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Abstract

Let B(n) denote the collection of all set partitions of [n]. Suppose A1,A2 ⊆ B(n)
are cross-intersecting i.e. for all A1 ∈ A1 and A2 ∈ A2, we have A1 ∩A2 6= ∅. It is
proved that for sufficiently large n,

|A1||A2| 6 B2
n−1

where Bn is the n-th Bell number. Moreover, equality holds if and only if A1 = A2

and A1 consists of all set partitions with a fixed singleton.
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1 Introduction

1.1 Finite sets

Let [n] = {1, . . . , n} and
(
[n]
k

)
denote the family of all k-subsets of [n]. A fundamental

result in extremal combinatorial set theory is the Erdős-Ko-Rado theorem ([6], [7], [22])
which asserts that if a family A ⊆

(
[n]
k

)
is t-intersecting (i.e. |A∩B| > t for any A,B ∈ A),

then |A| 6
(
n−t
k−t

)
for n > (k−t+1)(t+1). Recently, there are several Erdős-Ko-Rado type

results (see [2, 4, 5, 9, 11, 13, 15, 17, 20, 21]), most notably is the result of Ellis, Friedgut
and Pilpel [5], which states that for sufficiently large n depending on t, a t-intersecting
family A of permutations has size at most (n − t)!, with equality if and only if A is a
coset of the stabilizer of t points, thus settling an old conjecture of Deza and Frankl [3].
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Let Ai ⊆
(
[n]
ki

)
for i = 1, 2, . . . , r. We say that the families A1,A2, . . . ,Ar are r-cross

t-intersecting if |A1∩A2∩· · ·∩Ar| > t holds for all Ai ∈ Ai. When t = 1, we will just say
r-cross intersecting instead of r-cross 1-intersecting. Furthermore when r = 2 and t = 1,
we will just say cross-intersecting instead of 2-cross intersecting. It has been shown by
Frankl and Tokushige [8] that if A1,A2, . . . ,Ar ⊆

(
[n]
k

)
are r-cross intersecting, then for

n > rk/(r − 1),
r∏

i=1

|Ai| 6
(
n− 1

k − 1

)r

.

For differing values of k’s, we have the following result.

Theorem 1.1 (Bey [1], Matsumoto and Tokushige [18], Pyber [19]). Let A1 ⊆
(
[n]
k1

)
and

A2 ⊆
(
[n]
k2

)
be cross-intersecting. If k1, k2 6 n/2, then

|A1||A2| 6
(
n− 1

k1 − 1

)(
n− 1

k2 − 1

)
.

Equality holds for k1 + k2 < n if and only if A1 and A2 consist of all k1-element resp.
k2-element sets containing a fixed element.

1.2 Set partitions

A set partition of [n] is a collection of pairwise disjoint nonempty subsets (called blocks)
of [n] whose union is [n]. Let B(n) denote the family of all set partitions of [n]. It is
well-known that the size of B(n) is the n-th Bell number, denoted by Bn. A block of size
one is also known as a singleton. We denote the number of all set partitions of [n] which
are singleton-free (i.e. without any singleton) by B̃n.

A family A ⊆ B(n) is said to be t-intersecting if any two of its members have at least
t blocks in common. Ku and Renshaw [14, Theorem 1.7 and Theorem 1.8] proved the
following analogue of the Erdős-Ko-Rado theorem for set partitions.

Theorem 1.2 (Ku-Renshaw). Suppose A ⊆ B(n) is a t-intersecting family. Then, for
n > n0(t),

|A| 6 Bn−t,

with equality if and only if A consists of all set partitions with t fixed singletons.

Recently, Ku and Wong [16, Theorem 1.4] proved a generalization of Theorem 1.2,
which is an analogue of the Hilton-Milner Theorem [10] for set partitions.

In this paper, we will prove the following analogue of Theorem 1.1 for set partitions.

Theorem 1.3. Let A1,A2 ⊆ B(n) be cross-intersecting. Then, for n > n0,

|A1||A2| 6 B2
n−1.

Moreover, equality holds if and only if A1 = A2 and A1 consists of all set partitions with
a fixed singleton.
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2 Splitting operation

In this section, we will prove some important results regarding the splitting operation for
r-cross t-intersecting families of set partitions. These results are the ‘cross’ version of [14,
Proposition 3.1, 3.2, 3.3, 3.4].

Let i, j ∈ [n], i 6= j, and P ∈ B(n). Denote by P[i] the block of P which contains i.
We define the (i, j)-split of P to be the following set partition:

sij(P ) =

{
P \ {P[i]} ∪ {{i}, P[i] \ {i}} if j ∈ P[i],
P otherwise.

For a family A ⊆ B(n), let sij(A) = {sij(P ) : P ∈ A}. Any family A of set partitions
can be decomposed with respect to given i, j ∈ [n] as follows:

A = (A \ Aij) ∪ Aij,

where Aij = {P ∈ A : sij(P ) 6∈ A}. Define the (i, j)-splitting of A to be the family

Sij(A) = (A \ Aij) ∪ sij(Aij).

It is not hard to see that |Sij(A)| = |A|.
Let I(n, r, t) denote the set of all r-cross t-intersecting families of set partitions of [n].

Let A = {A1,A2, . . . ,Ar} ∈ I(n, r, t). We set

Sij(A) = {Sij(A1), Sij(A2), . . . , Sij(Ar)},

and write Sij(A) = A if Sij(Al) = Al for l = 1, 2, . . . , r.
We define |A| =

∏r
l=1 |Al|. It is not hard to see that

|A| =
r∏

i=1

|Sij(Al)|.

An element A = {A1,A2, . . . ,Ar} ∈ I(n, r, t) is said to be trivial, if A1 = A2 = · · · =
Ar and A1 consists of all set partitions containing t fixed singletons.

Proposition 2.1. Let i, j ∈ [n], i 6= j. If A ∈ I(n, r, t), then Sij(A) ∈ I(n, r, t).

Proof. Let A = {A1,A2, . . . ,Ar}. For each l = 1, 2, . . . , r, choose an Al ∈ Sij(Al).
If Al ∈ Al for all l, then |A1 ∩ A2 ∩ · · · ∩ Ar| > t. Without loss of generality, suppose
Al ∈ sij((Al)ij) for l = 1, . . . , q, and Al ∈ Al \(Al)ij for l = q+1, . . . , r. Then Al = sij(Pl)
for l = 1, . . . , q, where Pl ∈ (Al)ij ⊆ Al.

Now there are at least t blocks, say M1,M2, . . . ,Mt, that are all contained in P1 ∩
· · · ∩ Pq ∩ Aq+1 ∩ · · · ∩ Ar. If {i, j} * My for y = 1, . . . , t, then M1,M2, . . . ,Mt ∈ Al for
l = 1, . . . , q. This implies thatM1,M2, . . . ,Mt are contained in A1∩· · ·∩Aq∩Aq+1∩· · ·∩Ar,
and thus |A1 ∩ · · · ∩ Ar| > t.

Suppose one of the My contains {i, j}. We may assume that {i, j} ⊆ M1. If q = r,
then {i}, M2, . . . ,Mt are contained in A1∩ · · ·∩Ar, and thus |A1∩ · · ·∩Ar| > t. Suppose
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1 6 q < r. Since Al ∈ Al \ (Al)ij for l > q + 1, we must have sij(Al) ∈ Al. Note that
M2, . . . ,Mt are contained in P1 ∩ · · · ∩ Pq ∩ sij(Aq+1) ∩ · · · ∩ sij(Ar). Since |P1 ∩ · · · ∩
Pq ∩ sij(Aq+1) ∩ · · · ∩ sij(Ar)| > t, there is a block Mt+1 disjoint from M1,M2, . . . ,Mt,
that is contained in P1 ∩ · · · ∩ Pq ∩ sij(Aq+1) ∩ · · · ∩ sij(Ar). Now Mt+1 is a block in
A1 ∩ · · · ∩ Aq ∩ Aq+1 ∩ · · · ∩ Ar, for {i, j} *Mt+1. Hence |A1 ∩ · · · ∩ Ar| > t.

Proposition 2.2. Let n > t+1. Suppose A ∈ I(n, r, t) and |A| > 1. Let i, j ∈ [n], i 6= j.
If Sij(A) is trivial, then A is trivial.

Proof. Let A = {A1,A2, . . . ,Ar}. Then Sij(A) = {Sij(A1), Sij(A2), . . . , Sij(Ar)} and
by Proposition 2.1, Sij(A) ∈ I(n, r, t). Since Sij(A) is trivial, Sij(A1) = Sij(A2) =
· · · = Sij(Ar) and Sij(A1) consists of all set partitions containing t fixed singletons, say
{x1}, {x2}, . . . , {xt}. Note that T = {{x1}, {x2}, . . . , {xt}, [n] \ {x1, . . . , xt}} ∈ Sij(A1).
If T ∈ sij((A1)ij), then T = sij(P ) for a P ∈ (A1)ij ⊆ A1. Note that P will have
exactly t blocks. Now, if Ql ∈ Al for l = 2, . . . , r, then P = Q2 = · · · = Qr, for
|P ∩ Q2 ∩ · · · ∩ Qr| > t. Therefore A2 = A3 = · · · = Ar = {P}, and this implies
that A1 = {P}. So |A| =

∏r
l=1 |Al| = 1, a contradiction. So we may assume that

T ∈ A1 \ (A1)ij ⊆ A1. Similarly, T ∈ A2 ∩ · · · ∩ Ar.
Suppose A1 6= Sij(A1). Then there is a P ∈ A1 with sij(P ) /∈ A1. Now

|P ∩
r−1︷ ︸︸ ︷

T ∩ · · · ∩ T | > t,

for T ∈ A2 ∩ · · · ∩ Ar. Suppose [n] \ {x1, . . . , xt} is a block in P . Since T has exactly
t + 1 blocks, we deduce that P = T . This means that T ∈ (A1)ij, and sij(T ) ∈ Sij(A1).
So T /∈ Sij(A1), a contradiction.

Suppose [n] \ {x1, . . . , xt} is not a block in P . Then {x1}, {x2}, . . . , {xt} are blocks
in P . This implies that P ∈ Sij(A1), for Sij(A) is trivial. Since P ∈ A1, we must
have sij(P ) ∈ A1, a contradiction. Hence A1 = Sij(A1). Similarly Al = Sij(Al) for
l = 2, . . . , r.

An element A ∈ I(n, r, t) is said to be compressed if for any i, j ∈ [n], i 6= j, we have
Sij(A) = A. For a set partition P , let σ(P ) = {x : {x} ∈ P} denote the union of its
singletons (block of size 1). For a family A of set partitions, let σ(A) = {σ(P ) : P ∈
A}. Note that σ(A) is a family of subsets of [n]. Now for A = {A1, . . . ,Ar}, where
A1, . . . ,Ar ⊆ B(n), set σ(A) = {σ(A1), . . . , σ(Ar)}. We say σ(A) is r-cross t-intersecting
if σ(A1), . . . , σ(Ar) are r-cross t-intersecting.

Proposition 2.3. Given an element A ∈ I(n, r, t), by repeatedly applying the splitting
operations, we eventually obtain a compressed A∗ ∈ I(n, r, t) with |A∗| = |A|.

Proof. Note that if Sij(A) 6= A, then the (i, j)-splits of some partitions are finer than the
originals and therefore will move down in the partition lattice. Eventually this results in
a compressed family of partitions.

For a compressed A, its r-cross t-intersecting property can be transferred to σ(A),
thus allowing us to access the structure of A via the structure of σ(A).
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Proposition 2.4. If A ∈ I(n, r, t) is compressed, then σ(A) is r-cross t-intersecting.

Proof. Let A = {A1,A2, . . . ,Ar}. Assume, for a contradiction, that there exist Pl ∈ Al,
l = 1, . . . , r such that |σ(P1) ∩ · · · ∩ σ(Pl)| < t. Since |P1 ∩ · · · ∩ Pr| > t, there are
s > t − |σ(P1) ∩ · · · ∩ σ(Pl)| common blocks of P1, . . . , Pr (each of size at least 2), say
M1, . . . ,Ms, which are disjoint from σ(P1) ∪ · · · ∪ σ(Pr). Fix two distinct points xe, ye
from each Me. Then P ∗1 = sxsys(· · · (sx1y1(P1)) · · · ) ∈ A1, for A is compressed. Now
|P ∗1 ∩ P2 ∩ · · · ∩ Pr| < t, a contradiction.

3 Proof of main result

Recall that the size of B(n) is the n-th Bell number, denoted by Bn, and the number of
all set partitions of [n] which are singleton-free (i.e. without any singleton) is denoted by
B̃n.

The following identities for Bn and B̃n are straightforward.

Lemma 3.1. Let n > 2. Then

Bn =
n∑

k=0

(
n

k

)
B̃n−k, (1)

B̃n =
n−1∑
k=1

(
n− 1

k

)
B̃n−1−k, (2)

with the conventions B0 = B̃0 = 1.

Note in passing that B̃1 = 0. By (1) and (2),

Bn = B̃n + B̃n+1. (3)

Given a real number x, we shall denote the greatest integer less than or equal to x, by
bxc. Note that bxc 6 x < bxc+ 1. Some useful inequalities involving Bn can be found in
[12]. However we just need the following inequality.

Lemma 3.2. There is a positive integer n0 such that for n > n0,

B̃n−1 > 8n
∑

bn
2
c6k6n

(
n

k

)
B̃n−k.

Proof. By (2), ∑
bn
2
c6k6n

(
n

k

)
B̃n−k 6 B̃n−bn

2
c+2

∑
bn
2
c6k6n

(
n

k

)
6 2nB̃n−bn

2
c+2.
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So it is sufficient to show that B̃n−1/B̃n−bn
2
c+2 > (16)n.

Again by (2), for any fixed q, B̃m/B̃m−2 > q for sufficiently large m. Therefore

B̃n−1

B̃n−bn
2
c+2

>

(
B̃n−bn

2
c+2u

B̃n−bn
2
c+2u−2

)
· · ·

(
B̃n−bn

2
c+6

B̃n−bn
2
c+4

)(
B̃n−bn

2
c+4

B̃n−bn
2
c+2

)
> qu−1,

where u = b1
2
(bn

2
c−3)c. Clearly u−1 > n

8
. So if we choose q = (16)8, then for sufficiently

large n, the lemma follows.

Let A = {A1, . . . ,Ar} ∈ I(n, r, t) be compressed. We say σ(A) is trivial if there is a
fixed t-set, say T , such that T ⊆ σ(Pl) for all Pl ∈ Al, l = 1, . . . , r.

Theorem 3.3. Let A ∈ I(n, 2, 1) be compressed. If σ(A) is non-trivial, then

|A| < B2
n−1.

Proof. Let A = {A1,A2}. For k > 1, let Flk = σ(Al) ∩
(
[n]
k

)
. If Fl1 6= ∅ for l = 1, 2,

then σ(A) is trivial. So we may assume that F21 = ∅. By Proposition 2.4, σ(A) is
cross-intersecting. Note that |A1| 6

∑
16k6n |F1k|B̃n−k and |A2| 6

∑
26k6n |F2k|B̃n−k.

Then

|A1| 6
∑

16k<bn
2
c

|F1k|B̃n−k +
∑

bn
2
c6k6n

|F1k|B̃n−k

6
∑

16k<bn
2
c

|F1k|B̃n−k +
∑

bn
2
c6k6n

(
n

k

)
B̃n−k,

and

|A2| 6
∑

26k<bn
2
c

|F2k|B̃n−k +
∑

bn
2
c6k6n

(
n

k

)
B̃n−k.

Let

Q =
∑

bn
2
c6k6n

(
n

k

)
B̃n−k

M1 =
∑

16k<bn
2
c

|F1k|B̃n−k

M2 =
∑

26k<bn
2
c

|F2k|B̃n−k.

Then

|A| 6 (M1 +Q)(M2 +Q)

= M1M2 +M1Q+M2Q+Q2.
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Note that by (2) and (3),

Ml 6 B̃n

∑
16k<bn

2
c

|Flk|

6 B̃n

∑
16k<bn

2
c

(
n

k

)
6 2nB̃n

6 2nBn−1.

By Lemma 3.2 and (3), Q 6 1
8n
B̃n−1 <

1
8n
Bn−1 < Bn−1. Therefore

M1Q+M2Q+Q2 < (2n + 2n + 1)Bn−1

(
B̃n−1

8n

)
<

1

2
Bn−1B̃n−1.

By Theorem 1.1,

M1M2 6
∑

16k1<bn2 c,
26k2<bn2 c

(
n− 1

k1 − 1

)(
n− 1

k2 − 1

)
B̃n−k1B̃n−k2

=

 ∑
16k<bn

2
c

(
n− 1

k − 1

)
B̃n−k

 ∑
26k<bn

2
c

(
n− 1

k − 1

)
B̃n−k

 .

By (1), ∑
16k<bn

2
c

(
n− 1

k − 1

)
B̃n−k < Bn−1

∑
26k<bn

2
c

(
n− 1

k − 1

)
B̃n−k < Bn−1 − B̃n−1.

So M1M2 6 (Bn−1 − B̃n−1)Bn−1, and

|A| < B2
n−1 − B̃n−1Bn−1 +

1

2
(Bn−1)B̃n−1

< B2
n−1.

Proof of Theorem 1.3.
Let A ∈ I(n, 2, 1) be of maximum size. We may assume that A has size at least B2

n−1.
Repeatedly apply the splitting operations until we obtain an A∗ ∈ I(n, 2, 1) such that
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A∗ is compressed (Proposition 2.3). By Proposition 2.4, σ(A∗) is cross-intersecting. If
σ(A∗) non-trivial, by Theorem 3.3, |A| < B2

n−1, a contradiction. So σ(A∗) is trivial. This
implies that A∗ is trivial, for A is of maximum size. It then follows from Proposition 2.2
that A is trivial.
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