On cross-intersecting families of set partitions

Cheng Yeaw Ku *
Department of Mathematics
National University of Singapore
Singapore 117543.
matkcy@nus.edu.sg

Kok Bin Wong
Institute of Mathematical Sciences
University of Malaya
50603 Kuala Lumpur, Malaysia
kbwong@um.edu.my

Submitted: Mar 29, 2012; Accepted: Dec 8, 2012; Published: Dec 31, 2012
Mathematics Subject Classifications: 05D05

Abstract

Let $\mathcal{B}(n)$ denote the collection of all set partitions of $[n]$. Suppose $\mathcal{A}_{1}, \mathcal{A}_{2} \subseteq \mathcal{B}(n)$ are cross-intersecting i.e. for all $A_{1} \in \mathcal{A}_{1}$ and $A_{2} \in \mathcal{A}_{2}$, we have $A_{1} \cap A_{2} \neq \varnothing$. It is proved that for sufficiently large n, $$
\left|\mathcal{A}_{1}\right|\left|\mathcal{A}_{2}\right| \leqslant B_{n-1}^{2}
$$ where B_{n} is the n-th Bell number. Moreover, equality holds if and only if $\mathcal{A}_{1}=\mathcal{A}_{2}$ and \mathcal{A}_{1} consists of all set partitions with a fixed singleton.

Keywords: cross-intersecting family, Erdős-Ko-Rado, set partitions

1 Introduction

1.1 Finite sets

Let $[n]=\{1, \ldots, n\}$ and $\binom{[n]}{k}$ denote the family of all k-subsets of $[n]$. A fundamental result in extremal combinatorial set theory is the Erdős-Ko-Rado theorem ([6], [7], [22]) which asserts that if a family $\mathcal{A} \subseteq\binom{[n]}{k}$ is t-intersecting (i.e. $|A \cap B| \geqslant t$ for any $A, B \in \mathcal{A}$), then $|\mathcal{A}| \leqslant\binom{ n-t}{k-t}$ for $n \geqslant(k-t+1)(t+1)$. Recently, there are several Erdős-Ko-Rado type results (see $[2,4,5,9,11,13,15,17,20,21]$), most notably is the result of Ellis, Friedgut and Pilpel [5], which states that for sufficiently large n depending on t, a t-intersecting family \mathcal{A} of permutations has size at most $(n-t)$!, with equality if and only if \mathcal{A} is a coset of the stabilizer of t points, thus settling an old conjecture of Deza and Frankl [3].

[^0]Let $\mathcal{A}_{i} \subseteq\binom{[n]}{k_{i}}$ for $i=1,2, \ldots, r$. We say that the families $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{r}$ are r-cross t-intersecting if $\left|A_{1} \cap A_{2} \cap \cdots \cap A_{r}\right| \geqslant t$ holds for all $A_{i} \in \mathcal{A}_{i}$. When $t=1$, we will just say r-cross intersecting instead of r-cross 1 -intersecting. Furthermore when $r=2$ and $t=1$, we will just say cross-intersecting instead of 2 -cross intersecting. It has been shown by Frankl and Tokushige [8] that if $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{r} \subseteq\binom{[n]}{k}$ are r-cross intersecting, then for $n \geqslant r k /(r-1)$,

$$
\prod_{i=1}^{r}\left|\mathcal{A}_{i}\right| \leqslant\binom{ n-1}{k-1}^{r}
$$

For differing values of k 's, we have the following result.
Theorem 1.1 (Bey [1], Matsumoto and Tokushige [18], Pyber [19]). Let $\mathcal{A}_{1} \subseteq\binom{[n]}{k_{1}}$ and $\mathcal{A}_{2} \subseteq\binom{[n]}{k_{2}}$ be cross-intersecting. If $k_{1}, k_{2} \leqslant n / 2$, then

$$
\left|\mathcal{A}_{1}\right|\left|\mathcal{A}_{2}\right| \leqslant\binom{ n-1}{k_{1}-1}\binom{n-1}{k_{2}-1}
$$

Equality holds for $k_{1}+k_{2}<n$ if and only if \mathcal{A}_{1} and \mathcal{A}_{2} consist of all k_{1}-element resp. k_{2}-element sets containing a fixed element.

1.2 Set partitions

A set partition of $[n]$ is a collection of pairwise disjoint nonempty subsets (called blocks) of $[n]$ whose union is $[n]$. Let $\mathcal{B}(n)$ denote the family of all set partitions of $[n]$. It is well-known that the size of $\mathcal{B}(n)$ is the n-th Bell number, denoted by B_{n}. A block of size one is also known as a singleton. We denote the number of all set partitions of $[n]$ which are singleton-free (i.e. without any singleton) by \tilde{B}_{n}.

A family $\mathcal{A} \subseteq \mathcal{B}(n)$ is said to be t-intersecting if any two of its members have at least t blocks in common. Ku and Renshaw [14, Theorem 1.7 and Theorem 1.8] proved the following analogue of the Erdős-Ko-Rado theorem for set partitions.

Theorem 1.2 (Ku-Renshaw). Suppose $\mathcal{A} \subseteq \mathcal{B}(n)$ is a t-intersecting family. Then, for $n \geqslant n_{0}(t)$,

$$
|\mathcal{A}| \leqslant B_{n-t}
$$

with equality if and only if \mathcal{A} consists of all set partitions with t fixed singletons.
Recently, Ku and Wong [16, Theorem 1.4] proved a generalization of Theorem 1.2, which is an analogue of the Hilton-Milner Theorem [10] for set partitions.

In this paper, we will prove the following analogue of Theorem 1.1 for set partitions.
Theorem 1.3. Let $\mathcal{A}_{1}, \mathcal{A}_{2} \subseteq \mathcal{B}(n)$ be cross-intersecting. Then, for $n \geqslant n_{0}$,

$$
\left|\mathcal{A}_{1}\right|\left|\mathcal{A}_{2}\right| \leqslant B_{n-1}^{2} .
$$

Moreover, equality holds if and only if $\mathcal{A}_{1}=\mathcal{A}_{2}$ and \mathcal{A}_{1} consists of all set partitions with a fixed singleton.

2 Splitting operation

In this section, we will prove some important results regarding the splitting operation for r-cross t-intersecting families of set partitions. These results are the 'cross' version of [14, Proposition 3.1, 3.2, 3.3, 3.4].

Let $i, j \in[n], i \neq j$, and $P \in \mathcal{B}(n)$. Denote by $P_{[i]}$ the block of P which contains i. We define the (i, j)-split of P to be the following set partition:

$$
s_{i j}(P)= \begin{cases}P \backslash\left\{P_{[i]}\right\} \cup\left\{\{i\}, P_{[i]} \backslash\{i\}\right\} & \text { if } j \in P_{[i]} \\ P & \text { otherwise }\end{cases}
$$

For a family $\mathcal{A} \subseteq \mathcal{B}(n)$, let $s_{i j}(\mathcal{A})=\left\{s_{i j}(P): P \in \mathcal{A}\right\}$. Any family \mathcal{A} of set partitions can be decomposed with respect to given $i, j \in[n]$ as follows:

$$
\mathcal{A}=\left(\mathcal{A} \backslash \mathcal{A}_{i j}\right) \cup \mathcal{A}_{i j}
$$

where $\mathcal{A}_{i j}=\left\{P \in \mathcal{A}: s_{i j}(P) \notin \mathcal{A}\right\}$. Define the (i, j)-splitting of \mathcal{A} to be the family

$$
S_{i j}(\mathcal{A})=\left(\mathcal{A} \backslash \mathcal{A}_{i j}\right) \cup s_{i j}\left(\mathcal{A}_{i j}\right)
$$

It is not hard to see that $\left|S_{i j}(\mathcal{A})\right|=|\mathcal{A}|$.
Let $I(n, r, t)$ denote the set of all r-cross t-intersecting families of set partitions of $[n]$. Let $\mathbf{A}=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{r}\right\} \in I(n, r, t)$. We set

$$
S_{i j}(\mathbf{A})=\left\{S_{i j}\left(\mathcal{A}_{1}\right), S_{i j}\left(\mathcal{A}_{2}\right), \ldots, S_{i j}\left(\mathcal{A}_{r}\right)\right\}
$$

and write $S_{i j}(\mathbf{A})=\mathbf{A}$ if $S_{i j}\left(\mathcal{A}_{l}\right)=\mathcal{A}_{l}$ for $l=1,2, \ldots, r$.
We define $|\mathbf{A}|=\prod_{l=1}^{r}\left|\mathcal{A}_{l}\right|$. It is not hard to see that

$$
|\mathbf{A}|=\prod_{i=1}^{r}\left|S_{i j}\left(\mathcal{A}_{l}\right)\right|
$$

An element $\mathbf{A}=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{r}\right\} \in I(n, r, t)$ is said to be trivial, if $\mathcal{A}_{1}=\mathcal{A}_{2}=\cdots=$ \mathcal{A}_{r} and \mathcal{A}_{1} consists of all set partitions containing t fixed singletons.

Proposition 2.1. Let $i, j \in[n], i \neq j$. If $\mathbf{A} \in I(n, r, t)$, then $S_{i j}(\mathbf{A}) \in I(n, r, t)$.
Proof. Let $\mathbf{A}=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{r}\right\}$. For each $l=1,2, \ldots, r$, choose an $A_{l} \in S_{i j}\left(\mathcal{A}_{l}\right)$. If $A_{l} \in \mathcal{A}_{l}$ for all l, then $\left|A_{1} \cap A_{2} \cap \cdots \cap A_{r}\right| \geqslant t$. Without loss of generality, suppose $A_{l} \in s_{i j}\left(\left(\mathcal{A}_{l}\right)_{i j}\right)$ for $l=1, \ldots, q$, and $A_{l} \in \mathcal{A}_{l} \backslash\left(\mathcal{A}_{l}\right)_{i j}$ for $l=q+1, \ldots, r$. Then $A_{l}=s_{i j}\left(P_{l}\right)$ for $l=1, \ldots, q$, where $P_{l} \in\left(\mathcal{A}_{l}\right)_{i j} \subseteq A_{l}$.

Now there are at least t blocks, say $M_{1}, M_{2}, \ldots, M_{t}$, that are all contained in $P_{1} \cap$ $\cdots \cap P_{q} \cap A_{q+1} \cap \cdots \cap A_{r}$. If $\{i, j\} \nsubseteq M_{y}$ for $y=1, \ldots, t$, then $M_{1}, M_{2}, \ldots, M_{t} \in A_{l}$ for $l=1, \ldots, q$. This implies that $M_{1}, M_{2}, \ldots, M_{t}$ are contained in $A_{1} \cap \cdots \cap A_{q} \cap A_{q+1} \cap \cdots \cap A_{r}$, and thus $\left|A_{1} \cap \cdots \cap A_{r}\right| \geqslant t$.

Suppose one of the M_{y} contains $\{i, j\}$. We may assume that $\{i, j\} \subseteq M_{1}$. If $q=r$, then $\{i\}, M_{2}, \ldots, M_{t}$ are contained in $A_{1} \cap \cdots \cap A_{r}$, and thus $\left|A_{1} \cap \cdots \cap A_{r}\right| \geqslant t$. Suppose
$1 \leqslant q<r$. Since $A_{l} \in \mathcal{A}_{l} \backslash\left(\mathcal{A}_{l}\right)_{i j}$ for $l \geqslant q+1$, we must have $s_{i j}\left(A_{l}\right) \in \mathcal{A}_{l}$. Note that M_{2}, \ldots, M_{t} are contained in $P_{1} \cap \cdots \cap P_{q} \cap s_{i j}\left(A_{q+1}\right) \cap \cdots \cap s_{i j}\left(A_{r}\right)$. Since $\mid P_{1} \cap \cdots \cap$ $P_{q} \cap s_{i j}\left(A_{q+1}\right) \cap \cdots \cap s_{i j}\left(A_{r}\right) \mid \geqslant t$, there is a block M_{t+1} disjoint from $M_{1}, M_{2}, \ldots, M_{t}$, that is contained in $P_{1} \cap \cdots \cap P_{q} \cap s_{i j}\left(A_{q+1}\right) \cap \cdots \cap s_{i j}\left(A_{r}\right)$. Now M_{t+1} is a block in $A_{1} \cap \cdots \cap A_{q} \cap A_{q+1} \cap \cdots \cap A_{r}$, for $\{i, j\} \nsubseteq M_{t+1}$. Hence $\left|A_{1} \cap \cdots \cap A_{r}\right| \geqslant t$.

Proposition 2.2. Let $n \geqslant t+1$. Suppose $\mathbf{A} \in I(n, r, t)$ and $|\mathbf{A}|>1$. Let $i, j \in[n], i \neq j$. If $S_{i j}(\mathbf{A})$ is trivial, then \mathbf{A} is trivial.

Proof. Let $\mathbf{A}=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{r}\right\}$. Then $S_{i j}(\mathbf{A})=\left\{S_{i j}\left(\mathcal{A}_{1}\right), S_{i j}\left(\mathcal{A}_{2}\right), \ldots, S_{i j}\left(\mathcal{A}_{r}\right)\right\}$ and by Proposition 2.1, $S_{i j}(\mathbf{A}) \in I(n, r, t)$. Since $S_{i j}(\mathbf{A})$ is trivial, $S_{i j}\left(\mathcal{A}_{1}\right)=S_{i j}\left(\mathcal{A}_{2}\right)=$ $\cdots=S_{i j}\left(\mathcal{A}_{r}\right)$ and $S_{i j}\left(\mathcal{A}_{1}\right)$ consists of all set partitions containing t fixed singletons, say $\left\{x_{1}\right\},\left\{x_{2}\right\}, \ldots,\left\{x_{t}\right\}$. Note that $T=\left\{\left\{x_{1}\right\},\left\{x_{2}\right\}, \ldots,\left\{x_{t}\right\},[n] \backslash\left\{x_{1}, \ldots, x_{t}\right\}\right\} \in S_{i j}\left(\mathcal{A}_{1}\right)$. If $T \in s_{i j}\left(\left(\mathcal{A}_{1}\right)_{i j}\right)$, then $T=s_{i j}(P)$ for a $P \in\left(\mathcal{A}_{1}\right)_{i j} \subseteq \mathcal{A}_{1}$. Note that P will have exactly t blocks. Now, if $Q_{l} \in \mathcal{A}_{l}$ for $l=2, \ldots, r$, then $P=Q_{2}=\cdots=Q_{r}$, for $\left|P \cap Q_{2} \cap \cdots \cap Q_{r}\right| \geqslant t$. Therefore $\mathcal{A}_{2}=\mathcal{A}_{3}=\cdots=\mathcal{A}_{r}=\{P\}$, and this implies that $\mathcal{A}_{1}=\{P\}$. So $|\mathbf{A}|=\prod_{l=1}^{r}\left|\mathcal{A}_{l}\right|=1$, a contradiction. So we may assume that $T \in \mathcal{A}_{1} \backslash\left(\mathcal{A}_{1}\right)_{i j} \subseteq \mathcal{A}_{1}$. Similarly, $T \in \mathcal{A}_{2} \cap \cdots \cap \mathcal{A}_{r}$.

Suppose $\mathcal{A}_{1} \neq S_{i j}\left(\mathcal{A}_{1}\right)$. Then there is a $P \in \mathcal{A}_{1}$ with $s_{i j}(P) \notin \mathcal{A}_{1}$. Now

$$
|P \cap \overbrace{T \cap \cdots \cap T}^{r-1}| \geqslant t
$$

for $T \in \mathcal{A}_{2} \cap \cdots \cap \mathcal{A}_{r}$. Suppose $[n] \backslash\left\{x_{1}, \ldots, x_{t}\right\}$ is a block in P. Since T has exactly $t+1$ blocks, we deduce that $P=T$. This means that $T \in\left(\mathcal{A}_{1}\right)_{i j}$, and $s_{i j}(T) \in S_{i j}\left(\mathcal{A}_{1}\right)$. So $T \notin S_{i j}\left(\mathcal{A}_{1}\right)$, a contradiction.

Suppose $[n] \backslash\left\{x_{1}, \ldots, x_{t}\right\}$ is not a block in P. Then $\left\{x_{1}\right\},\left\{x_{2}\right\}, \ldots,\left\{x_{t}\right\}$ are blocks in P. This implies that $P \in S_{i j}\left(\mathcal{A}_{1}\right)$, for $S_{i j}(\mathbf{A})$ is trivial. Since $P \in \mathcal{A}_{1}$, we must have $s_{i j}(P) \in \mathcal{A}_{1}$, a contradiction. Hence $\mathcal{A}_{1}=S_{i j}\left(\mathcal{A}_{1}\right)$. Similarly $\mathcal{A}_{l}=S_{i j}\left(\mathcal{A}_{l}\right)$ for $l=2, \ldots, r$.

An element $\mathbf{A} \in I(n, r, t)$ is said to be compressed if for any $i, j \in[n], i \neq j$, we have $S_{i j}(\mathbf{A})=\mathbf{A}$. For a set partition P, let $\sigma(P)=\{x:\{x\} \in P\}$ denote the union of its singletons (block of size 1). For a family \mathcal{A} of set partitions, let $\sigma(\mathcal{A})=\{\sigma(P): P \in$ $\mathcal{A}\}$. Note that $\sigma(\mathcal{A})$ is a family of subsets of $[n]$. Now for $\mathbf{A}=\left\{\mathcal{A}_{1}, \ldots, \mathcal{A}_{r}\right\}$, where $\mathcal{A}_{1}, \ldots, \mathcal{A}_{r} \subseteq \mathcal{B}(n)$, set $\sigma(\mathbf{A})=\left\{\sigma\left(\mathcal{A}_{1}\right), \ldots, \sigma\left(\mathcal{A}_{r}\right)\right\}$. We say $\sigma(\mathbf{A})$ is r-cross t-intersecting if $\sigma\left(\mathcal{A}_{1}\right), \ldots, \sigma\left(\mathcal{A}_{r}\right)$ are r-cross t-intersecting.

Proposition 2.3. Given an element $\mathbf{A} \in I(n, r, t)$, by repeatedly applying the splitting operations, we eventually obtain a compressed $\mathbf{A}^{*} \in I(n, r, t)$ with $\left|\mathbf{A}^{*}\right|=|\mathbf{A}|$.

Proof. Note that if $S_{i j}(\mathbf{A}) \neq \mathbf{A}$, then the (i, j)-splits of some partitions are finer than the originals and therefore will move down in the partition lattice. Eventually this results in a compressed family of partitions.

For a compressed \mathbf{A}, its r-cross t-intersecting property can be transferred to $\sigma(\mathbf{A})$, thus allowing us to access the structure of \mathbf{A} via the structure of $\sigma(\mathbf{A})$.

Proposition 2.4. If $\mathbf{A} \in I(n, r, t)$ is compressed, then $\sigma(\mathbf{A})$ is r-cross t-intersecting.
Proof. Let $\mathbf{A}=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{r}\right\}$. Assume, for a contradiction, that there exist $P_{l} \in \mathcal{A}_{l}$, $l=1, \ldots, r$ such that $\left|\sigma\left(P_{1}\right) \cap \cdots \cap \sigma\left(P_{l}\right)\right|<t$. Since $\left|P_{1} \cap \cdots \cap P_{r}\right| \geqslant t$, there are $s \geqslant t-\left|\sigma\left(P_{1}\right) \cap \cdots \cap \sigma\left(P_{l}\right)\right|$ common blocks of P_{1}, \ldots, P_{r} (each of size at least 2), say M_{1}, \ldots, M_{s}, which are disjoint from $\sigma\left(P_{1}\right) \cup \cdots \cup \sigma\left(P_{r}\right)$. Fix two distinct points x_{e}, y_{e} from each M_{e}. Then $P_{1}^{*}=s_{x_{s} y_{s}}\left(\cdots\left(s_{x_{1} y_{1}}\left(P_{1}\right)\right) \cdots\right) \in \mathcal{A}_{1}$, for \mathbf{A} is compressed. Now $\left|P_{1}^{*} \cap P_{2} \cap \cdots \cap P_{r}\right|<t$, a contradiction.

3 Proof of main result

Recall that the size of $\mathcal{B}(n)$ is the n-th Bell number, denoted by B_{n}, and the number of all set partitions of $[n]$ which are singleton-free (i.e. without any singleton) is denoted by \tilde{B}_{n}.

The following identities for B_{n} and \tilde{B}_{n} are straightforward.
Lemma 3.1. Let $n \geqslant 2$. Then

$$
\begin{align*}
B_{n} & =\sum_{k=0}^{n}\binom{n}{k} \tilde{B}_{n-k}, \tag{1}\\
\tilde{B}_{n} & =\sum_{k=1}^{n-1}\binom{n-1}{k} \tilde{B}_{n-1-k}, \tag{2}
\end{align*}
$$

with the conventions $B_{0}=\tilde{B}_{0}=1$.
Note in passing that $\tilde{B}_{1}=0$. By (1) and (2),

$$
\begin{equation*}
B_{n}=\tilde{B}_{n}+\tilde{B}_{n+1} . \tag{3}
\end{equation*}
$$

Given a real number x, we shall denote the greatest integer less than or equal to x, by $\lfloor x\rfloor$. Note that $\lfloor x\rfloor \leqslant x<\lfloor x\rfloor+1$. Some useful inequalities involving B_{n} can be found in [12]. However we just need the following inequality.

Lemma 3.2. There is a positive integer n_{0} such that for $n \geqslant n_{0}$,

$$
\tilde{B}_{n-1}>8^{n} \sum_{\left\lfloor\frac{n}{2}\right\rfloor \leqslant k \leqslant n}\binom{n}{k} \tilde{B}_{n-k} .
$$

Proof. By (2),

$$
\begin{aligned}
\sum_{\left\lfloor\frac{n}{2}\right\rfloor \leqslant k \leqslant n}\binom{n}{k} \tilde{B}_{n-k} & \leqslant \tilde{B}_{n-\left\lfloor\frac{n}{2}\right\rfloor+2} \sum_{\left\lfloor\frac{n}{2}\right\rfloor \leqslant k \leqslant n}\binom{n}{k} \\
& \leqslant 2^{n} \tilde{B}_{n-\left\lfloor\frac{n}{2}\right\rfloor+2} .
\end{aligned}
$$

So it is sufficient to show that $\tilde{B}_{n-1} / \tilde{B}_{n-\left\lfloor\frac{n}{2}\right\rfloor+2}>(16)^{n}$.
Again by (2), for any fixed $q, \tilde{B}_{m} / \tilde{B}_{m-2}>q$ for sufficiently large m. Therefore

$$
\begin{aligned}
\frac{\tilde{B}_{n-1}}{\tilde{B}_{n-\left\lfloor\frac{n}{2}\right\rfloor+2}} & \geqslant\left(\frac{\tilde{B}_{n-\left\lfloor\frac{n}{2}\right\rfloor+2 u}}{\tilde{B}_{n-\left\lfloor\frac{n}{2}\right\rfloor+2 u-2}}\right) \cdots\left(\frac{\tilde{B}_{n-\left\lfloor\frac{n}{2}\right\rfloor+6}}{\tilde{B}_{n-\left\lfloor\frac{n}{2}\right\rfloor+4}}\right)\left(\frac{\tilde{B}_{n-\left\lfloor\frac{n}{2}\right\rfloor+4}}{\tilde{B}_{n-\left\lfloor\frac{n}{2}\right\rfloor+2}}\right) \\
& >q^{u-1},
\end{aligned}
$$

where $u=\left\lfloor\frac{1}{2}\left(\left\lfloor\frac{n}{2}\right\rfloor-3\right)\right\rfloor$. Clearly $u-1 \geqslant \frac{n}{8}$. So if we choose $q=(16)^{8}$, then for sufficiently large n, the lemma follows.

Let $\mathbf{A}=\left\{\mathcal{A}_{1}, \ldots, \mathcal{A}_{r}\right\} \in I(n, r, t)$ be compressed. We say $\sigma(\mathbf{A})$ is trivial if there is a fixed t-set, say T, such that $T \subseteq \sigma\left(P_{l}\right)$ for all $P_{l} \in \mathcal{A}_{l}, l=1, \ldots, r$.

Theorem 3.3. Let $\mathbf{A} \in I(n, 2,1)$ be compressed. If $\sigma(\mathbf{A})$ is non-trivial, then

$$
|\mathbf{A}|<B_{n-1}^{2}
$$

Proof. Let $\mathbf{A}=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}\right\}$. For $k \geqslant 1$, let $\mathcal{F}_{l k}=\sigma\left(\mathcal{A}_{l}\right) \cap\binom{[n]}{k}$. If $\mathcal{F}_{l 1} \neq \varnothing$ for $l=1,2$, then $\sigma(\mathbf{A})$ is trivial. So we may assume that $\mathcal{F}_{21}=\varnothing$. By Proposition 2.4, $\sigma(\mathbf{A})$ is cross-intersecting. Note that $\left|\mathcal{A}_{1}\right| \leqslant \sum_{1 \leqslant k \leqslant n}\left|F_{1 k}\right| \tilde{B}_{n-k}$ and $\left|\mathcal{A}_{2}\right| \leqslant \sum_{2 \leqslant k \leqslant n}\left|F_{2 k}\right| \tilde{B}_{n-k}$. Then

$$
\begin{aligned}
\left|\mathcal{A}_{1}\right| & \leqslant \sum_{1 \leqslant k<\left\lfloor\frac{n}{2}\right\rfloor}\left|F_{1 k}\right| \tilde{B}_{n-k}+\sum_{\left\lfloor\frac{n}{2}\right\rfloor \leqslant k \leqslant n}\left|F_{1 k}\right| \tilde{B}_{n-k} \\
& \leqslant \sum_{1 \leqslant k<\left\lfloor\frac{n}{2}\right\rfloor}\left|F_{1 k}\right| \tilde{B}_{n-k}+\sum_{\left\lfloor\frac{n}{2}\right\rfloor \leqslant k \leqslant n}\binom{n}{k} \tilde{B}_{n-k}
\end{aligned}
$$

and

$$
\left|\mathcal{A}_{2}\right| \leqslant \sum_{2 \leqslant k<\left\lfloor\frac{n}{2}\right\rfloor}\left|F_{2 k}\right| \tilde{B}_{n-k}+\sum_{\left\lfloor\frac{n}{2}\right\rfloor \leqslant k \leqslant n}\binom{n}{k} \tilde{B}_{n-k} .
$$

Let

$$
\begin{aligned}
Q & =\sum_{\left\lfloor\frac{n}{2}\right\rfloor \leqslant k \leqslant n}\binom{n}{k} \tilde{B}_{n-k} \\
M_{1} & =\sum_{1 \leqslant k<\left\lfloor\frac{n}{2}\right\rfloor}\left|F_{1 k}\right| \tilde{B}_{n-k} \\
M_{2} & =\sum_{2 \leqslant k<\left\lfloor\frac{n}{2}\right\rfloor}\left|F_{2 k}\right| \tilde{B}_{n-k} .
\end{aligned}
$$

Then

$$
\begin{aligned}
|\mathbf{A}| & \leqslant\left(M_{1}+Q\right)\left(M_{2}+Q\right) \\
& =M_{1} M_{2}+M_{1} Q+M_{2} Q+Q^{2} .
\end{aligned}
$$

Note that by (2) and (3),

$$
\begin{aligned}
M_{l} & \leqslant \tilde{B}_{n} \sum_{1 \leqslant k<\left\lfloor\frac{n}{2}\right\rfloor}\left|F_{l k}\right| \\
& \leqslant \tilde{B}_{n} \sum_{1 \leqslant k<\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{k} \\
& \leqslant 2^{n} \tilde{B}_{n} \\
& \leqslant 2^{n} B_{n-1} .
\end{aligned}
$$

By Lemma 3.2 and (3), $Q \leqslant \frac{1}{8^{n}} \tilde{B}_{n-1}<\frac{1}{8^{n}} B_{n-1}<B_{n-1}$. Therefore

$$
\begin{aligned}
M_{1} Q+M_{2} Q+Q^{2} & <\left(2^{n}+2^{n}+1\right) B_{n-1}\left(\frac{\tilde{B}_{n-1}}{8^{n}}\right) \\
& <\frac{1}{2} B_{n-1} \tilde{B}_{n-1} .
\end{aligned}
$$

By Theorem 1.1,

$$
\begin{aligned}
M_{1} M_{2} & \leqslant \sum_{\substack{1 \leqslant k_{1}<\left\lfloor\frac{n}{2}\right\rfloor, 2 \leqslant k_{2}<\left\lfloor\frac{n}{2}\right\rfloor}}\binom{n-1}{k_{1}-1}\binom{n-1}{k_{2}-1} \tilde{B}_{n-k_{1}} \tilde{B}_{n-k_{2}} \\
& =\left(\sum_{1 \leqslant k<\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-1}{k-1} \tilde{B}_{n-k}\right)\left(\sum_{2 \leqslant k<\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-1}{k-1} \tilde{B}_{n-k}\right) .
\end{aligned}
$$

By (1),

$$
\begin{aligned}
& \sum_{1 \leqslant k<\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-1}{k-1} \tilde{B}_{n-k}<B_{n-1} \\
& \sum_{2 \leqslant k<\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-1}{k-1} \tilde{B}_{n-k}<B_{n-1}-\tilde{B}_{n-1}
\end{aligned}
$$

So $M_{1} M_{2} \leqslant\left(B_{n-1}-\tilde{B}_{n-1}\right) B_{n-1}$, and

$$
\begin{aligned}
|\mathbf{A}| & <B_{n-1}^{2}-\tilde{B}_{n-1} B_{n-1}+\frac{1}{2}\left(B_{n-1}\right) \tilde{B}_{n-1} \\
& <B_{n-1}^{2} .
\end{aligned}
$$

Proof of Theorem 1.3.

Let $\mathbf{A} \in I(n, 2,1)$ be of maximum size. We may assume that \mathbf{A} has size at least B_{n-1}^{2}. Repeatedly apply the splitting operations until we obtain an $\mathbf{A}^{*} \in I(n, 2,1)$ such that
\mathbf{A}^{*} is compressed (Proposition 2.3). By Proposition 2.4, $\sigma\left(\mathbf{A}^{*}\right)$ is cross-intersecting. If $\sigma\left(\mathbf{A}^{*}\right)$ non-trivial, by Theorem 3.3, $|\mathbf{A}|<B_{n-1}^{2}$, a contradiction. So $\sigma\left(\mathbf{A}^{*}\right)$ is trivial. This implies that \mathbf{A}^{*} is trivial, for \mathbf{A} is of maximum size. It then follows from Proposition 2.2 that \mathbf{A} is trivial.

Acknowledgement

We would like to thank the anonymous referee for the comments that helped us make several improvements to this paper.

References

[1] C. Bey, On cross-intersecting families of sets, Graphs Combin. 21 (2005), 161-168.
[2] P. J. Cameron and C. Y. Ku, Intersecting families of permutations, European J. Combin. 24 (2003), 881-890.
[3] M. Deza and P. Frankl, On the maximum number of permutations with given maximal or minimal distance, J. Combin. Theory Ser. A 22 (1977), 352-360.
[4] D. Ellis, Stability for t-intersecting families of permutations, J. Combin. Theory Ser. A 118 (2011), 208-227.
[5] D. Ellis, E. Friedgut and H. Pilpel, Intersecting families of permutations, J. Amer. Math. Soc. 24 (2011), 649-682.
[6] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 212 (1961), 313-318.
[7] P. Frankl, The Erdős-Ko-Rado theorem is true for $n=c k t$, Col. Soc. Math. J. Bolyai 18 (1978), 365-375.
[8] P. Frankl and N. Tokushige, On r-cross intersecting families of sets, Combin. Probab. Comput. 20 (2011), 749-752.
[9] C. Godsil and K. Meagher, A new proof of the Erdős-Ko-Rado theorem for intersecting families of permutations, European J. Combin. 30 (2009), 404-414.
[10] A. J. W. Hilton and E. C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 18 (1967), 369-384.
[11] G. Hurlbert and V. Kamat, Erdős-Ko-Rado theorems for chordal graphs and trees, J. Combin. Theory Ser. A 118 (2011), 829-841.
[12] M. Klazar, Counting set systems by weight, Electron. J. Combin. 12 (2005), \#R11.
[13] C. Y. Ku and I. Leader, An Erdős-Ko-Rado theorem for partial permutations, Discrete Math. 306 (2006), 74-86.
[14] C. Y. Ku and D. Renshaw, Erdős-Ko-Rado theorems for permutations and set partitions, J. Combin. Theory Ser. A 115 (2008), 1008-1020.
[15] C. Y. Ku and T. W. H. Wong, Intersecting families in the alternating group and direct product of symmetric groups, Electron. J. Combin. 14 (2007), \#R25.
[16] C. Y. Ku and K. B. Wong, An Analogue of Hilton-Milner Theorem for Set Partitions, preprint available at arXiv:1109.0417.
[17] B. Larose and C. Malvenuto, Stable sets of maximal size in Kneser-type graphs, European J. Combin. 25 (2004), 657-673.
[18] M. Matsumoto and N. Tokushige, The exact bound in the Erdős-Ko-Rado theorem for cross-intersecting families, J. Combin. Theory Ser. A 52 (1989), 90-97.
[19] L. Pyber, A new generalization of the Erdős-Ko-Rado theorem, J. Combin. Theory Ser. A 43 (1986), 85-90.
[20] N. Tokushige, A product version of the Erdős-Ko-Rado theorem, J. Combin. Theory Ser. A 118 (2011), 1575-1587.
[21] J. Wang and S. J. Zhang, An Erdős-Ko-Rado-type theorem in Coxeter groups, European J. Combin. 29 (2008), 1112-1115.
[22] R.M. Wilson, The exact bound in the Erdős-Ko-Rado theorem, Combinatorica 4 (1984), 247-257.

[^0]: * corresponding author

