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Abstract

An edge colored graph G is rainbow edge connected if any two vertices are
connected by a path whose edges have distinct colors. The rainbow connectivity of
a connected graph G, denoted by rc(G), is the smallest number of colors that are
needed in order to make G rainbow connected.

In this work we study the rainbow connectivity of binomial random graphs at
the connectivity threshold p = logn+ω

n where ω = ω(n) → ∞ and ω = o(log n) and
of random r-regular graphs where r > 3 is a fixed integer. Specifically, we prove that
the rainbow connectivity rc(G) of G = G(n, p) satisfies rc(G) ∼ max{Z1,diam(G)}
with high probability (whp). Here Z1 is the number of vertices in G whose degree
equals 1 and the diameter of G is asymptotically equal to logn

log logn whp. Finally,
we prove that the rainbow connectivity rc(G) of the random r-regular graph G =

G(n, r) whp satisfies rc(G) = O(log2θr n) where θr = log(r−1)
log(r−2) when r > 4 and

rc(G) = O(log4 n) whp when r = 3.

1 Introduction

Connectivity is a fundamental graph theoretic property. Recently, the concept of rainbow
connectivity was introduced by Chartrand et al. in [7]. An edge colored graph G is
rainbow edge connected if any two vertices are connected by a path whose edges have
distinct colors. The rainbow connectivity rc(G) of a connected graph G is the smallest
number of colors that are needed in order to make G rainbow edge connected. Notice,
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that by definition a rainbow edge connected graph is also connected and furthermore any
connected graph has a trivial edge coloring that makes it rainbow edge connected, since
one may color the edges of a given spanning tree with distinct colors. Other basic facts
established in [7] are that rc(G) = 1 if and only if G is a clique and rc(G) = |V (G)| − 1
if and only if G is a tree. Besides its theoretical interest, rainbow connectivity is also
of interest in applied settings, such as securing sensitive information [13], transfer and
networking [5].

The concept of rainbow connectivity has attracted the interest of various researchers.
Chartrand et al. [7] determine the rainbow connectivity of several special classes of graphs,
including multipartite graphs. Caro et al. [4] prove that for a connected graph G with n
vertices and minimum degree δ, the rainbow connectivity satisfies rc(G) 6 log δ

δ
n(1+f(δ)),

where f(δ) tends to zero as δ increases. The following simpler bound was also proved in
[4], rc(G) 6 n4 logn+3

δ
. Krivelevich and Yuster [12] removed the logarithmic factor from

the Caro et al. [4] upper bound. Specifically they proved that rc(G) 6 20n
δ

. Due to a
construction of a graph with minimum degree δ and diameter 3n

δ+1
− δ+7

δ+1
by Caro et al. [4],

the best upper bound one can hope for is rc(G) 6 3n
δ

. Chandran, Das, Rajendraprasad
and Varma [6] have subsequently proved an upper bound of 3n

δ+1
+ 3, which is therefore

essentially optimal.
As Caro et al. point out, the random graph setting poses several intriguing questions.

Specifically, let G = G(n, p) denote the binomial random graph on n vertices with edge
probability p [8]. Caro et al. [4] proved that p =

√
log n/n is the sharp threshold for the

property rc(G(n, p)) 6 2. He and Liang [9] studied further the rainbow connectivity of
random graphs. Specifically, they obtain the sharp threshold for the property rc(G) 6 d
where d is constant. For further results and references we refer the interested reader to the
recent survey of Li and Sun [13]. In this work we look at the rainbow connectivity of the
binomial graph at the connectivity threshold p = logn+ω

n
where ω = o(log n). This range

of values for p poses problems that cannot be tackled with the techniques developed in
the aforementioned work. Rainbow connectivity has not been studied in random regular
graphs to the best of our knowledge.

Let

L =
log n

log log n
(1)

and let A ∼ B denote A = (1 + o(1))B as n→∞.
We establish the following theorems:

Theorem 1 Let G = G(n, p), p = logn+ω
n

, ω → ∞, ω = o(log n). Also, let Z1 be the
number of vertices of degree 1 in G. Then, with high probability (whp)1

rc(G) ∼ max {Z1, L} ,

It is known that whp the diameter of G(n, p) is asymptotic to L for p as in the above
range, see for example Theorem 10.17 of Bollobás [2]. Theorem 1 gives asymptotically
optimal results. Our next theorem is not quite as precise.

1An event An holds with high probability (whp) if limn→+∞Pr [An] = 1.

the electronic journal of combinatorics 19(4) (2012), #P5 2



Theorem 2 Let G = G(n, r) be a random r-regular graph where r > 3 is a fixed integer.
Then, whp

rc(G) =

{
O(log4 n) r = 3

O(log2θr n) r > 4.

where θr = log(r−1)
log(r−2)

.

All logarithms whose base is omitted are natural. It will be clear from our proofs that
the colorings in the above two theorems can be constructed in a low order polynomial
time. The second theorem, while weaker, contains an unexpected use of a Markov Chain
Monte-Carlo (MCMC) algorithm for randomly coloring a graph.

The paper is organized as follows: After giving a sketch of our approach in Section 2,
in Sections 3, 4 we prove Theorems 1, 2 respectively. Finally, in Section 5 we conclude by
suggesting open problems.

2 Sketch of approach

The general idea in the proofs of both theorems is as follows:

(a) Randomly color the edges of the graph in question. For Theorem 1 we can (in the
main) use a uniformly random coloring. The distribution for Theorem 2 is a little
more complicated.

(b) To prove that this works, we have to find, for each pair of vertices x, y, a large
collection of edge disjoint paths joining them. It will then be easy to argue that at
least one of these paths is rainbow colored.

(c) To find these paths we pick a typical vertex x. We grow a regular tree Tx with root
x. The depth is chosen carefully. We argue that for a typical pair of vertices x, y,
many of the leaves of Tx and Ty can be put into 1-1 correspondence f so that (i) the
path Px from x to leaf v of Tx is rainbow colored, (ii) the path Py from y to the leaf
f(v) of Ty is rainbow colored and (iii) Px, Py do not share color.

(d) We argue that from most of the leaves of Tx, Ty we can grow a tree of depth approx-
imately equal to half the diameter. These latter trees themselves contain a bit more
than n1/2 leaves. These can be constructed so that they are vertex disjoint. Now we
argue that each pair of trees, one associated with x and one associated with y, are
joined by an edge.

(e) We now have, by construction, a large set of edge disjoint paths joining leaves v of
Tx to leaves f(v) of Ty. A simple estimation shows that whp for at least one leaf v of
Tx, the path from v to f(v) is rainbow colored and does not use a color already used
in the path from x to v in Tx or the path from y to f(v) in Ty.

We now fill in the details of both cases.
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3 Proof of Theorem 1

Observe first that rc(G) > max {Z1, diameter(G)}. First of all, each edge incident to a
vertex of degree one must have a distinct color. Just consider a path joining two such
vertices. Secondly, if the shortest distance between two vertices is ` then we need at least
` colors. Next observe that whp the diameter D is asymptotically equal to L, see for
example [2]. We break the proof of Theorem 1 into several lemmas.

Let a vertex be large if deg(x) > log n/100 and small otherwise.

Lemma 1 Whp, there do not exist two small vertices within distance at most 3L/4.

Proof

Pr

[
∃x, y ∈ [n] : deg(x), deg(y) 6 log n/100 and dist(x, y) 6

3L

4

]

6

(
n

2

) 3L/4∑
k=1

nk−1pk

logn/100∑
i=0

(
n− 1− k

i

)
pi(1− p)n−1−k

2

6
3L/4∑
k=1

n(2 log n)k
(

2

(
n

log n/100

)
plogn/100(1− p)n−1−logn/100

)2

6
3L/4∑
k=1

n(2 log n)k
(
2(100e1+o(1))logn/100n−1+o(1)

)2

6
3L/4∑
k=1

n(2 log n)kn−1.9

6 2n(2 log n)3L/4n−1.9

6 n−.1.

2

We use the notation e[S] for the number of edges induced by a given set of vertices S.
Notice that if a set S satisfies e[S] > s + t where t > 1, the induced subgraph G[S] has
at least t+ 1 cycles.

Lemma 2 Fix t ∈ Z+ and 0 < α < 1. Then, whp there does not exist a subset S ⊆ [n],
such that |S| 6 αtL and e[S] > |S|+ t.

Proof For convenience, let s = |S| be the cardinality of the set S.Then,

Pr [∃S : s 6 αtL and e[S] > s+ t] 6
∑
s6αtL

(
n

s

)( (s
2

)
s+ t

)
ps+t

6
∑
s6αtL

(ne
s

)s( es2p

2(s+ t)

)s+t
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6
∑
s6αtL

(e2+o(1) log n)s
(
es log n

n

)t
6 αtL

(
(e2+o(1) log n)αL

(
eαt log2 n

n log log n

))t
<

1

n(1−α−o(1))t
.

2

Remark 1 Let T be a rooted tree of depth at most 4L/7 and let v be a vertex not in T ,
but with b neighbors in T . Let S consist of v, the neighbors of v in T plus the ancestors
of these neighbors. Then |S| 6 4bL/7 + 1 6 3bL/5 and e(S) = |S|+ b− 2. It follows from
the proof of Lemma 2 with α = 3/5 and t = 8, that we must have b 6 10 with probability
1− o(n−3).

Our next lemma shows the existence of the subgraph G′x,y described next and shown in
Figure 1 for a given pair of vertices x, y. We first deal with paths between large vertices.
Now let

ε = ε(n) = o(1) be such that
ε log log n

log 1/ε
→∞ and let k = εL. (2)

Here L is defined in (1) and we could take ε = 1/(log log n)1/2.

Lemma 3 Whp, for all pairs of large vertices x, y ∈ [n] there exists a subgraph
Gx,y(Vx,y, Ex,y) of G as shown in Figure 1. The subgraph consists of two isomorphic
vertex disjoint trees Tx, Ty rooted at x, y each of depth k. Tx and Ty both have a branching
factor of log n/101. I.e. each vertex of Tx, Ty has at least log n/101 neighbors, excluding

Figure 1: Structure of Lemma 3.
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its parent in the tree. Let the leaves of Tx be x1, x2, . . . , xτ where τ > n4ε/5 and those of
Ty be y1, y2, . . . , yτ . Then yi = f(xi) where f is a natural isomporphism that preserves the
parent-child relation. Between each pair of leaves (xi, yi), i = 1, 2, . . . , τ there is a path Pi
of length (1 + 2ε)L. The paths Pi, i = 1, 2, . . . , τ are edge disjoint.

Proof Because we have to do this for all pairs x, y, we note without further
comment that likely (resp. unlikely) events will be shown to occur with probability
1− o(n−2) (resp. o(n−2)).

To find the subgraph shown in Figure 1 we grow tree structures as shown in Figure 2.
Specifically, we first grow a tree from x using BFS until it reaches depth k. Then, we grow
a tree starting from y again using BFS until it reaches depth k. Finally, we grow trees
from the leaves of Tx and Ty using BFS for depth γ = (1

2
+ ε)L. Now we analyze these

processes. Since the argument is the same we explain it in detail for Tx and we outline
the differences for the other trees. We use the notation D

(ρ)
i for the number of vertices at

depth i of the BFS tree rooted at ρ.
First we grow Tx. As we grow the tree via BFS from a vertex v at depth i to vertices

at depth i + 1 certain bad edges from v may point to vertices already in Tx. Remark 1
shows with probability 1− o(n−3) there can be at most 10 bad edges emanating from v.

Furthermore, Lemma 1 implies that there exists at most one vertex of degree less than
logn
100

at each level whp. Hence, we obtain the recursion

D
(x)
i+1 >

(
log n

100
− 10

)
(D

(x)
i − 1) >

log n

101
D

(x)
i . (3)

Figure 2: Subgraph found in the proof of Lemma 3.
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Therefore the number of leaves satisfies

D
(x)
k >

(
log n

101

)εL
> n4ε/5. (4)

We can make the branching factor exactly logn
101

by pruning. We do this so that the trees
Tx are isomorphic to each other.

With a similar argument
D

(y)
k > n

4
5
ε. (5)

The only difference is that now we also say an edge is bad if the other endpoint is in Tx.
This immediately gives

D
(y)
i+1 >

(
log n

100
− 20

)
(D

(y)
i − 1) >

log n

101
D

(y)
i

and the required conclusion (5).

Similarly, from each leaf xi ∈ Tx and yi ∈ Ty we grow trees T̂xi , T̂yi of depth γ =
(

1
2
+ε
)
L

using the same procedure and arguments as above. Remark 1 implies that there are at
most 20 edges from the vertex v being explored to vertices in any of the trees already
constructed. At most 10 to Tx plus any trees rooted at an xi and another 10 for y. The
numbers of leaves of each T̂xi now satisfies

D̂(xi)
γ >

log n

100

(
log n

101

)γ
> n

1
2

+ 4
5
ε.

Similarly for D̂
(yi)
γ .

Observe next that BFS does not condition the edges between the leaves Xi, Yi of the
trees T̂xi and T̂yi . I.e., we do not need to look at these edges in order to carry out our
construction. On the other hand we have conditioned on the occurence of certain events
to imply a certain growth rate. We handle this technicality as follows. We go through
the above construction and halt if ever we find that we cannot expand by the required
amount. Let A be the event that we do not halt the construction i.e. we fail the conditions
of Lemmas 1 or 2. We have Pr [A] = 1− o(1) and so,

Pr [∃i : e(Xi, Yi) = 0 | A] 6
Pr [∃i : e(Xi, Yi) = 0]

Pr(A)
6 2n

4ε
5 (1− p)n

1+8ε
5 6 n−n

ε

.

We conclude that whp there is always an edge between each Xi, Yi and thus a path of
length at most (1 + 2ε)L between each xi, yi. 2

Let q = (1 + 5ε)L be the number of available colors. We color the edges of G randomly.
We show that the probability of having a rainbow path between x, y in the subgraph Gx,y

of Figure 1 is at least 1− 1
n3 .

Lemma 4 Color each edge of G using one color at random from q available. Then, the
probability of having at least one rainbow path between two fixed large vertices x, y ∈ [n]
is at least 1− 1

n3 .
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Figure 3: Figure shows logn
101

-ary trees Tx, Ty. The two roots are shown respectively at the
center of the trees. In our thinking of the random coloring as an evolutionary process,
the green edges incident to x survive with probability 1, the red edges incident to y with

probability 1− 1
q

and all the other edges with probability p0 =
(

1− 2k
q

)2

where k is the

depth of both trees and q the number of available colors. Our analysis in Lemma 3 using
these probabilities gives a lower bound on the number of alive pairs of leaves after coloring
Tx, Ty from the root to the leaves respectively.

Proof We show that the subgraph Gx,y contains such a path. We break our proof
into two steps:

Before we proceed, we provide certain necessary definitions. Think of the process of
coloring Tx, Ty as an evolutionary process that colors edges by starting from the two roots
x, f(x) = y until it reaches the leaves. In the following, we call a vertex u of Tx (Ty)
alive/living if the path P (x, u) (P (y, u)) from x (y) to u is rainbow, i.e., the edges have
received distinct colors. We call a pair of vertices {u, f(u)} alive, u ∈ Tx, f(u) ∈ Ty
if u, f(u) are both alive and the paths P (x, u), P (y, f(u)) share no color. Define Aj =
|{(u, f(u)) : (u, f(u)) is alive and depth(u) = j}| for j = 1, .., k.

• Step 1: Existence of at least n
4
5
ε living pairs of leaves

Assume the pair of vertices {u, f(u)} is alive where u ∈ Tx, f(u) ∈ Ty. It is worth
noticing that u, f(u) have the same depth in their trees. We are interested in the number
of pairs of children {ui, f(ui)}i=1,..,logn/101 that will be alive after coloring the edges from
depth(u) to depth(u) + 1. A living pair {ui, f(ui)} by definition has the following prop-
erties: edges (u, ui) ∈ E(Tx) and (f(u), f(ui)) ∈ E(Ty) receive two distinct colors, which
are different from the set of colors used in paths P (x, u) and P (y, f(u)). Notice the latter
set of colors has cardinality 2× depth(u) 6 2k.

Let Aj be the number of living pairs at depth j. We first bound the size of A1.

Pr

[
A1 6

log n

200

]
6 2logn/101

(
1

q

)logn/300

= O(n−Ω(log logn)). (6)
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Here 2logn/101 bounds the number of choices for A1. For a fixed set A1 there will be at least
logn
101
− logn

200
> logn

300
edges incident with x that have the same color as their corresponding

edges incident with y, under f . The factor q− logn/300 bounds the probability of this event.
For j > 1 we see that the random variable equal to the number of living pairs of

children of (u, f(u)) stochastically dominates the random variable X ∼ Bin
(

logn
101

, p0

)
,

where p0 =
(

1− 2k
q

)2

=
(

1+3ε
1+5ε

)2
. The colorings of the descendants of each live pair are

independent and so we have using the Chernoff bounds for 2 6 j 6 k,

Pr

[
Aj <

(
log n

200

)j
pj−1

0

∣∣∣∣Aj−1 >

(
log n

200

)j−1

pj−2
0

]

6 exp

{
−1

2
·
(

99

200

)2

· log n

101
·
(

log n

200

)j−1

pj0

}
= O(n−Ω(log logn)). (7)

(6) and (7) justify assuming that Ak >
(

logn
200

)k
pk−1

0 > n
4
5
ε.

• Step 2: Existence of rainbow paths between x, y in Gx,y

Assuming that there are > n4ε/5 living pairs of leaves (xi, yi) for vertices x, y,

Pr(x, y are not rainbow connected) 6

(
1−

2γ−1∏
i=0

(
1− 2k + i

q

))n4ε/5

.

But
2γ−1∏
i=0

(
1− 2k + i

q

)
>

(
1− 2k + 2γ

q

)2γ

=

(
ε

1 + 5ε

)2γ

.

So

Pr(x, y are not rainbow connected) 6 exp

{
−n4ε/5

(
ε

1 + 5ε

)2γ
}

= exp
{
−n4ε/5−O(log(1/ε)/ log logn)

}
. (8)

Using (2) and the union bound taking (8) over all large x, y completes the proof of Lemma
4. 2

We now finish the proof of Theorem 1 i.e. take care of small vertices.
We showed in Lemma 4 that whp for any two large vertices, a random coloring results

in a rainbow path joining them. We divide the small vertices into two sets: vertices of
degree 1, V1 and the vertices of degree at least 2, V2. Suppose that our colors are 1, 2, . . . , q
and V1 = {v1, v2, . . . , vs}. We begin by giving the edge incident with vi the color i. Then
we slightly modify the argument in Lemma 4. If x is the neighbor of vi ∈ V1 then color i
cannot be used in Steps 1 and 2 of that procedure. In terms of analysis this replaces q by
(q−1) ((q−2) if y is also a neighbor of V1) and the argument is essentially unchanged i.e.
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Figure 4: Taking care of small vertices.

whp there will be a rainbow path between each pair of large vertices. Furthermore, any
path starting at vi can only use color i once and so there will be rainbow paths between
V1 and V1 and between V1 and the set of large vertices.

The set V2 is treated by using only two extra colors. Assume that Red and Blue have
not been used in our coloring. Then we use Red and Blue to color two of the edges
incident to a vertex u ∈ V2 (the remaining edges are colored arbitrarily). This is shown in
Figure ??. Suppose that V2 = {w1, w2, . . . , wt}. Then if we want a rainbow path joining
wi, wj where i < j then we use the red edge to go to its neighbor w′i. Then we take the
already constructed rainbow path to w′′j , the neighbor of wj via a blue edge. Then we can
continue to wj. 2

4 Proof of Theorem 2

We first observe that simply randomly coloring the edges of G = G(n, r) with q = no(1)

colors will not do. This is because there will whp be Ω(nq1−r2) = Ω(n1−o(1)) vertices v
where all edges at distance at most two from v have the same color.

We follow a similar strategy to the proof in Theorem 1. We grow small trees Tx from
each vertex x. Then for a pair of vertices x, y we build disjoint trees on the leaves of Tx, Ty
so that whp we can find edge disjoint paths between any set of leaves Sx of Tx and any set
of leaves of Sy of the same size. A bounded number of leaves of Tx, Ty will be excluded
from this statement. The main difference will come from our procedure for coloring the
edges. Because of the similarities, we will give a little less detail in the common parts of
our proofs. We are in effect talking about building a structure like that shown in Figure
2. There is one difference, we will have to take care of which leaves of Tx we pair with
which leaves of Ty, for a pair of vertices x, y.

Having grown the trees, we have the problem of coloring the edges. Instead of inde-
pendently and randomly coloring the edges, we use a greedy algorithm that produces a
coloring that is guaranteed to color edges differently, if they are close. This will guarantee
that the edges of Tx are rainbow, for all vertices x. We then argue that we can find, for
each vertex pair x, y, a partial mapping g from the leaves of Tx to the leaves of Ty such
that the path from x to leaf v in Tx and the path from y to leaf g(v) in Ty do not share
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a color. This assumes that v has an image under the partial mapping g. We will have
to argue that g is defined on enough vertices in Tx. Given this, we then consider the
colors on a set of edge disjoint paths that we can construct from the leaves of Tx to their
g-counterpart in the leaves of Ty.

We will use the configuration model of Bollobás [3] in our proofs, see [11] or [14] for
details. Let W = [2m = rn] be our set of configuration points and let Wi = [(i−1)r+1, ir],
i ∈ [n], partition W . The function φ : W → [n] is defined by w ∈ Wφ(w). Given a pairing
F (i.e. a partition of W into m pairs) we obtain a (multi-)graph GF with vertex set [n]
and an edge (φ(u), φ(v)) for each {u, v} ∈ F . Choosing a pairing F uniformly at random
from among all possible pairings ΩW of the points of W produces a random (multi-)graph
GF . Each r-regular simple graph G on vertex set [n] is equally likely to be generated
as GF . Here simple means without loops of multiple edges. Furthermore, if r = O(1)
then GF is simple with a probability bounded below by a positive value independent of
n. Therefore, any event that occurs whp in GF will also occur whp in G(n, r).

4.1 Tree building

We will grow a Breadth First Search tree Tx from each vertex. We will grow each tree to
depth

k = kr =

{⌈
logr−2 log n

⌉
r > 4.

d2 log2 log n− 2 log2 log2 log ne r = 3.

Observe that

Tx has at most r(1 + (r − 1) + (r − 1)2 + · · ·+ (r − 1)k−1) = r
(r − 1)k − 1

r − 1
edges. (9)

It is useful to observe that

Lemma 5 Whp, no set of s 6 `1 = 1
10

logr−1 n vertices contains more than s edges.

Proof Indeed,

Pr(∃S ⊆ [n], |S| 6 `1, e[S] > |S|+ 1) 6
`1∑
s=3

(
n

s

)( (s
2

)
s+ 1

)(
r2

rn− rs

)s+1

(10)

6
r`1

n

`1∑
s=3

(
n

s

)((s
2

)
s

)(
r2

rn− rs

)s
6
r`1

n

`1∑
s=3

(
ne

s
· se

2
· 2r

n

)s
6
r`1

n
· `1 · (e2r)`1 = o(1). (11)
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Explanation of (10): The factor
(

r2

rn−rs

)s+1

can be justified as follows. We can estimate

Pr(e1, e2, . . . , es+1 ∈ E(GF )) =
s∏
i=0

Pr(ei+1 ∈ E(GF ) | e1, e2, . . . , ei ∈ E(GF ))

6

(
r2

rn− rs

)s+1

if we pair up the lowest index endpoint of each ei in some arbitrary order. The fraction
r2

rn−rs is an upper bound on the probability that this endpoint is paired with the other
endpoint, regardless of previous pairings. 2

Denote the leaves of Tx by Lx.

Corollary 3 Whp, (r − 1)k 6 |Lx| 6 r(r − 1)k−1 for all x ∈ [n].

Proof This follows from the fact that whp the vertices spanned by each Tx span at
most one cycle. This in turn follows from Lemma 5. 2

Consider two vertices x, y ∈ V (G) where Tx ∩ Ty = ∅. We will show that whp we can find
a subgraph G′(V ′, E ′), V ′ ⊆ V,E ′ ⊆ E with similar structure to that shown in Figure 2.
Here k = kr and γ =

(
1
2

+ ε
)

logr−1 n for some small positive constant ε.

Remark 2 In our analysis we expose the pairing F , only as necessary. For example
the construction of Tx involves exposing all pairings involving non-leaves of Tx and one
pairing for each leaf. There can be at most one exception to this statement, for the rare
case where Tx contains a unique cycle. In particular, if we expose the point q paired with
a currently unpaired point p of a leaf of Tx then q is chosen randomly from the remaining
unpaired points.

Suppose that we have constructed i = O(log n) vertex disjoint trees of depth γ rooted at

some of the leaves of Tx. We grow the (i+ 1)st tree T̂z via BFS, without using edges that
go into y or previously constructed trees. Let a leaf z ∈ Lx be bad if we have to omit a
single edge as we construct the first `1/2 levels of T̂z. The previously constructed trees
plus y account for O(n1/2+ε) vertices and pairings, so the probability that z is bad, given
all the pairings we have exposed so far, is at most O((r− 1)`1/2n−1/2+ε) = O(n−1/3). Here
bad edges can only join two leaves. This probability bound holds regardless of whichever
other vertices are bad. This follows from the way we build the pairing F , see the final
statement of Remark 2. So whp there will be at most 3 bad leaves on any Tx. Indeed,
Pr(∃x : x has > 4 bad leaves) 6 n

(
O(logn)

4

)
n−4/3 = o(1).

If a leaf is not bad then the first `1/2 levels produce Θ(n1/20) leaves. From this, we
see that whp the next γ − `1 levels grow at a rate r − 1 − o(n−1/25). Indeed, given that
a level has L vertices where n1/20 6 L 6 n3/4, the number of vertices in the next level

dominates Bin
(

(r − 1)L, 1−O
(
n3/4

n

))
, after accounting for the configuration points

used in building previous trees. Indeed, (r − 1)L configuration points associated with
good leaves will be unpaired and for each of them, the probability it is paired with a
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point associated with a vertex in any of the trees constructed so far is O(n1/2+2ε/n). This
probability bound holds regardless of the pairings of the other leaf configuration points.
We can thus assert that whp we will have that all but at most three of the leaves Lx of Tx
are roots of vertex disjoint trees T̂1, T̂2, . . . , each with Θ(n1/2+ε/2) leaves. Let L∗x denote

these good leaves. The same analysis applies when we build trees T̂ ′1, T̂
′
2, . . . , with roots

at Ly.

Now the probability that there is no edge joining the leaves of T̂i to the leaves of T̂ ′j is
at most (

1− (r − 1)Θ(n1/2+ε/2)

rn

)(r−1)n1/2+ε/2

6 e−Ω(nε).

To summarise,

Remark 3 Whp we will succeed in finding in GF and hence in G = G(n, r), for all
x, y ∈ V (GF ), for all u ∈ L∗x, v ∈ L∗y, a path Pu,v from u to v of length O(log n) such that
if u 6= u′ and v 6= v′ then Pu,v and Pu′,v′ are edge disjoint. These paths avoid Tx, Ty except
at their start and endpoints.

4.2 Coloring the edges

We now consider the problem of coloring the edges of G. Let H denote the line graph of
G and let Γ = H2k denote the graph with the same vertex set as H and an edge between
vertices e, f of Γ if there there is a path of length at most k between e and f in H. We
will construct a proper coloring of Γ using

q = 10(r − 1)2k ∼ 100 log2θr n where θr =
log(r − 1)

log(r − 2)

colors. We do this as follows: Let e1, e2, . . . , em be an arbitrary ordering of the vertices
of Γ. For i = 1, 2, . . . ,m, color ei with a random color, chosen uniformly from the set of
colors not currrently appearing on any neighbor in Γ. At this point only e1, e2, . . . , ei−1

will have been colored.
Suppose then that we color the edges of G using the above method. Fix a pair of

vertices x, y of G. We see immediately, that no color appears twice in Tx and no color
appears twice in Ty. This is because the distance between edges in Tx is at most 2k. This
also deals with the case where V (Tx) ∩ V (Ty) 6= ∅, for the same reason. So assume now
that Tx, Ty are vertex disjoint. We can find lots of paths joining x and y. We know that
the first and last k edges of each path will be individually rainbow colored. We will first
show that we have many choices of path where these 2k edges are rainbow colored when
taken together.

4.3 Case 1: r > 4:

We argue now that we can find σ0 = (r − 2)k−1 leaves u1, u2, . . . , uτ ∈ Tx and σ0 leaves
v1, v2, . . . , vτ ∈ Ty such for each i the Tx path from x to ui and the Ty path from y to vi
do not share any colors.
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Lemma 6 Let T1, T2 be two vertex disjoint copies of an edge colored complete d-ary tree
with ` levels, where d > 3. Let T1, T2 be rooted at x, y respectively. Suppose that the
colorings of T1, T2 are both rainbow. Let κ = (d−1)`. Then there exist leaves u1, u2, . . . , uκ
of T1 and leaves v1, v2, . . . vκ of T2 such that the following is true: If Pi, P

′
i are the paths

from x to ui in T1 and from y to vi in T2 respectively, then Pi ∪ P ′i is rainbow colored for
i = 1, 2, . . . , κ.

Proof Let A` be the minimum number of rainbow path pairs that we can find in any
such pair of edge colored trees. We prove that A` > (d − 1)` by induction on `. This
is true trivially for ` = 0. Suppose that x is incident with x1, x2, . . . , xd and that the
sub-tree rooted at xi is T1,i for i = 1, 2, . . . , d. Define yi and T2,i, i = 1, 2, . . . , d similarly
with respect to y. Suppose that the color of the edge (x, xi) is ci for i = 1, 2, . . . , d and
let Qx = {c1, c2, . . . , cd}. Similarly, suppose that the color of the edge (y, yi) is c′i for
i = 1, 2, . . . , d and let Qy = {c′1, c′2, . . . , c′d}. Next suppose that Qj is the set of colors in
Qx that appear on the edges E(T2,j) ∪ {(y, yj)} . The sets Q1, Q2, . . . , Qd are pair-wise
disjoint. Similarly, suppose that Q′i is the set of colors in Qy that appear on the edges
E(T1,i) ∪ {(x, xi)}. The sets Q′1, Q

′
2, . . . , Q

′
d are pair-wise disjoint.

Now define a bipartite graph H with vertex set A + B = [d] + [d] and an edge (i, j)
iff ci /∈ Qj and c′j /∈ Q′i. We claim that if S ⊆ A then its neighbor set NH(S) satisfies the
inequality

d|S| − |NH(S)| − |S| 6 |S| · |NH(S)|. (12)

Here the LHS of (12) bounds from below, the size of the set S : NH(S) of edges between
S and NH(S). This is because there are at most |S| edges missing from S : NH(S) due to
i ∈ S and j ∈ NH(S) and ci ∈ Qj. At most |NH(S)| edges are missing for similar reasons.
On the other hand, d|S| is the number there would be without these missing edges. The
RHS of (12) is a trivial upper bound.

Re-arranging we get that

|NH(S)| − |S| >
⌈

(d− 2− |S|)|S|
|S|+ 1

⌉
> −1.

(We get -1 when |S| = d).
Thus H contains a matching M of size d− 1. Suppose without loss of generality that

this matching is (i, i), i = 1, 2, . . . , d − 1. We know by induction that for each i we can

find paths (Pi,j, P̂i,j), j = 1, 2, . . . , (d − 1)`−1 where Pi,j is a root to leaf path in T1,i and

P̂i,j is a root to leaf path in T2,i and that Pi,j ∪ P̂i,j is rainbow for all i, j. Furthermore,

(i, i) being an edge of H, means that the edge sets {(x, xi)} ∪ E(Pi,j) ∪ E(P̂i,j) ∪ {(y, yi}
are all rainbow. 2

Let
V1 = {x : V (Tx) contains a cycle} .

When x, y /∈ V1 we apply this Lemma to Tx, Ty by deleting one of the r sub-trees attached
to each of x, y and applying the lemma directly to the (r− 1)-ary trees that remain. This
will yield (r−2)k pairs of paths. If x ∈ V1, we delete r−2 sub-trees attached to x leaving
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at least two (r−1)-ary trees of depth k−1 with roots adjacent to x. We can do the same
at y. Let c1, c2 be the colors of the two edges from x to the roots of these two trees T1, T2.
Similarly, let c′1, c

′
2 be the colors of the two analogous edges from y to the trees T ′1, T

′
2. If

color c1 does not appear in T ′1 then we apply the lemma to T1 and T ′1. Otherwise, we can
apply the lemma to T1 and T ′2. In both cases we obtain (r − 2)k−1 pairs of paths.

Accounting for bad vertices we put

σ = σ0 − 6 = (r − 2)k−1 − 6 >
log n

r − 2
− 6

and we see from Remark 3 that we can whp find σ paths P1, P2, . . . , Pσ of length O(log n)
from x to y. Path Pi goes from x to a leaf ui ∈ L∗x via Tx and then traverses Qi = P (ui, vi)
where vi = φ(ui) ∈ L∗y and then goes from vi to a y via Ty. Here φ is some partial map
from L∗x to L∗y. It is a random variable that depends on the coloring C of the edges of Tx
and Ty. The paths P1, P2, . . . , Pσ depend on the choice of φ and hence C and so we should
write Pi = Pi(C).

We fix the coloring C and hence P1, P2, . . . , Pσ. Let R be the event that at least one
of the paths P1, P2, . . . , Pσ is rainbow colored. We show that Pr(¬R | C) is small.

We let c(e) denote the color of edge e in a given coloring. We remark next that for a
particular coloring c1, c2, . . . , cm of the edges e1, e2, . . . , em we have

Pr(c(ei) = ci, i = 1, 2, . . . ,m) =
m∏
i=1

1

ai

where q −∆ 6 ai 6 q is the number of colors available for the color of the edge ei given
the coloring so far i.e. the number of colors unused by the neighbors of ei in Γ when it is
about to be colored.

Now fix an edge e = ei and the colors cj, j 6= i. Let C be the set of colors not used by
the neighbors of ei in Γ. The choice by ei of its color under this conditioning is not quite
random, but close. Indeed, we claim that for c, c′ ∈ C

Pr(c(e) = c | c(ej) = cj, j 6= i)

Pr(c(e) = c′ | c(ej) = cj, j 6= i)
6

(
q −∆

q −∆− 1

)∆

.

This is because, changing the color of ei only affects the number of colors available to
neighbors of ei, and only by at most one.

Thus, for c ∈ C, we have

Pr(c(e) = c | c(ej) = cj, j 6= i) 6
1

q −∆

(
q −∆

q −∆− 1

)∆

.

Now ∆ 6 (r − 1)2k = q/10 and we deduce that

Pr(c(e) = c | c(ej) = cj, j 6= i) 6
2

q
.
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It follows that for i ∈ [σ],

Pr(Pi is rainbow colored | C, coloring of
⋃
j 6=i

Qj) >

(
1− 4(k + γ)

q

)2γ

.

This is because when we consider the coloring of Qi there will always be at most 2k+ 2γ
colors forbidden by non-neighboring edges, if it is to be rainbow colored.

It then follows that

Pr(¬R | C) 6

(
1−

(
1− 4(k + γ)

q

)2γ
)σ

6

(
8γ(k + γ)

q

)σ
6

(
(2 + 10ε) log2

r−1 n

10 logθr n

)σ
= o(n−2).

This completes the proof of Theorem 2 when r > 4.
Case 2: r = 3:
When r = 3 we can’t use (r−2)k to any effect. Also, we need to increase q to log4 n. This
necessary for a variety of reasons. One reason is that we will reduce σ to 2k/2. We want
this to be Ω(log n) and this will force k to (roughly) double what it would have been if
we had followed the recipe for r > 4. This makes ∆ close to log4 n and we need q � ∆.

And we need to modify the argument based on Lemma 6. Instead of inducting on the
trees at depth one from the roots x, y, we now induct on the trees at depth two. Assume
first that x, y /∈ V1. After ignoring one branch for Tx and Ty we now consider the sub-trees
Tx,i, Ty,i, i = 1, 2, 3, 4 of Tx, Ty whose roots x1, . . . , x4 and y1, . . . , y4 are at depth two. We
cannot necessarily make this construction when x ∈ V1. Let Pi be the path from x to xi
in Tx and let P̂j be the path from y to yj in Ty. Next suppose that Q̂j is the set of colors

in Q that appear on the edges E(Ty,j) ∪ E(P̂j). Similarly, suppose that Q′i is the set of
colors in Q′ that appear on the edges {E(Tx,i) ∪ E(Pi)}.

Re-define H to be the bipartite graph with vertex set A + B = [4] + [4]. The edges

of H are as before: (i, j) exists iff ci /∈ Qj and c′j /∈ Q̂i. This time we can only say that

a color is in at most two Q̂i’s and similarly for the Q′j’s. The effect of this is to replace
(12) by

4|S| − 2(|NH(S)|+ |S|) 6 |S| · |NH(S)|
from which we can deduce that

|S| − |NH(S)| 6 |S| · |NH(S)|
2

6 2|NH(S)|.

It follows that |NH(S)| > d|S|/3e > |S|−2 and so H contains a matching of size two. An
inductive argument then shows that we are able to find 2bk/2c rainbow pairs of paths. The
proof now continues as in the case r > 4, arguing about the coloring of paths P1, P2, . . . , Pσ
where now σ = 2bk/2c.
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We finally deal with the vertices in V1. We classify them according to the size of the
cycle Cx that is contained in V (Tx). If Tx contains a cycle Cx then necessarily |Cx| 6 2k
and so there are at most 2k types in our classification. It follows from Lemma 5 that if
x, y ∈ V1 and Tx ∩ Ty 6= ∅ then Cx = Cy whp. Note next that the distance from x to Cx
is at most k− |Cx|/2. If C is a cycle of length at most 2k, let VC = {x : C = Cx} and let
EC be the set of edges contained in VC . We have

|VC | = O(|C|2k−|C|/2) = O(2k) = O(log2 n/ log log n). (13)

We introduce 2k new sets Q̂i, i = 3, 4, . . . , 2k of O(log2 n/ log log n) colors, distinct from
Q. Thus we introduce O(log2 n) new colors overall. We re-color each EC with the colors

from Q̂|C|. It is important to observe that if |C| = |C ′| then the graphs induced by VC
and VC′ are isomorphic and so we can color them isomorphically. By the latter we mean
that we choose some isomorphism f from VC to VC′ and then if e is an edge of VC then we
color e and f(e) with the same color. After this re-coloring, we see that if Tx and Ty are
not vertex disjoint, then they are contained in the same VC . The edges of VC are rainbow
colored and so now we only need to concern ourselves with x, y ∈ V1 such that Tx and Ty
are vertex disjoint. Assume now that x, y ∈ V1.

Assume first that x, y are of the same type and that they are at the same distance
from Cx, Cy respectively. Our aim now is to define binary trees T ′x, T

′
y “contained“ in

Tx, Ty that can be used as in Lemma 6. If we delete an edge e = (u, v) of Cx then the
graph that remains on V (Tx) is a tree with at most two vertices u, v of degree two. Now
delete one of the three sub-trees of Tx. If there are vertices of degree two, make sure one
of them is in this sub-tree. If necessary, shrink the path of length two with the remaining
vertex of degree two in the middle to an edge ex. It has leaves at depth k − 1 and leaves
at depth k− 2. The resulting binary tree will be our T ′x. The leaves at depth k− 1 come
in pairs. Delete one vertex from each pair and shrink the paths of length two through the
vertex at depth k − 2 to an edge.

The edges that are obtained by shrinking paths of length two will have two colors.
Because x, y are at the same distance from their cycles, we can delete f(e) from Cy and
do the construction so that T ′x and T ′y will be isomorphically colored.

It is now easy to find 2k−2 pairs of paths whose unions are rainbow colored. Each leaf of
Tx, Ty can be labelled by a {0, 1} string of length k− 2. We pair string ξ1ξ2 · · · ξk−1ξk−2 in
Tx with (1− ξ1)ξ2 · · · ξk−1ξk−2 in Ty. The associated paths will have a rainbow union. The
proof now continues as in the case r > 4, arguing about the coloring of paths P1, P2, . . . , Pσ
where now σ = 2k−2.

If x is further from Cx than y is from Cy then let z be the vertex on the path from x
to Cx at the same distance from Cx as y is from Cy. We have a rainbow path from z to y
and adding the Tx path from x to z gives us a rainbow path from x to y. This relies on
the fact that VCx and VCy are isomorphically colored.

If x, y are of a different type, then Tx and Ty are re-colored with distinct colors and
we can proceed as as in the case r > 4, arguing about the coloring of paths P1, P2, . . . , Pσ
where now σ = 2k, using Corollary 3.
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If x ∈ V1 and y /∈ V1 then we can proceed as if both are not in V1. This is because of
the re-coloring of the edges of Tx. We can proceed as as in the case r > 4, arguing about
the coloring of paths P1, P2, . . . , Pσ where now σ = 2k, using Corollary 3.

This completes our proof of Theorem 2. 2

5 Conclusion

In this work we have given an aymptotically tight result on the rainbow connectivity of
G = G(n, p) at the connectivity threshold. It is reasonable to conjecture that this could
be tightened:

Conjecture: Whp, rc(G) = max {Z1, diameter(G(n, p))}.
Our result on random regular graphs is not so tight. It is still reasonable to believe that
the above conjecture also holds in this case. (Of course Z1 = 0 here).
It is worth mentioning that if the degree r in Theorem 2 is allowed to grow as fast as log n
then one can prove a result closer to that of Theorem 1.
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