;) € A;. Note that
My, ..., M; are contained in Py N --- N P, N s;(Agr1) N--- N si(Ar). Since [PrN---N
P, sii(Ager) N--- N s(An)| > ¢, there is a block M,y disjoint from My, Ms, ..., M,,
that is contained in Py N --- N P, N s;5(Ag1) N -+ N s35(Ar). Now My, is a block in
Ain--NANAgN---NA,, for {i,j} € Myyy. Hence [A;N---NA| >t O

Proposition 2.2. Letn > t+1. Suppose A € I(n,r,t) and |A| > 1. Leti,j € [n], i # j.
If Si;(A) is trivial, then A is trivial.

Proof. Let A = {Ay, As,..., A.}. Then S;;(A) = {S;;(A1), Si;(As),...,Si;(A)} and
by Proposition 2.1, S;;(A) € I(n,r,t). Since S;;(A) is trivial, S;;(A;) = S;(As) =
- = 9,5(A;) and S;;( A1) consists of all set partitions containing ¢ fixed singletons, say
{1}, {z2}, ..., {z¢}. Note that T = {{z1}, {xa}, ..., {z:}, [n] \ {1, ..., 2e}} € Sij(Ar).
If T € s;((A1)ij), then T = s;(P) for a P € (A;);; € A;. Note that P will have
exactly t blocks. Now, if @, € A, for [ = 2,....r, then P = Qy = --- = Q,, for
IPNQyN---NQ,| >t Therefore 49 = A3 = --- = A, = {P}, and this implies
that A, = {P}. So |A| = [[,_; Al = 1, a contradiction. So we may assume that
T e A \ (-Al)ij C A;. Similarly, T' € AN NA,.
Suppose A; # S;;(A1). Then there is a P € A; with s;;(P) ¢ A;. Now

r—1
Y e
PNTN---NT|>t,

for T'e Ay N ---NA,. Suppose [n|\ {z1,...,2:} is a block in P. Since T" has exactly
t + 1 blocks, we deduce that P = T'. This means that T' € (A;)j, and s;;(T) € S;;(A1).
So T ¢ S,;(Ay), a contradiction.

Suppose [n] \ {z1,...,z;} is not a block in P. Then {z1},{x2},...,{x:} are blocks
in P. This implies that P € S;;(A;), for S;;(A) is trivial. Since P € Ay, we must
have s;;(P) € Ay, a contradiction. Hence A; = 5;;(Ay). Similarly A, = 5;;(A;) for
l=2,...,r. 0

An element A € I(n,r,t) is said to be compressed if for any i,j € [n], i # j, we have
Si;(A) = A. For a set partition P, let o(P) = {x : {x} € P} denote the union of its
singletons (block of size 1). For a family A of set partitions, let o(A) = {o(P) : P €
A}. Note that o(A) is a family of subsets of [n]. Now for A = {A4,,...,A4,}, where
Ai, oo A CB(n), set 0(A) = {o(Ay),...,0(A.)}. Wesay 0(A) is r-cross t-intersecting
if 0(Ay),...,0(A,) are r-cross t-intersecting.

Proposition 2.3. Given an element A € I(n,r,t), by repeatedly applying the splitting
operations, we eventually obtain a compressed A* € I(n,r,t) with |A*| = |A].

Proof. Note that if S;;(A) # A, then the (i, j)-splits of some partitions are finer than the
originals and therefore will move down in the partition lattice. Eventually this results in
a compressed family of partitions. O

For a compressed A, its r-cross t-intersecting property can be transferred to o(A),
thus allowing us to access the structure of A via the structure of o(A).
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Proposition 2.4. If A € I(n,r,t) is compressed, then o(A) is r-cross t-intersecting.

Proof. Let A = {A;, Ay, ..., A.}. Assume, for a contradiction, that there exist P, € A,
I = 1,...,r such that |o(P) N---No(F)| < t. Since |PLN---NP,| > t, there are
s>=t—|o(P)N---No(P)| common blocks of P, ..., P, (each of size at least 2), say
My, ..., M, which are disjoint from o(P;) U --- U o(FP,). Fix two distinct points ., y.
from each M,. Then P = s, (- (8414, (P1))--+) € Ay, for A is compressed. Now
|PFNPyN---NP,| <t,a contradiction. O

3 Proof of main result

Recall that the size of B(n) is the n-th Bell number, denoted by B,, and the number of
all set partitions of [n] which are singleton-free (i.e. without any singleton) is denoted by
B,.

The following identities for B, and B, are straightforward.

Lemma 3.1. Letn > 2. Then
n n N
B, = B, ’ 1
> () B )
~ n—1\ ~
Bn = ( k )Bn—l—k> (2)

with the conventions By = BO = 1.
Note in passing that B; = 0. By (1) and (2),

Given a real number x, we shall denote the greatest integer less than or equal to x, by
|z]. Note that |z| < x < |x] 4+ 1. Some useful inequalities involving B,, can be found in
[12]. However we just need the following inequality.

Lemma 3.2. There is a positive integer ng such that for n > nyg,
~ n n\ ~
B,_1>38 Z <l€) B, .
|5 ]<ks<n
Proof. By (2),

S (actonn 3 0

L5 I<k<n |2 ]<k<n

< Qnén{gjﬂ-
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So it is sufficient to show that Bn_l/Bn_L%Hg > (16)™.
Again by (2), for any fixed ¢, By,/Bm—2 > ¢ for sufficiently large m. Therefore

Bn—l S ( Bn—l_%j-i—?u ) <Bn_LgJ+6> (Bn_\_gﬁ_él)
Bn|2)42 B |2)42u—2 Bu_izj1a ) \ Bn-|2)42

> qu—I,

where u = |$(|%] —3)]. Clearly u—1 > %. So if we choose ¢ = (16)®, then for sufficiently
large n, the lemma follows. O

Let A ={A,..., A} € I(n,r,t) be compressed. We say o(A) is trivial if there is a
fixed t-set, say T', such that T C o(P) for all P, € A, l=1,...,r.

Theorem 3.3. Let A € 1(n,2,1) be compressed. If o(A) is non-trivial, then
Al < B;_,.

Proof. Let A = {A;, As}. For k > 1, let Fi, = o(A;) N ([Z]). If 71 # @ for 1 = 1,2,
then o(A) is trivial. So we may assume that F5; = @. By Proposition 2.4, o(A) is
cross-intersecting. Note that |A;| < > o, [Fir|Bnor and [Az| < D ocic, [For Bak
Then

A< Y (FlBas+ D |FiklBack

1<k< 2] |2 )<k<n
~ n\ ~
< Z ‘Flk’ank + Z (k) anka
1<k<| 2] 2] <k<n
and
~ n\ ~
A< Y (FulBst Y @B
2<k<| 5] |2 |<k<n
Let
n\ ~
= B,,_
o= ¥ ()8
[5<k<n
M, = Z | Fik| B
1<k< 2]
MZI Z |F2k|Bn7k
2<k<[3)
Then

Al < (M +Q)(Mz + Q)
= MMy + M,Q + M@ + Q2-
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Note that by (2) and (3),

M, < B, Z | Flx|

1<k<| 2]

5. % ()
1<k<| 5]

2"B,
2

<
< an—l-

By Lemma 3.2 and (3), @ < S%anl < S%Bn,l < B,,_1. Therefore

B,
MiQ+MoQ +Q* < (2" +2" +1)B, ( gn 1)

< Bn—an—l-

N | —

By Theorem 1.1,

n—1 n—1Y\ = ~
MMy < Z (kl _ 1) (/{32 _ 1) Bk, Bn—k,

1<ki<| 3],
2<ky<| 2
n—1\ =~ n—1\ -~
S| Z () [ 2 (h)pe
1<k<| 2] 2<k<| 5]

So MMy < (B,—1 — B,—1)B,—1, and

1 .
|A| < B2 | — By_1By_1 + §(Bn71>anl
< B,
O

Proof of Theorem 1.3.
Let A € I(n,2,1) be of maximum size. We may assume that A has size at least B>_;.
Repeatedly apply the splitting operations until we obtain an A* € I(n,2,1) such that
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A* is compressed (Proposition 2.3). By Proposition 2.4, 0(A*) is cross-intersecting. If
o(A*) non-trivial, by Theorem 3.3, |A| < B?_,, a contradiction. So o(A*) is trivial. This

n—1»
implies that A* is trivial, for A is of maximum size. It then follows from Proposition 2.2

that A is trivial.
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