On cross-intersecting families of set partitions

Cheng Yeaw Ku *

Kok Bin Wong

Department of Mathematics National University of Singapore Singapore 117543. Institute of Mathematical Sciences University of Malaya 50603 Kuala Lumpur, Malaysia

matkcy@nus.edu.sg

kbwong@um.edu.my

Submitted: Mar 29, 2012; Accepted: Dec 8, 2012; Published: Dec 31, 2012 Mathematics Subject Classifications: 05D05

Abstract

Let $\mathcal{B}(n)$ denote the collection of all set partitions of [n]. Suppose $\mathcal{A}_1, \mathcal{A}_2 \subseteq \mathcal{B}(n)$ are cross-intersecting i.e. for all $A_1 \in \mathcal{A}_1$ and $A_2 \in \mathcal{A}_2$, we have $A_1 \cap A_2 \neq \emptyset$. It is proved that for sufficiently large n,

$$|\mathcal{A}_1||\mathcal{A}_2| \leqslant B_{n-1}^2$$

where B_n is the *n*-th Bell number. Moreover, equality holds if and only if $A_1 = A_2$ and A_1 consists of all set partitions with a fixed singleton.

Keywords: cross-intersecting family, Erdős-Ko-Rado, set partitions

1 Introduction

1.1 Finite sets

Let $[n] = \{1, \ldots, n\}$ and $\binom{[n]}{k}$ denote the family of all k-subsets of [n]. A fundamental result in extremal combinatorial set theory is the Erdős-Ko-Rado theorem ([6], [7], [22]) which asserts that if a family $\mathcal{A} \subseteq \binom{[n]}{k}$ is t-intersecting (i.e. $|A \cap B| \ge t$ for any $A, B \in \mathcal{A}$), then $|\mathcal{A}| \le \binom{n-t}{k-t}$ for $n \ge (k-t+1)(t+1)$. Recently, there are several Erdős-Ko-Rado type results (see [2, 4, 5, 9, 11, 13, 15, 17, 20, 21]), most notably is the result of Ellis, Friedgut and Pilpel [5], which states that for sufficiently large n depending on t, a t-intersecting family \mathcal{A} of permutations has size at most (n-t)!, with equality if and only if \mathcal{A} is a coset of the stabilizer of t points, thus settling an old conjecture of Deza and Frankl [3].

^{*}corresponding author

Let $\mathcal{A}_i \subseteq {\binom{[n]}{k_i}}$ for i = 1, 2, ..., r. We say that the families $\mathcal{A}_1, \mathcal{A}_2, ..., \mathcal{A}_r$ are *r*-cross t-intersecting if $|\mathcal{A}_1 \cap \mathcal{A}_2 \cap \cdots \cap \mathcal{A}_r| \ge t$ holds for all $\mathcal{A}_i \in \mathcal{A}_i$. When t = 1, we will just say *r*-cross intersecting instead of *r*-cross 1-intersecting. Furthermore when r = 2 and t = 1, we will just say cross-intersecting instead of 2-cross intersecting. It has been shown by Frankl and Tokushige [8] that if $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_r \subseteq {\binom{[n]}{k}}$ are *r*-cross intersecting, then for $n \ge rk/(r-1)$,

$$\prod_{i=1}^{r} |\mathcal{A}_i| \leqslant \binom{n-1}{k-1}^{r}.$$

For differing values of k's, we have the following result.

Theorem 1.1 (Bey [1], Matsumoto and Tokushige [18], Pyber [19]). Let $\mathcal{A}_1 \subseteq {\binom{[n]}{k_1}}$ and $\mathcal{A}_2 \subseteq {\binom{[n]}{k_2}}$ be cross-intersecting. If $k_1, k_2 \leq n/2$, then

$$|\mathcal{A}_1||\mathcal{A}_2| \leqslant \binom{n-1}{k_1-1}\binom{n-1}{k_2-1}.$$

Equality holds for $k_1 + k_2 < n$ if and only if A_1 and A_2 consist of all k_1 -element resp. k_2 -element sets containing a fixed element.

1.2 Set partitions

A set partition of [n] is a collection of pairwise disjoint nonempty subsets (called *blocks*) of [n] whose union is [n]. Let $\mathcal{B}(n)$ denote the family of all set partitions of [n]. It is well-known that the size of $\mathcal{B}(n)$ is the *n*-th Bell number, denoted by B_n . A block of size one is also known as a *singleton*. We denote the number of all set partitions of [n] which are singleton-free (i.e. without any singleton) by \tilde{B}_n .

A family $\mathcal{A} \subseteq \mathcal{B}(n)$ is said to be *t*-intersecting if any two of its members have at least t blocks in common. Ku and Renshaw [14, Theorem 1.7 and Theorem 1.8] proved the following analogue of the Erdős-Ko-Rado theorem for set partitions.

Theorem 1.2 (Ku-Renshaw). Suppose $\mathcal{A} \subseteq \mathcal{B}(n)$ is a t-intersecting family. Then, for $n \ge n_0(t)$,

$$|\mathcal{A}| \leqslant B_{n-t},$$

with equality if and only if \mathcal{A} consists of all set partitions with t fixed singletons.

Recently, Ku and Wong [16, Theorem 1.4] proved a generalization of Theorem 1.2, which is an analogue of the Hilton-Milner Theorem [10] for set partitions.

In this paper, we will prove the following analogue of Theorem 1.1 for set partitions.

Theorem 1.3. Let $\mathcal{A}_1, \mathcal{A}_2 \subseteq \mathcal{B}(n)$ be cross-intersecting. Then, for $n \ge n_0$,

$$|\mathcal{A}_1||\mathcal{A}_2| \leqslant B_{n-1}^2$$

Moreover, equality holds if and only if $A_1 = A_2$ and A_1 consists of all set partitions with a fixed singleton.

2 Splitting operation

In this section, we will prove some important results regarding the splitting operation for r-cross t-intersecting families of set partitions. These results are the 'cross' version of [14, Proposition 3.1, 3.2, 3.3, 3.4].

Let $i, j \in [n], i \neq j$, and $P \in \mathcal{B}(n)$. Denote by $P_{[i]}$ the block of P which contains i. We define the (i, j)-split of P to be the following set partition:

$$s_{ij}(P) = \begin{cases} P \setminus \{P_{[i]}\} \cup \{\{i\}, P_{[i]} \setminus \{i\}\} & \text{if } j \in P_{[i]}, \\ P & \text{otherwise} \end{cases}$$

For a family $\mathcal{A} \subseteq \mathcal{B}(n)$, let $s_{ij}(\mathcal{A}) = \{s_{ij}(P) : P \in \mathcal{A}\}$. Any family \mathcal{A} of set partitions can be decomposed with respect to given $i, j \in [n]$ as follows:

$$\mathcal{A} = (\mathcal{A} \setminus \mathcal{A}_{ij}) \cup \mathcal{A}_{ij},$$

where $\mathcal{A}_{ij} = \{P \in \mathcal{A} : s_{ij}(P) \notin \mathcal{A}\}$. Define the (i, j)-splitting of \mathcal{A} to be the family

$$S_{ij}(\mathcal{A}) = (\mathcal{A} \setminus \mathcal{A}_{ij}) \cup s_{ij}(\mathcal{A}_{ij}).$$

It is not hard to see that $|S_{ij}(\mathcal{A})| = |\mathcal{A}|$.

Let I(n, r, t) denote the set of all *r*-cross *t*-intersecting families of set partitions of [n]. Let $\mathbf{A} = \{\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_r\} \in I(n, r, t)$. We set

$$S_{ij}(\mathbf{A}) = \{S_{ij}(\mathcal{A}_1), S_{ij}(\mathcal{A}_2), \dots, S_{ij}(\mathcal{A}_r)\},\$$

and write $S_{ij}(\mathbf{A}) = \mathbf{A}$ if $S_{ij}(\mathcal{A}_l) = \mathcal{A}_l$ for $l = 1, 2, \dots, r$.

We define $|\mathbf{A}| = \prod_{l=1}^{r} |\mathcal{A}_l|$. It is not hard to see that

$$|\mathbf{A}| = \prod_{i=1}^{r} |S_{ij}(\mathcal{A}_l)|.$$

An element $\mathbf{A} = \{\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_r\} \in I(n, r, t)$ is said to be *trivial*, if $\mathcal{A}_1 = \mathcal{A}_2 = \cdots = \mathcal{A}_r$ and \mathcal{A}_1 consists of all set partitions containing t fixed singletons.

Proposition 2.1. Let $i, j \in [n]$, $i \neq j$. If $\mathbf{A} \in I(n, r, t)$, then $S_{ij}(\mathbf{A}) \in I(n, r, t)$.

Proof. Let $\mathbf{A} = \{\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_r\}$. For each $l = 1, 2, \dots, r$, choose an $A_l \in S_{ij}(\mathcal{A}_l)$. If $A_l \in \mathcal{A}_l$ for all l, then $|A_1 \cap A_2 \cap \dots \cap A_r| \ge t$. Without loss of generality, suppose $A_l \in s_{ij}((\mathcal{A}_l)_{ij})$ for $l = 1, \dots, q$, and $A_l \in \mathcal{A}_l \setminus (\mathcal{A}_l)_{ij}$ for $l = q+1, \dots, r$. Then $A_l = s_{ij}(P_l)$ for $l = 1, \dots, q$, where $P_l \in (\mathcal{A}_l)_{ij} \subseteq A_l$.

Now there are at least t blocks, say M_1, M_2, \ldots, M_t , that are all contained in $P_1 \cap \cdots \cap P_q \cap A_{q+1} \cap \cdots \cap A_r$. If $\{i, j\} \not\subseteq M_y$ for $y = 1, \ldots, t$, then $M_1, M_2, \ldots, M_t \in A_l$ for $l = 1, \ldots, q$. This implies that M_1, M_2, \ldots, M_t are contained in $A_1 \cap \cdots \cap A_q \cap A_{q+1} \cap \cdots \cap A_r$, and thus $|A_1 \cap \cdots \cap A_r| \ge t$.

Suppose one of the M_y contains $\{i, j\}$. We may assume that $\{i, j\} \subseteq M_1$. If q = r, then $\{i\}, M_2, \ldots, M_t$ are contained in $A_1 \cap \cdots \cap A_r$, and thus $|A_1 \cap \cdots \cap A_r| \ge t$. Suppose

 $1 \leq q < r. \text{ Since } A_l \in \mathcal{A}_l \setminus (\mathcal{A}_l)_{ij} \text{ for } l \geq q+1, \text{ we must have } s_{ij}(A_l) \in \mathcal{A}_l. \text{ Note that } M_2, \ldots, M_t \text{ are contained in } P_1 \cap \cdots \cap P_q \cap s_{ij}(A_{q+1}) \cap \cdots \cap s_{ij}(A_r). \text{ Since } |P_1 \cap \cdots \cap P_q \cap s_{ij}(A_{q+1}) \cap \cdots \cap s_{ij}(A_r). \text{ Since } |P_1 \cap \cdots \cap P_q \cap s_{ij}(A_{q+1}) \cap \cdots \cap s_{ij}(A_r)| \geq t, \text{ there is a block } M_{t+1} \text{ disjoint from } M_1, M_2, \ldots, M_t, \text{ that is contained in } P_1 \cap \cdots \cap P_q \cap s_{ij}(A_{q+1}) \cap \cdots \cap s_{ij}(A_r). \text{ Now } M_{t+1} \text{ is a block in } A_1 \cap \cdots \cap A_q \cap A_{q+1} \cap \cdots \cap A_r, \text{ for } \{i, j\} \not\subseteq M_{t+1}. \text{ Hence } |A_1 \cap \cdots \cap A_r| \geq t.$

Proposition 2.2. Let $n \ge t+1$. Suppose $\mathbf{A} \in I(n, r, t)$ and $|\mathbf{A}| > 1$. Let $i, j \in [n], i \ne j$. If $S_{ij}(\mathbf{A})$ is trivial, then \mathbf{A} is trivial.

Proof. Let $\mathbf{A} = \{\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_r\}$. Then $S_{ij}(\mathbf{A}) = \{S_{ij}(\mathcal{A}_1), S_{ij}(\mathcal{A}_2), \dots, S_{ij}(\mathcal{A}_r)\}$ and by Proposition 2.1, $S_{ij}(\mathbf{A}) \in I(n, r, t)$. Since $S_{ij}(\mathbf{A})$ is trivial, $S_{ij}(\mathcal{A}_1) = S_{ij}(\mathcal{A}_2) =$ $\dots = S_{ij}(\mathcal{A}_r)$ and $S_{ij}(\mathcal{A}_1)$ consists of all set partitions containing t fixed singletons, say $\{x_1\}, \{x_2\}, \dots, \{x_t\}$. Note that $T = \{\{x_1\}, \{x_2\}, \dots, \{x_t\}, [n] \setminus \{x_1, \dots, x_t\}\} \in S_{ij}(\mathcal{A}_1)$. If $T \in s_{ij}((\mathcal{A}_1)_{ij})$, then $T = s_{ij}(P)$ for a $P \in (\mathcal{A}_1)_{ij} \subseteq \mathcal{A}_1$. Note that P will have exactly t blocks. Now, if $Q_l \in \mathcal{A}_l$ for $l = 2, \dots, r$, then $P = Q_2 = \dots = Q_r$, for $|P \cap Q_2 \cap \dots \cap Q_r| \ge t$. Therefore $\mathcal{A}_2 = \mathcal{A}_3 = \dots = \mathcal{A}_r = \{P\}$, and this implies that $\mathcal{A}_1 = \{P\}$. So $|\mathbf{A}| = \prod_{l=1}^r |\mathcal{A}_l| = 1$, a contradiction. So we may assume that $T \in \mathcal{A}_1 \setminus (\mathcal{A}_1)_{ij} \subseteq \mathcal{A}_1$. Similarly, $T \in \mathcal{A}_2 \cap \dots \cap \mathcal{A}_r$.

Suppose $\mathcal{A}_1 \neq S_{ij}(\mathcal{A}_1)$. Then there is a $P \in \mathcal{A}_1$ with $s_{ij}(P) \notin \mathcal{A}_1$. Now

$$|P \cap \overbrace{T \cap \dots \cap T}^{r-1}| \ge t,$$

for $T \in \mathcal{A}_2 \cap \cdots \cap \mathcal{A}_r$. Suppose $[n] \setminus \{x_1, \ldots, x_t\}$ is a block in P. Since T has exactly t+1 blocks, we deduce that P = T. This means that $T \in (\mathcal{A}_1)_{ij}$, and $s_{ij}(T) \in S_{ij}(\mathcal{A}_1)$. So $T \notin S_{ij}(\mathcal{A}_1)$, a contradiction.

Suppose $[n] \setminus \{x_1, \ldots, x_t\}$ is not a block in P. Then $\{x_1\}, \{x_2\}, \ldots, \{x_t\}$ are blocks in P. This implies that $P \in S_{ij}(\mathcal{A}_1)$, for $S_{ij}(\mathbf{A})$ is trivial. Since $P \in \mathcal{A}_1$, we must have $s_{ij}(P) \in \mathcal{A}_1$, a contradiction. Hence $\mathcal{A}_1 = S_{ij}(\mathcal{A}_1)$. Similarly $\mathcal{A}_l = S_{ij}(\mathcal{A}_l)$ for $l = 2, \ldots, r$.

An element $\mathbf{A} \in I(n, r, t)$ is said to be *compressed* if for any $i, j \in [n], i \neq j$, we have $S_{ij}(\mathbf{A}) = \mathbf{A}$. For a set partition P, let $\sigma(P) = \{x : \{x\} \in P\}$ denote the union of its singletons (block of size 1). For a family \mathcal{A} of set partitions, let $\sigma(\mathcal{A}) = \{\sigma(P) : P \in \mathcal{A}\}$. Note that $\sigma(\mathcal{A})$ is a family of subsets of [n]. Now for $\mathbf{A} = \{\mathcal{A}_1, \ldots, \mathcal{A}_r\}$, where $\mathcal{A}_1, \ldots, \mathcal{A}_r \subseteq \mathcal{B}(n)$, set $\sigma(\mathbf{A}) = \{\sigma(\mathcal{A}_1), \ldots, \sigma(\mathcal{A}_r)\}$. We say $\sigma(\mathbf{A})$ is *r*-cross *t*-intersecting if $\sigma(\mathcal{A}_1), \ldots, \sigma(\mathcal{A}_r)$ are *r*-cross *t*-intersecting.

Proposition 2.3. Given an element $\mathbf{A} \in I(n, r, t)$, by repeatedly applying the splitting operations, we eventually obtain a compressed $\mathbf{A}^* \in I(n, r, t)$ with $|\mathbf{A}^*| = |\mathbf{A}|$.

Proof. Note that if $S_{ij}(\mathbf{A}) \neq \mathbf{A}$, then the (i, j)-splits of some partitions are finer than the originals and therefore will move down in the partition lattice. Eventually this results in a compressed family of partitions.

For a compressed \mathbf{A} , its *r*-cross *t*-intersecting property can be transferred to $\sigma(\mathbf{A})$, thus allowing us to access the structure of \mathbf{A} via the structure of $\sigma(\mathbf{A})$.

Proposition 2.4. If $\mathbf{A} \in I(n, r, t)$ is compressed, then $\sigma(\mathbf{A})$ is r-cross t-intersecting.

Proof. Let $\mathbf{A} = \{\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_r\}$. Assume, for a contradiction, that there exist $P_l \in \mathcal{A}_l$, $l = 1, \dots, r$ such that $|\sigma(P_1) \cap \dots \cap \sigma(P_l)| < t$. Since $|P_1 \cap \dots \cap P_r| \ge t$, there are $s \ge t - |\sigma(P_1) \cap \dots \cap \sigma(P_l)|$ common blocks of P_1, \dots, P_r (each of size at least 2), say M_1, \dots, M_s , which are disjoint from $\sigma(P_1) \cup \dots \cup \sigma(P_r)$. Fix two distinct points x_e, y_e from each M_e . Then $P_1^* = s_{x_s y_s} (\dots (s_{x_1 y_1}(P_1)) \dots) \in \mathcal{A}_1$, for \mathbf{A} is compressed. Now $|P_1^* \cap P_2 \cap \dots \cap P_r| < t$, a contradiction.

3 Proof of main result

Recall that the size of $\mathcal{B}(n)$ is the *n*-th Bell number, denoted by B_n , and the number of all set partitions of [n] which are singleton-free (i.e. without any singleton) is denoted by \tilde{B}_n .

The following identities for B_n and \tilde{B}_n are straightforward.

Lemma 3.1. Let $n \ge 2$. Then

$$B_n = \sum_{k=0}^n \binom{n}{k} \tilde{B}_{n-k}, \tag{1}$$

$$\tilde{B}_n = \sum_{k=1}^{n-1} \binom{n-1}{k} \tilde{B}_{n-1-k}, \qquad (2)$$

with the conventions $B_0 = \tilde{B}_0 = 1$.

Note in passing that $\tilde{B}_1 = 0$. By (1) and (2),

$$B_n = \tilde{B}_n + \tilde{B}_{n+1}.\tag{3}$$

Given a real number x, we shall denote the greatest integer less than or equal to x, by $\lfloor x \rfloor$. Note that $\lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$. Some useful inequalities involving B_n can be found in [12]. However we just need the following inequality.

Lemma 3.2. There is a positive integer n_0 such that for $n \ge n_0$,

$$\tilde{B}_{n-1} > 8^n \sum_{\lfloor \frac{n}{2} \rfloor \leq k \leq n} \binom{n}{k} \tilde{B}_{n-k}.$$

Proof. By (2),

$$\sum_{\lfloor \frac{n}{2} \rfloor \leqslant k \leqslant n} \binom{n}{k} \tilde{B}_{n-k} \leqslant \tilde{B}_{n-\lfloor \frac{n}{2} \rfloor+2} \sum_{\lfloor \frac{n}{2} \rfloor \leqslant k \leqslant n} \binom{n}{k}$$
$$\leqslant 2^n \tilde{B}_{n-\lfloor \frac{n}{2} \rfloor+2}.$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 19(4) (2012), #P49

So it is sufficient to show that $\tilde{B}_{n-1}/\tilde{B}_{n-\lfloor\frac{n}{2}\rfloor+2} > (16)^n$.

Again by (2), for any fixed q, $\tilde{B}_m/\tilde{B}_{m-2} > q$ for sufficiently large m. Therefore

$$\frac{\tilde{B}_{n-1}}{\tilde{B}_{n-\lfloor\frac{n}{2}\rfloor+2}} \geqslant \left(\frac{\tilde{B}_{n-\lfloor\frac{n}{2}\rfloor+2u}}{\tilde{B}_{n-\lfloor\frac{n}{2}\rfloor+2u-2}}\right) \cdots \left(\frac{\tilde{B}_{n-\lfloor\frac{n}{2}\rfloor+6}}{\tilde{B}_{n-\lfloor\frac{n}{2}\rfloor+4}}\right) \left(\frac{\tilde{B}_{n-\lfloor\frac{n}{2}\rfloor+4}}{\tilde{B}_{n-\lfloor\frac{n}{2}\rfloor+2}}\right) > q^{u-1},$$

where $u = \lfloor \frac{1}{2}(\lfloor \frac{n}{2} \rfloor - 3) \rfloor$. Clearly $u - 1 \ge \frac{n}{8}$. So if we choose $q = (16)^8$, then for sufficiently large n, the lemma follows.

Let $\mathbf{A} = \{\mathcal{A}_1, \ldots, \mathcal{A}_r\} \in I(n, r, t)$ be compressed. We say $\sigma(\mathbf{A})$ is *trivial* if there is a fixed *t*-set, say *T*, such that $T \subseteq \sigma(P_l)$ for all $P_l \in \mathcal{A}_l, l = 1, \ldots, r$.

Theorem 3.3. Let $\mathbf{A} \in I(n, 2, 1)$ be compressed. If $\sigma(\mathbf{A})$ is non-trivial, then

$$|\mathbf{A}| < B_{n-1}^2.$$

Proof. Let $\mathbf{A} = \{\mathcal{A}_1, \mathcal{A}_2\}$. For $k \ge 1$, let $\mathcal{F}_{lk} = \sigma(\mathcal{A}_l) \cap {\binom{[n]}{k}}$. If $\mathcal{F}_{l1} \ne \emptyset$ for l = 1, 2, then $\sigma(\mathbf{A})$ is trivial. So we may assume that $\mathcal{F}_{21} = \emptyset$. By Proposition 2.4, $\sigma(\mathbf{A})$ is cross-intersecting. Note that $|\mathcal{A}_1| \le \sum_{1 \le k \le n} |F_{1k}| \tilde{B}_{n-k}$ and $|\mathcal{A}_2| \le \sum_{2 \le k \le n} |F_{2k}| \tilde{B}_{n-k}$. Then

$$|\mathcal{A}_{1}| \leq \sum_{1 \leq k < \lfloor \frac{n}{2} \rfloor} |F_{1k}| \tilde{B}_{n-k} + \sum_{\lfloor \frac{n}{2} \rfloor \leq k \leq n} |F_{1k}| \tilde{B}_{n-k}$$
$$\leq \sum_{1 \leq k < \lfloor \frac{n}{2} \rfloor} |F_{1k}| \tilde{B}_{n-k} + \sum_{\lfloor \frac{n}{2} \rfloor \leq k \leq n} \binom{n}{k} \tilde{B}_{n-k},$$

and

$$|\mathcal{A}_2| \leqslant \sum_{2 \leqslant k < \lfloor \frac{n}{2} \rfloor} |F_{2k}| \tilde{B}_{n-k} + \sum_{\lfloor \frac{n}{2} \rfloor \leqslant k \leqslant n} \binom{n}{k} \tilde{B}_{n-k}.$$

Let

$$Q = \sum_{\lfloor \frac{n}{2} \rfloor \leqslant k \leqslant n} \binom{n}{k} \tilde{B}_{n-k}$$
$$M_1 = \sum_{1 \leqslant k < \lfloor \frac{n}{2} \rfloor} |F_{1k}| \tilde{B}_{n-k}$$
$$M_2 = \sum_{2 \leqslant k < \lfloor \frac{n}{2} \rfloor} |F_{2k}| \tilde{B}_{n-k}.$$

Then

$$|\mathbf{A}| \leq (M_1 + Q)(M_2 + Q)$$

= $M_1M_2 + M_1Q + M_2Q + Q^2$.

Note that by (2) and (3),

$$M_{l} \leqslant \tilde{B}_{n} \sum_{1 \leqslant k < \lfloor \frac{n}{2} \rfloor} |F_{lk}|$$
$$\leqslant \tilde{B}_{n} \sum_{1 \leqslant k < \lfloor \frac{n}{2} \rfloor} \binom{n}{k}$$
$$\leqslant 2^{n} \tilde{B}_{n}$$
$$\leqslant 2^{n} B_{n-1}.$$

By Lemma 3.2 and (3), $Q \leq \frac{1}{8^n} \tilde{B}_{n-1} < \frac{1}{8^n} B_{n-1} < B_{n-1}$. Therefore

$$M_1Q + M_2Q + Q^2 < (2^n + 2^n + 1)B_{n-1}\left(\frac{\tilde{B}_{n-1}}{8^n}\right)$$
$$< \frac{1}{2}B_{n-1}\tilde{B}_{n-1}.$$

By Theorem 1.1,

$$M_1 M_2 \leqslant \sum_{\substack{1 \leqslant k_1 < \lfloor \frac{n}{2} \rfloor, \\ 2 \leqslant k_2 < \lfloor \frac{n}{2} \rfloor}} {\binom{n-1}{k_1-1} {\binom{n-1}{k_2-1}} \tilde{B}_{n-k_1} \tilde{B}_{n-k_2}}$$
$$= \left(\sum_{1 \leqslant k < \lfloor \frac{n}{2} \rfloor} {\binom{n-1}{k-1}} \tilde{B}_{n-k} \right) \left(\sum_{2 \leqslant k < \lfloor \frac{n}{2} \rfloor} {\binom{n-1}{k-1}} \tilde{B}_{n-k} \right).$$

By (1),

$$\sum_{1 \leq k < \lfloor \frac{n}{2} \rfloor} {\binom{n-1}{k-1}} \tilde{B}_{n-k} < B_{n-1}$$
$$\sum_{2 \leq k < \lfloor \frac{n}{2} \rfloor} {\binom{n-1}{k-1}} \tilde{B}_{n-k} < B_{n-1} - \tilde{B}_{n-1}.$$

So $M_1 M_2 \leq (B_{n-1} - \tilde{B}_{n-1}) B_{n-1}$, and

$$|\mathbf{A}| < B_{n-1}^2 - \tilde{B}_{n-1}B_{n-1} + \frac{1}{2}(B_{n-1})\tilde{B}_{n-1}$$

< B_{n-1}^2 .

Г		٦
		I
		I

Proof of Theorem 1.3.

Let $\mathbf{A} \in I(n, 2, 1)$ be of maximum size. We may assume that \mathbf{A} has size at least B_{n-1}^2 . Repeatedly apply the splitting operations until we obtain an $\mathbf{A}^* \in I(n, 2, 1)$ such that \mathbf{A}^* is compressed (Proposition 2.3). By Proposition 2.4, $\sigma(\mathbf{A}^*)$ is cross-intersecting. If $\sigma(\mathbf{A}^*)$ non-trivial, by Theorem 3.3, $|\mathbf{A}| < B_{n-1}^2$, a contradiction. So $\sigma(\mathbf{A}^*)$ is trivial. This implies that \mathbf{A}^* is trivial, for \mathbf{A} is of maximum size. It then follows from Proposition 2.2 that \mathbf{A} is trivial.

Acknowledgement

We would like to thank the anonymous referee for the comments that helped us make several improvements to this paper.

References

- [1] C. Bey, On cross-intersecting families of sets, *Graphs Combin.* **21** (2005), 161–168.
- [2] P. J. Cameron and C. Y. Ku, Intersecting families of permutations, European J. Combin. 24 (2003), 881–890.
- [3] M. Deza and P. Frankl, On the maximum number of permutations with given maximal or minimal distance, J. Combin. Theory Ser. A 22 (1977), 352–360.
- [4] D. Ellis, Stability for t-intersecting families of permutations, J. Combin. Theory Ser. A 118 (2011), 208–227.
- [5] D. Ellis, E. Friedgut and H. Pilpel, Intersecting families of permutations, J. Amer. Math. Soc. 24 (2011), 649-682.
- [6] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 2 12 (1961), 313–318.
- [7] P. Frankl, The Erdős-Ko-Rado theorem is true for n = ckt, Col. Soc. Math. J. Bolyai 18 (1978), 365–375.
- [8] P. Frankl and N. Tokushige, On r-cross intersecting families of sets, Combin. Probab. Comput. 20 (2011), 749–752.
- [9] C. Godsil and K. Meagher, A new proof of the Erdős-Ko-Rado theorem for intersecting families of permutations, *European J. Combin.* **30** (2009), 404–414.
- [10] A. J. W. Hilton and E. C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 18 (1967), 369–384.
- [11] G. Hurlbert and V. Kamat, Erdős-Ko-Rado theorems for chordal graphs and trees, J. Combin. Theory Ser. A 118 (2011), 829–841.
- [12] M. Klazar, Counting set systems by weight, *Electron. J. Combin.* 12 (2005), #R11.
- [13] C. Y. Ku and I. Leader, An Erdős-Ko-Rado theorem for partial permutations, Discrete Math. 306 (2006), 74–86.
- [14] C. Y. Ku and D. Renshaw, Erdős-Ko-Rado theorems for permutations and set partitions, J. Combin. Theory Ser. A 115 (2008), 1008–1020.

- [15] C. Y. Ku and T. W. H. Wong, Intersecting families in the alternating group and direct product of symmetric groups, *Electron. J. Combin.* 14 (2007), #R25.
- [16] C. Y. Ku and K. B. Wong, An Analogue of Hilton-Milner Theorem for Set Partitions, preprint available at arXiv:1109.0417.
- [17] B. Larose and C. Malvenuto, Stable sets of maximal size in Kneser-type graphs, European J. Combin. 25 (2004), 657–673.
- [18] M. Matsumoto and N. Tokushige, The exact bound in the Erdős-Ko-Rado theorem for cross-intersecting families, J. Combin. Theory Ser. A 52 (1989), 90–97.
- [19] L. Pyber, A new generalization of the Erdős-Ko-Rado theorem, J. Combin. Theory Ser. A 43 (1986), 85–90.
- [20] N. Tokushige, A product version of the Erdős-Ko-Rado theorem, J. Combin. Theory Ser. A 118 (2011), 1575–1587.
- [21] J. Wang and S. J. Zhang, An Erdős-Ko-Rado-type theorem in Coxeter groups, European J. Combin. 29 (2008), 1112–1115.
- [22] R.M. Wilson, The exact bound in the Erdős-Ko-Rado theorem, Combinatorica 4 (1984), 247–257.