List-coloring graphs on surfaces with varying list-sizes

Alice M. Dean

Department of Mathematics and Computer Science Skidmore College Saratoga Springs, NY 12866, USA

adean@skidmore.edu

Joan P. Hutchinson

Department of Mathematics, Statistics, and Computer Science Macalester College St. Paul, MN 55105, USA

hutchinson@macalester.edu

Submitted: Jun 30, 2012; Accepted: Dec 13, 2012; Published: Dec 31, 2012 Mathematics Subject Classifications: 05C15, 05C10

In Memory of Herbert S. Wilf, 1931-2012

Abstract

Let G be a graph embedded on a surface S_{ε} with Euler genus $\varepsilon > 0$, and let $P \subset V(G)$ be a set of vertices mutually at distance at least 4 apart. Suppose all vertices of G have $H(\varepsilon)$ -lists and the vertices of P are precolored, where $H(\varepsilon) = \left\lfloor \frac{7+\sqrt{24\varepsilon+1}}{2} \right\rfloor$ is the Heawood number. We show that the coloring of P extends to a list-coloring of G and that the distance bound of 4 is best possible. Our result provides an answer to an analogous question of Albertson about extending a precoloring of a set of mutually distant vertices in a planar graph to a 5-list-coloring of the graph and generalizes a result of Albertson and Hutchinson to list-coloring extensions on surfaces.

Keywords: list-coloring; Heawood number; graphs on surfaces

1 Introduction

For a graph G the distance between vertices x and y, denoted dist(x, y), is the number of edges in a shortest x-y-path in G, and we denote by dist(P) the least distance between

two vertices of P. In [1] M. O. Albertson asked if there is a distance d > 0 such that every planar graph with a 5-list for each vertex and a set of precolored vertices P with $dist(P) \ge d$ has a list-coloring that is an extension of the precoloring of P. In that paper he proved such a result for 5-coloring with $d \ge 4$, answering a question of C. Thomassen. There have been some preliminary answers to Albertson's question in [4, 8, 11]; initially Tuza and Voigt [17] showed that d > 4. Kawarabayashi and Mohar [11] have shown that when P contains k vertices, there is a function $d_k > 0$ that suffices for such list-coloring. Then recently Dvořák, Lidický, Mohar and Postle [9] have announced a complete solution, answering Albertson's question in the affirmative, independent of the size of P.

Let S_{ε} denote a surface of Euler genus $\varepsilon > 0$. Its Heawood number is given by

$$H(\varepsilon) = \left\lfloor \frac{7 + \sqrt{24\varepsilon + 1}}{2} \right\rfloor$$

and gives the best possible bound on the chromatic number of S_{ε} except for the Klein bottle whose chromatic number is 6. (For all basic chromatic and topological graph theory results, see [10, 13].) In many instances results for list-coloring graphs on surfaces parallel classic results on surface colorings. Early on it was noted that the Heawood number also gives the list-chromatic number for surfaces; see [10] for history. Also Dirac's Theorem [7] has been generalized to list-coloring by Böhme, Mohar and Stiebitz for most surfaces; the missing case, $\varepsilon = 3$, was completed by Král' and Škrekovski. This result informs and eases much of our work.

Theorem 1.1 ([5, 12]). If G embeds on S_{ε} , $\varepsilon > 0$, then G can be $(H(\varepsilon) - 1)$ -list-colored unless G contains $K_{H(\varepsilon)}$.

Analogously to Albertson's question on the plane, we and others (see [11]) ask related list-coloring questions for surfaces. In this paper we ask if there is a distance d > 0 such that every graph on S_{ε} , $\varepsilon > 0$, with $H(\varepsilon)$ -lists on each vertex and a set of precolored vertices P with $dist(P) \ge d$ has a list-coloring that is an extension of the precoloring of P. In [3] Albertson and Hutchinson proved the following result; the main result of this paper generalizes this theorem to list-coloring.

Theorem 1.2 ([3]). For each $\varepsilon > 0$, except possibly for $\varepsilon = 3$, if G embeds on a surface of Euler genus ε and if P is a set of precolored vertices with $dist(P) \ge 6$, then the precoloring extends to an $H(\varepsilon)$ -coloring of G.

Others have studied similar extension questions with k-lists on vertices for $k \ge 5$. For example, see [16], Thm. 4.4, for $k \ge 6$ and [11], Thm. 6.1, for k = 5; however, in both results the embedded graphs must satisfy constraints depending on the Euler genus and the number of precolored vertices. Our main result is Thm. 1.3, which shows that there is a constant bound on the distance between precolored vertices that ensures list-colorability for all graphs embedded on all surfaces when vertices have $H(\varepsilon)$ -lists. It improves on Thm. 1.2 by removing the possible exception for $\varepsilon = 3$, reducing the distance of the precolored vertices from 6 to 4, and broadening the results to list-coloring. **Theorem 1.3.** Let G embed on S_{ε} , $\varepsilon > 0$, and let $P \subset V(G)$ be a set of vertices with $dist(P) \ge 4$. Then if the vertices of P each have a 1-list and all other vertices have an $H(\varepsilon)$ -list, G can be list-colored. The distance bound of 4 is best possible.

When G is embedded on S_{ε} , let the *width* [2] denote the length of a shortest noncontractible cycle of G; this is also known as *edge-width*. For list-coloring we have the following corollary of Thms. 1.1 and 1.3.

Corollary 1.4. If G embeds on S_{ε} , $\varepsilon > 0$, with width at least 4, if the vertices of $P \subset V(G)$ have 1-lists and all other vertices have $H(\varepsilon)$ -lists, then G is list-colorable when $dist(P) \ge 3$. The distance bound of 3 is best possible.

Given that graphs embedded with very large width can be 5-list-colored as proved in [6], it is straightforward to deduce a 6-list-coloring extension result for such graphs. When G embeds on S_{ε} , $\varepsilon > 0$, with width at least $2^{O(\varepsilon)}$, if a set of vertices P with $dist(P) \ge 3$ have 1-lists and all others have 6-lists, then after the vertices of P are deleted and the color of each $x \in P$ is deleted from the lists of x's neighbors, the remaining graph has 5-lists, large width, and so is list-colorable. Thus G is list-colorable, but only when embedded with large width whose size increases with the Euler genus of the surface.

A consequence of Thomassen's proof of 5-list-colorability of planar graphs [15] is that if all vertices of a graph in the plane have 5-lists except that the vertices of one face have 3-lists, then the graph can be list-colored. For surfaces, we offer as a related result another corollary of Thm. 1.3.

Corollary 1.5. If G embeds on S_{ε} , $\varepsilon > 0$, and contains a set of faces each pair of which is at distance at least two apart, with all vertices on these faces having $(H(\varepsilon) - 1)$ -lists and all other vertices having $H(\varepsilon)$ -lists, then G can be list-colored.

The paper concludes with related questions.

2 Background results on surfaces, Euler genus and the Heawood formula

Let S_{ε} denote a surface of Euler genus $\varepsilon > 0$. If ε is odd, then S_{ε} is the nonorientable surface with ε crosscaps, but when ε is even, S_{ε} may be orientable or not. We let τ denote the torus, the orientable surface of Euler genus 2, and κ the Klein bottle, the nonorientable surface of Euler genus 2.

The Heawood number $H(\varepsilon)$, defined above, gives the largest *n* for which K_n embeds on a surface S_{ε} of Euler genus ε , as well as the chromatic number of S_{ε} , except that K_6 is the largest complete graph embedding on κ and 6 is its chromatic number.

The least Euler genus ε for which K_n embeds on S_{ε} is given by the inverse function

$$\varepsilon = I(n) = \left\lceil \frac{(n-3)(n-4)}{6} \right\rceil.$$

ε	$H(\varepsilon)$	e	f	Largest	ε	$H(\varepsilon)$	e	f	Largest
				Face					Face
1	6	15	10	3	13	12	66	43	6
2	7	21	14	3	14	12	66	42	9
3	7	21	13	6	15	13	78	52	3
4	8	28	18	5	16	13	78	51	6
5	9	36	24	3	17	13	78	50	9
6	9	36	23	6	18	13	78	49	12
7	10	45	30	3	19	14	91	60	5
8	10	45	29	6	20	14	91	59	8
9	10	45	28	9	21	14	91	58	11
10	11	55	36	5	22	15	105	70	3
11	11	55	35	8	23	15	105	69	6
12	12	66	44	3	24	15	105	68	9

Table 1: Embedding parameters for $K_{H(\varepsilon)}$

Each K_n , $n \ge 5$, of course, has a minimum value of $\varepsilon > 0$ for which it embeds on S_{ε} , called the *Euler genus of* K_n , but for $\varepsilon \ge 2$ more than one surface S_{ε} may have the same maximum K_n that embeds on it. For example, both S_5 and S_6 have Heawood number 9 with K_9 being the largest complete graph that embeds there. Embedding patterns of $K_{H(\varepsilon)}$ depend on the congruence class of $H(\varepsilon)$ modulo 3 for $\varepsilon \ge 1$. In Table 1, which gives values of ε and $H(\varepsilon)$ for $\varepsilon = 1, \ldots, 24$, e is the number of edges in $K_{H(\varepsilon)}$, $f = 2 - \varepsilon - v + e$ is the number of faces in a 2-cell embedding of $K_{H(\varepsilon)}$ on S_{ε} , and the final column gives the size of the largest possible face when $K_{H(\varepsilon)}$ is so embedded. That largest face size is three more than the difference 2e - 3f.

For our results we need to know when $K_{H(\varepsilon)}$ necessarily has a 2-cell embedding on S_{ε} . When K_n embeds on S_{ε} , but not on $S_{\varepsilon-1}$, then K_n necessarily embeds with a 2-cell embedding. When K_n embeds in addition on $S_{\varepsilon+1}, \ldots, S_{\varepsilon+i}$ with i > 0, then it may not have a 2-cell embedding on the latter surfaces. For example, on surfaces S_1, \mathcal{T}, S_4 , and S_5 , the complete graphs K_6, K_7, K_8 and K_9 have 2-cell embeddings, respectively, but K_6, K_7 and K_9 may or may not have 2-cell embeddings on \mathcal{K}, S_3 and S_6 , respectively.

If f is a face of an embedded graph G, let V(f) and E(f) denote the incident vertices and edges of f. We say that $V(f) \cup E(f)$ is the boundary of f and that the closure of f is the union of f and its boundary. Each edge of E(f) either lies on another face besides f or it might lie just on f. For example, Fig. 1 shows two graphs embedded on the torus, \mathcal{T} . In the first graph, edges 2-3 and 4-7 each border two faces, but edges 3-6 and 8-9 each border only one face. The size s of a face f is determined by counting, with multiplicity, the number of edges on its boundary, and we then call f an s-region. In other words, when s_1 edges of E(f) lie on another face of G besides f and s_2 edges lie only on f, then we call f an s-region where $s = s_1 + 2s_2$. When f is a 2-cell, E(f) forms a single facial walk W_f , and the size of the face equals the length of the facial walk, counting multiplicity of repeated edges. Since an s-region f may have repeated edges and repeated vertices, we indicate |V(f)| = t by calling f also a t-vertex-region where $t \leq s$. Hence the shaded region in the first graph in Fig. 1 is a 13-region and a 9-vertex-region, since two edges and four vertices are repeated; the shaded region in the second graph, with no repeated vertices or edges, is a 13-region and a 13-vertex-region.

Figure 1: A 2-cell region in a graph embedded on the torus, \mathcal{T} , before and after vertexand edge-duplication

Here in summary are statistics on 2-cell embeddings of $K_{H(\varepsilon)}$. The patterns presented are visible from Table 1 and are easily derived from Euler's formula and the function I(n), given above.

Lemma 2.1. Let $\varepsilon \ge 1$ and suppose $K_{H(\varepsilon)}$ has a 2-cell embedding on S_{ε} (but $S_{\varepsilon} \ne \kappa$). Set $i = \left\lfloor \frac{H(\varepsilon) - 3}{3} \right\rfloor$ so that $H(\varepsilon) = 3i + 3, 3i + 4$ or 3i + 5 with $i \ge 1$.

- 1. If $H(\varepsilon) = 3i + 3$, then $\varepsilon = (3i^2 i)/2, (3i^2 i + 2)/2, \ldots$, or $(3i^2 + i 2)/2$. The number of faces of the embedding is given by $f = 3i^2 + 5i + 2, 3i^2 + 5i + 1, \ldots$, or $3i^2 + 4i + 3$, respectively, and the largest possible face is an s-region with $s = 3, 6, \ldots$, or 3i, resp.
- 2. If $H(\varepsilon) = 3i+4$, then $\varepsilon = (3i^2+i)/2$, $(3i^2+i+2)/2$, ..., or $(3i^2+3i)/2$. The number of faces of the embedding is given by $f = 3i^2+7i+4$, $3i^2+7i+3$, ..., or $3i^2+6i+4$, respectively, and the largest possible face is an s-region with $s = 3, 6, \ldots$, or 3i+3, resp.
- 3. If $H(\varepsilon) = 3i+5$, then $\varepsilon = (3i^2+3i+2)/2$, $(3i^2+3i+4)/2$,..., or $(3i^2+5i)/2$. The number of faces of the embedding is given by $f = 3i^2+9i+6$, $3i^2+9i+5$,..., or $3i^2+8i+7$, respectively, and the largest possible face is an s-region with $s = 5, 8, \ldots$, or 3i+2, resp.

From the point of view of the genus, given $\varepsilon > 0$, we can determine directly whether or not $K_{H(\varepsilon)}$ necessarily has a 2-cell embedding on S_{ε} . $K_{H(\varepsilon)}$ necessarily has a 2-cell embedding if and only if $\varepsilon = (3i^2 - i)/2$ or $(3i^2 + i)/2$ or $(3i^2 + 3i + 2)/2$ for some value of i > 0. Thus given $\varepsilon > 0$, we compute $H(\varepsilon)$ and set $i = \lfloor H(\varepsilon)/3 \rfloor - 1$ so that $H(\varepsilon) = 3i + 3, 3i + 4$, or 3i + 5. Then $K_{H(\varepsilon)}$ necessarily embeds with a 2-cell embedding if $I(H(\varepsilon)) = \varepsilon$; that is, S_{ε} is the genus surface for $K_{H(\varepsilon)}$.

In the results of Table 1 we do not claim that every 2-cell embedding of $K_{H(\varepsilon)}$ achieves the maximum face size when that size is greater than three. For example when $K_{H(\varepsilon)}$ has a largest face being a 5- or 6-region, it might embed as a near-triangulation with one 5- or 6-region, respectively, or it might be a triangulation except for two 4-regions or a triangulation except for a 4- and a 5-region, resp. (An embedding is a *near-triangulation* if at most one region is not 3-sided.)

We note from Table 1 and Lemma 2.1 that there are some instances of ε when $K_{H(\varepsilon)}$ embeds possibly with an $(H(\varepsilon) - 1)$ -region which might allow for the embedding of two different (not disjoint, but distinct) copies of $K_{H(\varepsilon)}$ on S_{ε} , as explained in the next lemma.

Lemma 2.2. Let $K_{H(\varepsilon)}$ have a 2-cell embedding on S_{ε} , $\varepsilon > 0$.

- 1. The largest possible face in the embedding is an $(H(\varepsilon) 1)$ -region. If there is an $(H(\varepsilon) 1)$ -region, there is just one, and the embedding is a near-triangulation.
- 2. If every face of the embedding is at most an $(H(\varepsilon) 2)$ -region, then no additional copy of $K_{H(\varepsilon)}$ can simultaneously embed on S_{ε} .
- 3. When $K_{H(\varepsilon)}$ can embed with an $(H(\varepsilon) 1)$ -region that is also an $(H(\varepsilon) 1)$ -vertexregion, then two different copies of $K_{H(\varepsilon)}$ can embed, by adding a vertex adjacent to all vertices of that region, and then the two complete graphs share a copy of $K_{H(\varepsilon)-1}$. Such an embedding is possible only if $H(\varepsilon) = 3i + 4$ and $\varepsilon = (3i^2 + 3i)/2$, and the resulting embedding is a triangulation.

We call the latter graph $DK_{H(\varepsilon)}$; it is also $K_{H(\varepsilon)+1} \setminus \{e\}$ for some edge e.

Proof. Suppose that $K_{H(\varepsilon)}$ has a 2-cell embedding with at least one s-region where $s \ge H(\varepsilon) - 1$. Then Euler's formula plus a count of edges on faces with multiplicities leads to a contradiction to Lemma 2.1 in all cases except when there is precisely one $(H(\varepsilon) - 1)$ -region, $H(\varepsilon) = 3i + 4$, $\varepsilon = (3i^2 + 3i)/2$, and all other faces are 3-regions.

Suppose $K_{H(\varepsilon)}$ embeds on S_{ε} with every face having at most $H(\varepsilon) - 2$ sides. No two additional vertices in different faces of $K_{H(\varepsilon)}$ can be adjacent. For $2 \leq k \leq 4$, k mutually adjacent, additional vertices cannot form $K_{H(\varepsilon)}$ together with $H(\varepsilon) - k$ vertices on the boundary of a face.

Proofs of remaining parts follow easily from Euler's Formula and Lemma 2.1. \Box

If $V' \subseteq V(G)$, we denote by G[V'] the induced subgraph on the vertices in V'; for $E' \subseteq E(G)$, we denote by G[E'] the induced subgraph on the edge set E'. When f is a face of an embedded G, we may also call the subgraph G[E(f)] the boundary of f; that is, it may be convenient at times to think of the boundary of a face f as a set $V(f) \cup E(f)$ and at other times as the subgraph G[E(f)].

We restate two very useful corollaries of Thm. 6 in [5]. The first involves a case that is not covered in that theorem, but which follows easily from their proof. If f is the

infinite face of a connected plane graph, we call the boundary of f the *outer boundary* of G, and when G[E(f)] is a cycle, we call it the *outer cycle*. Without loss of generality we may suppose that for a connected plane graph the outer boundary is a cycle.

Corollary 2.3. ([5]) Let G be a connected plane graph with outer cycle C that is a kcycle with $k \leq 6$. If every vertex of G has a list of size at least 6, then a precoloring of C extends to all of G unless k = 6, there is a vertex in $V(G) \setminus V(C)$ that is adjacent to all vertices of V(C), and its list consists of six colors that appear on the precolored C.

Then the results of Thm. 6 in [5] together with Cor. 2.3 give the next corollary.

Corollary 2.4 ([5]). Let G be a connected plane graph with outer cycle C that is a k-cycle with $3 \le k \le 6$. If every vertex of G has a list of size at least max(5, k + 1), then a precoloring of C extends to all of G.

The next lemma is used repeatedly in the proof of Thms. 3.3 and 4.3. It is an extension of the similar result for 5-list-colorings in [5]. The parameters are motivated by the "Largest Face" and $H(\varepsilon)$ -list sizes from Table 1.

Lemma 2.5. Let H be a connected graph with a 2-cell embedding on S_{ε} , $\varepsilon > 0$, and let f be a 2-cell k-region of H, $k \ge 3$. Let G be a plane graph embedded within f and let G_f be a simple, connected graph that consists of G, H[E(f)], and edges joining V(G) and V(f) so that G_f is embedded in the closure of f. Let $P = \{v_1, \ldots, v_j\}$ be a subset of $V(G_f)$ satisfying dist $(P) \ge 3$. Then if every vertex of G_f has an ℓ -list except that the vertices of P each have a 1-list, every proper precoloring of H[E(f)] extends to a list-coloring of G_f provided that no vertex of P is adjacent to a vertex of V(f) with the same color as its 1-list, and

- 1. k = 3 and $\ell \ge 6$,
- 2. $k \ge 4$ and $\ell \ge k+2$, or
- 3. k = 6 or $k \ge 9$, $\ell = k + 1$, and there is no vertex x adjacent to k + 1 vertices of $V(f) \cup \{v_i\}$, for some i = 1, ..., j, with x's list consisting of $\ell = k + 1$ colors that all appear on $V(f) \cup \{v_i\}$.

Proof. Note that $G_f[E(f)] = H[E(f)]$. Also note that the condition $dist(P) \ge 3$ guarantees that no vertex of G_f is adjacent to more than one v_i . For $v_i \in P \setminus V(f)$, we say that we *excise* v_i if we delete it and delete its color from the list of colors for each neighbor that is not precolored. The proof has three cases that together prove parts 1-3 of the lemma.

Case A. Assume k = 3 and $\ell \ge 6$, $4 \le k \le 6$ and $\ell \ge k + 2$, or k = 6 and $\ell = 7$. In these cases first we excise the vertices of $P \setminus V(f)$ so that every remaining vertex of G has a list of size at least 5 for k = 3, of size at least k + 1 for k = 4, 5, 6, or else of size at least 6 when k = 6.

In the following we may need to do some surgery, perhaps repeatedly, on the face f and its boundary, so that we can apply Cor. 2.4. First, more easily, when f is a 2-cell

k-region on which lies no repeated vertex, then G_f is a plane graph with outer cycle a k-cycle, $k \leq 6$. By Cor. 2.4 a precoloring of $G_f[E(f)]$ extends to $G_f \setminus P$ and this coloring extends to all of G_f unless there is a vertex x with a 6-list, adjacent to six vertices of V(f) with the six colors of x's list. If x's list was decreased to a 6-list, x was adjacent to some vertex v_i , but this situation is disallowed by hypothesis in part 3.

Otherwise in a traversal of W_f we visit a vertex more than once and may travel along an edge twice. In the former case, each time we revisit a vertex x, we can split that vertex in two, into x_1 and x_2 , and similarly divide the edges incident with x so that the face f is expanded to become the new face f', still a k-region, and the graph G_f becomes $G_{f'}$ which is naturally embedded in the closure of f' and contains the same adjacencies. Now there is one more vertex in V(f') and the same set of edges E(f') = E(f) on the boundary and in the boundary subgraph $G_{f'}[E(f')]$. A precoloring of $G_f[E(f)]$ gives a precoloring of $G_{f'}[E(f')]$ in which vertices x_1 and x_2 receive the same color; we call this procedure vertex-duplication. In the latter case, when we revisit an edge e = (y, y'), we may visit both of its endpoints twice or one endpoint twice and the other just once. We similarly duplicate the edge e = (y, y') by duplicating one or both of its endpoints and splitting e into two new edges e_1 and e_2 . Then we divide the other edges incident with e so that G_f becomes $G_{f'}$ which is naturally embedded in the closure of the new face f', still a k-region, but now with one or two more vertices in V(f'), the same number of edges in E(f') and in $G_{f'}[E(f')]$, and with one less duplicated edge in $W_{f'}$. A precoloring of $G_f[E(f)]$ gives a precoloring of $G_{f'}[E(f')]$ in which duplicated vertices receive the same color; we call this procedure *edge-duplication*. We note that in both duplications there cannot be a vertex x that is adjacent to both copies of a duplicated vertex (since G_f is a simple graph). As an example, the first graph in Fig. 1 shows a 2-cell face that is a 13region, in which vertices 3, 6, 7, and 8, are repeated, and edges 3-6 and 8-9 are repeated. Vertex- and edge-duplication produces the second graph, which has a new face that is a 13-region and whose facial walk is a cycle given by 1-8-9-8'-7-2-3-6-5-7'-4-6'-3'-1.

In all cases after vertex- and edge-duplication, the 2-cell k-region f becomes a 2-cell k-region f^* with no repeated vertex or edge on the outer boundary. G_f has been transformed into a plane graph G_{f^*} with outer cycle, $G_{f^*}[E(f^*)]$, of length $k \leq 6$. The precoloring of $G_f[E(f)]$ has become a precoloring of $G_{f^*}[E(f^*)]$ with duplicated vertices receiving the same color. Then by Cor. 2.4, the precoloring of $G_{f^*}[E(f^*)]$ extends to $G_{f^*} \setminus P$ and so the precoloring of $G_f[E(f)]$ extends to $G_f \setminus P$ and to all of G_f since the exceptional case of part 3 cannot occur. (Since f^* is at most a 6-region and has a duplicated vertex, it is a t-vertex-region for some t < 6, and there cannot be a vertex adjacent to six vertices of $V(f^*)$.)

Case B. Suppose $k \ge 7$ and $\ell \ge k+2$ so that in all cases $\ell \ge 9$. For $v \in V(G)$, let $E_f(v)$ denote the set of edges joining v with a vertex of V(f). Suppose there is a vertex x of V(G) that is adjacent to at least k-3 vertices of V(f). If $x = v_i$ for some $i, 1 \le i \le j$, then $G_f[E(f) \cup E_f(v_i)]$ can be properly colored by assumption. If $x \ne v_i$ for any $i, 1 \le i \le j$, then x is adjacent to either one or no vertex v_i , and since x has an ℓ -list, $\ell \ge k+2$, the coloring of $G_f[E(f) \cup E_f(v_i)]$ (respectively, $G_f[E(f)]$) extends to x. In all cases $G_f[E(f) \cup E_f(x)]$ divides f into regions of size at most 6, and the coloring of $G_f[E(f) \cup E_f(x)]$ extends to the interior of each s-region, $3 \leq s \leq 6$, by Case A since interior vertices, other than the v_i , have 9-lists.

Otherwise every vertex x in G is adjacent to at most k - 4 vertices of V(f). For each such vertex x we delete from its list the colors of V(f) to which it is adjacent. This may reduce the list for x to one of size six or more. Next we excise the vertices of P in $G \setminus V(f)$, resulting in the planar graph $G \setminus P$ with every vertex having a list of size at least five, which can be list-colored by [15]. This list-coloring is compatible with the precoloring of $G_f[E(f)]$ and extends to P and so to all of G_f .

Case C. The case of $k = 6, \ell = 7$ was covered in Case A. Suppose that $k \ge 9$ and $\ell = k + 1 \ge 10$. Suppose there is a vertex x of V(G) that is adjacent to at least k - 4 vertices of V(f). As before, if $x = v_i$ for some $i, 1 \le i \le j$, then $G_f[E(f) \cup E_f(v_i)]$ can be properly colored by assumption. If $x \ne v_i$ for any $i, 1 \le i \le j$, then x is adjacent to one or no vertex v_i , and the coloring of $G_f[E(f) \cup E_f(v_i)]$ (resp., $G_f[E(f)]$) extends to x in all cases unless (since $\ell = k + 1$) x is adjacent to all vertices of $V(f) \cup \{v_i\}$ for some $i, 1 \le i \le j$, and x's list consists of ℓ colors all appearing on $V(f) \cup \{v_i\}$. We have disallowed this case. Now $G_f[E(f) \cup E_f(x)]$ forms a graph that consists of triangles and s-regions with $s \le 7$. The coloring of $G_f[E(f) \cup E_f(x)]$ extends to the interior of each region by the previous cases, since $\ell \ge 10$.

Otherwise every vertex x of G is adjacent to at most k-5 vertices of V(f), and we proceed as in the proof of Case B by decreasing the lists of vertices adjacent to V(f) and excising all the v_i to create a planar graph with every vertex having at least a 5-list. The resulting graph is list-colorable with a coloring compatible with that of $G_f[E(f)]$ and extending to G_f .

3 Results on K_n genus surfaces

Most parts of the proof of the next lemma are clear; these results are used repeatedly in the proof of the main results.

- **Lemma 3.1.** 1. Suppose at most one vertex of K_n has a 1-list, at least one vertex has an n-list, and the remaining vertices have (n-1)-lists or n-lists. Then K_n can be list-colored.
 - 2. If one vertex of DK_n has a 1-list and all other vertices have n-lists, then DK_n can be list-colored.
 - 3. If at most six vertices of DK_n , $n \ge 7$, have lists of size n 1 and all others have *n*-lists, then DK_n can be list-colored.

Proof. We include the proof of part 3. Suppose that one of the two vertices of degree n-1, say x, has an n-list. Then $K_n = DK_n \setminus \{x\}$ has at most six vertices with (n-1)-lists and can be list-colored since $n \ge 7$. This coloring extends to x which has an n-list and is adjacent to n-1 vertices of the colored K_n . Otherwise both vertices of degree n-1, say x and y, have (n-1)-lists, L(x) and L(y) respectively. Suppose there is a common color

c in L(x) and L(y). Then coloring x with c extends to a coloring of $K_n = DK_n \setminus \{y\}$ after which y can also be colored with c. Otherwise L(x) and L(y) are disjoint. Suppose that when $DK_n \setminus \{y\}$ is list-colored, the colors on $K_{n-1} = DK_n \setminus \{x, y\}$ are precisely the n-1 colors of L(y) so that the coloring does not extend. If there is some vertex z of K_{n-1} with an n-list that contains a color not in L(y) and different from the color c_x used on x, we use c_x on z, freeing up the previous color of z for y. Otherwise, for every z with an n-list, that list equals $L(y) \cup \{c_x\}$. Besides these vertices of K_{n-1} with prescribed n-lists, there are at most four others in K_{n-1} which have n-1 lists. These four vertices might be colored with colors from L(x), but that still leaves at least one color $c'_x \neq c_x$ in L(x)that has not been used. We change the color of x to c'_x and the color of one of the n-list vertices of K_{n-1} to c_x , thus freeing up that vertex's previous color to be used on y.

Theorem 3.2. Suppose G embeds on S_{ε} , $\varepsilon > 0$, and does not contain $K_{H(\varepsilon)}$. Then when every vertex of G has an $H(\varepsilon)$ -list except that the j vertices of $P = \{v_1, \ldots, v_j\}, j \ge 0$, have 1-lists and dist $(P) \ge 3$, then G is list-colorable.

Proof. Let G embed on S_{ε} , $\varepsilon > 0$, and suppose G does not contain $K_{H(\varepsilon)}$. We excise the vertices of $P = \{v_1, \ldots, v_j\}$, if present, leaving a graph with all vertices having at least $(H(\varepsilon) - 1)$ -lists since $dist(P) \ge 3$. By [5, 12], the smaller graph can be list-colored, and that list-coloring extends to G.

In particular this result holds for all graphs on the Klein bottle since K_7 does not embed there. The first value not covered by the next theorem is $\varepsilon = 3$ with $H(\varepsilon) = 7$.

Theorem 3.3. Suppose G has a 2-cell embedding on S_{ε} , $\varepsilon > 0$, and contains $K_{H(\varepsilon)}$. Then when every vertex of G has an $H(\varepsilon)$ -list except that the j vertices of $P = \{v_1, \ldots, v_j\}$, $j \ge 0$, have 1-lists, G is list-colorable provided that ε is of the form $\varepsilon = (3i^2 - i)/2$, $(3i^2 + i)/2$, or $(3i^2 + 3i + 2)/2$, for some $i \ge 1$, and $dist(P) \ge 4$.

Proof. We know that $K_{H(\varepsilon)}$ necessarily has a 2-cell embedding on S_{ε} for $\varepsilon = 1, 4$ as does K_7 on τ . (K_6 and K_7 may or may not have 2-cell embeddings on κ and on S_3 , respectively.)

The values $\varepsilon = (3i^2 - i)/2$, $(3i^2 + i)/2$, or $(3i^2 + 3i + 2)/2$ for some $i \ge 1$ are those for which $K_{H(\varepsilon)}$ necessarily has a 2-cell embedding on S_{ε} ; they give the value of the genus surface of $K_{H(\varepsilon)}$ for each of the modulo 3 classes of $H(\varepsilon)$. Since $dist(P) \ge 4$, at most one vertex $v_k \in P$ is in or is adjacent to a vertex of $K_{H(\varepsilon)}$ (but not both), and in the latter case v_k is adjacent to at most $H(\varepsilon) - 1$ vertices of the complete graph since $K_{H(\varepsilon)+1}$ does not embed on S_{ε} . Thus in all cases $K_{H(\varepsilon)} \cup P$ can be list-colored by Lemma 3.1.1. When $\varepsilon = 1, H(\varepsilon) = 6$, and K_6 embeds as a triangulation on S_1 . When $\varepsilon > 1$, if $\varepsilon = (3i^2 - i)/2$ or $(3i^2 + i)/2, K_{H(\varepsilon)}$ embeds as a triangulation, and if $\varepsilon = (3i^2 + 3i + 2)/2, K_{H(\varepsilon)}$ embeds with the largest face size at most five, and in all cases $H(\varepsilon) \ge 7$. Hence we apply Lemma 2.5 for $\varepsilon \ge 1$ to see that the list-coloring of $K_{H(\varepsilon)}$ extends to the interior of each of its faces and so G is list-colorable.

A similar proof would show that when the orientable surface S_{ε} with ε even is the orientable genus surface for $K_{H(\varepsilon)}$ (i.e., when ε is even and gives the least Euler genus

such that $K_{H(\varepsilon)}$ embeds on orientable S_{ε}), then for every G with a 2-cell embedding on orientable S_{ε} and containing $K_{H(\varepsilon)}$ the same list-coloring result holds. The first corollary of Section 1 also follows easily.

Proof of Cor. 1.4. Suppose $H(\varepsilon) = 3i + 3, i \ge 1$. If $\varepsilon = (3i^2 - i)/2$, then $K_{H(\varepsilon)}$ embeds with f = (i + 1)(3i + 2) faces by Lemma 2.1.1. $K_{H(\varepsilon)}$ contains (3i + 3)(3i + 2)(3i + 1)/63-cycles, more than the number of faces so that $K_{H(\varepsilon)}$ embeds with a noncontractible 3-cycle. Thus in this case G cannot contain $K_{H(\varepsilon)}$ and by Thm. 3.2, G can be listcolored. If $\varepsilon = (3i^2 - i + 2)/2, \ldots$, or $(3i^2 + i - 2)/2$, then $K_{H(\varepsilon)}$ embeds with fewer than f = (i + 1)(3i + 2) faces and so the same result holds.

When $H(\varepsilon) = 3i + 4$ or $3i + 5, i \ge 1$, an analogous proof shows that G cannot contains $K_{H(\varepsilon)}$ and so is list-colorable.

To see that distance at least 3 is best possible for the precolored vertices, take a vertex x with a k-list L(x) and attach k pendant edges to vertices, precolored with each of the colors of L(x).

4 All surfaces

First we explore some topology of surfaces and non-2-cell faces of embedded graphs. Cycles on surfaces (i.e., simple closed curves on the surface), for both orientable and nonorientable surfaces, are of three types: contractible and surface-separating, noncontractible and surface-separating, and noncontractible and surface-nonseparating. (When the meaning is clear, we suppress the prefix "surface.") A non-2-cell face of an embedded graph must contain a noncontractible surface cycle within its interior. For example, in the second graph in Fig. 1, the shaded region is a 2-cell face, and the unshaded region is a non-2cell face that contains a noncontractible and nonseparating cycle. (For a more detailed discussion see Chapters 3 and 4 of [13].)

Suppose f is a non-2-cell face of $K_{H(\varepsilon)}$ embedded on S_{ε} . We repeatedly "cut" along simple noncontractible surface cycles that lie wholly within the face f until the "derived" face or faces become 2-cells. Each "cut" is replaced with one or two disks, creating a new surface, and with each "cut" $K_{H(\varepsilon)}$ stays embedded on a surface $S_{\varepsilon'}$ with $\varepsilon' < \varepsilon$. Below we explain this surface surgery and count the number of newly created faces, called *derived* faces in the surgery.

Lemma 4.1. Suppose $K_{H(\varepsilon)}$ embeds on S_{ε} , $\varepsilon > 0$. Then the largest possible 2-cell face in the embedding is an $(H(\varepsilon) - 1)$ -region.

Proof. Suppose the embedded $K_{H(\varepsilon)}$ has a non-2-cell k-region f; initially there are no derived faces. In f we can find a simple noncontractible cycle C, disjoint from its boundary, $V(f) \cup E(f)$. If C is surface-separating, it is necessarily 2-sided. We replace C by two copies of itself, C and C', and insert in each copy a disk, producing surfaces S(1) and S'(1), each with Euler genus that is positive and less than ε . Since $K_{H(\varepsilon)}$ is connected, it is embedded on one of these surfaces, say S(1). The face f of $K_{H(\varepsilon)}$ on S_{ε} becomes the derived face f_1 of $K_{H(\varepsilon)}$ on S(1) and retains the same set of boundary vertices $V(f_1) = V(f)$

and edges $E(f_1) = E(f)$ so that f_1 is also a k-region. Initially f is not a derived face, f_1 becomes a derived face and the Euler genus decreases by at least 1. If, later on in the process, f is a derived face, then f_1 is also a derived face, the number of derived faces does not increase, and the Euler genus decreases by at least 1.

If C is not surface-separating and is 2-sided, we duplicate it and sew in two disks, as above, to create one new surface S(1) of lower and positive Euler genus on which $K_{H(\varepsilon)}$ is embedded. If C was not separating within the face f, then the derived face f_1 keeps the same set of boundary vertices and edges as f and remains a k-region. As above, the number of derived faces increases by at most 1 and the Euler genus decreases by at least 2. If C was separating within the face f, then f splits into two derived faces f_1 and f'_1 . Each vertex of V(f) and each edge of E(f) appears on one of these derived faces or possibly two when it was a repeat on f. More precisely, if f_1 is a k_1 -region and f'_1 is a k'_1 -region, then necessarily $k_1 + k'_1 = k$. In this case the Euler genus decreases by 2 and number of derived faces increases by at most 2, increasing by 2 only when the face being cut was an original face of $K_{H(\varepsilon)}$. If C is not surface-separating and is 1-sided, we replace C by a cycle DC of twice the length of C and insert a disk within DC, producing a surface S(1)with Euler genus that is less than ε . $K_{H(\varepsilon)}$ remains embedded on S(1), necessarily with positive Euler genus, and the derived face f_1 keeps the same boundary vertices and edges as f, remaining a k-region. Thus the number of derived faces increases by at most 1 and the Euler genus decreases by at least 1.

Now we prove the lemma by induction on the number of non-2-cell faces of the embedded $K_{H(\varepsilon)}$. We know the conclusion holds when there are no non-2-cell faces by Lemma 2.2. Otherwise let f be a non-2-cell k-region. We repeatedly cut along simple noncontractible cycles within f and its derived faces, creating surfaces S(1), S(2), ... on which $K_{H(\varepsilon)}$ remains embedded. We continue until every derived face of f is a 2-cell. Then $K_{H(\varepsilon)}$ is embedded on, say, $S_{\varepsilon'}$ with $\varepsilon' < \varepsilon$ and has fewer non-2-cell faces. By induction each 2-cell face has size at most $H(\varepsilon) - 1$ and thus every original 2-cell face, which has not been affected by the surgery, also has size at most $H(\varepsilon) - 1$.

We have purposefully proved more within the previous proof.

Corollary 4.2. Suppose $K_{H(\varepsilon)}$ has a non-2-cell embedding on S_{ε} , and suppose that after cutting along noncontractible cycles in non-2-cell faces, $K_{H(\varepsilon)}$ has a 2-cell embedding on $S_{\varepsilon'}$, $\varepsilon' < \varepsilon$. Then the number of faces in the latter embedding that are derived from faces in the original embedding is at most $\varepsilon - \varepsilon'$.

Proof. In the previous proof we saw that with some cuts the number of derived faces is increased by at most 1 and the Euler genus is decreased by at least 1; let c_0 denote the number of cuts in which there is no increase in the number of derived faces and c_1 the number of cuts in which there is an increase of 1 in the number of derived faces. If the increase is always at most 1, then the result follows. The number of derived faces is increased by 2 precisely when the cutting cycle C within a face f' is 2-sided, is not surface-separating, is separating within f', and f' is an original face of the embedding. In that case the Euler genus is decreased by 2 also; let c_2 denote the number of such cuts. Then the decrease in the Euler genus, $\varepsilon - \varepsilon'$ is at least $c_0 + c_1 + 2c_2 \ge c_1 + 2c_2$, which equals the number of derived faces.

Theorem 4.3. Given $\varepsilon > 0$ and G a graph on n vertices that has a 2-cell embedding on S_{ε} , suppose that G contains $K_{H(\varepsilon)}$. If $P \subset V(G)$ satisfies $dist(P) \ge 4$, then if the vertices of P each have a 1-list and every other vertex of G has an $H(\varepsilon)$ -list, then G can be list-colored.

Proof. The proof is by induction on ε and on n. We know the theorem holds for G with a 2-cell embedding on S_{ε} for $1 \leq \varepsilon \leq 2$ by Thm. 3.3. Consider graphs with 2-cell embeddings on S_{ε^*} for $\varepsilon^* \geq 3$. For each such embedded graph, the subgraph $K_{H(\varepsilon^*)}$ inherits an embedding on S_{ε^*} , and $H(\varepsilon^*) \geq 7$.

Since $dist(P) \ge 4$ we know that at most one vertex of P lies in or is adjacent to a vertex of $K_{H(\varepsilon^*)}$. If there is one, call it v_i^* and if not, ignore reference to v_i^* in the following. By Lemma 3.1.1 we know that $G[V(K_{H(\varepsilon^*)}) \cup \{v_i^*\}]$ can be list-colored since v_i^* is adjacent to at most $H(\varepsilon^*) - 1$ vertices of $K_{H(\varepsilon^*)}$ (because $K_{H(\varepsilon^*)+1}$ does not embed on S_{ε^*}). If G contains a vertex x in neither $V(K_{H(\varepsilon^*)})$ nor P, then $G[V(K_{H(\varepsilon^*)}) \cup \{x\}]$ can be list-colored by first coloring $K_{H(\varepsilon^*)}$ and then coloring x, which has an $H(\varepsilon^*)$ -list and is adjacent to at most $H(\varepsilon^*) - 1$ vertices of $K_{H(\varepsilon^*)}$.

Thus on surface S_{ε^*} we know the result holds for every graph on n vertices with $n \leq H(\varepsilon^*) + 1$. Let G have n^* vertices, $n^* > H(\varepsilon^*) + 1$, and have a 2-cell embedding on S_{ε^*} .

Let f be a k-region in the inherited embedding of $K_{H(\varepsilon^*)}$ with incident vertices V(f) and edges E(f), and let G_f denote the subgraph of G lying in the closure of f, $f \cup V(f) \cup E(f)$. Suppose f is a 2-cell face of $K_{H(\varepsilon^*)}$ in whose interior lie vertices of $V(G) \setminus \{V(f) \cup \{v_i^*\}\}$; call these interior vertices U_f . Then after deleting the vertices of U_f , $G \setminus U_f$ has a 2-cell embedding on S_{ε^*} with fewer than n^* vertices, contains $K_{H(\varepsilon^*)}$, and contains vertices of $P' \subseteq P$ with $dist(P') \ge 4$. By induction $G \setminus U_f$ is list-colorable. By Lemma 4.1 $k \le H(\varepsilon^*) - 1$. We claim that the resulting list-coloring of $G[V(f) \cup \{v_i^*\}]$ extends to G_f .

If $k \leq H(\varepsilon^*) - 2$, then the coloring extends by Lemma 2.5.1 and 2.5.2. Otherwise $k = H(\varepsilon^*) - 1$ and the coloring then extends by Lemma 2.5.3, unless there is a vertex x of G_f that has an $H(\varepsilon^*)$ -list, is adjacent to v_i^* , not in V(f), and to all vertices of V(f), and its $H(\varepsilon^*)$ -list consists of $H(\varepsilon^*)$ colors that appear on its neighbors. Then $G[V(K_{H(\varepsilon^*)}) \cup \{x\}]$ forms $DK_{H(\varepsilon^*)}$, which triangulates S_{ε^*} and does not contain another vertex of P since $dist(P) \geq 4$. Since v_i^* is adjacent to at most three vertices of $DK_{H(\varepsilon^*)}$ (the vertices of a 3-region), $G[V(DK_{H(\varepsilon^*)}) \cup \{v_i^*\}]$ can be list-colored by Lemma 3.1.3. Then the list-coloring extends to the graph in the interior of each 3-region by Lemma 2.5.1 since $H(\varepsilon^*) \geq 7$.

Thus we can assume that every vertex of $V(G) \setminus \{V(K_{H(\varepsilon^*)}) \cup \{v_i^*\}\}$ lies in a non-2-cell region of the embedding of $K_{H(\varepsilon^*)}$ on S_{ε^*} . We claim there are two vertices of $K_{H(\varepsilon^*)}$ that lie only on its 2-cell faces; we prove that below. One of these might lie in P or be adjacent to v_i^* , but the other, say x^* , has an $H(\varepsilon^*)$ -list and is adjacent only to vertices of $K_{H(\varepsilon^*)}$, precisely $H(\varepsilon^*) - 1$ of these. In that case we consider $G \setminus \{x^*\}$. If $G \setminus \{x^*\}$ does not contain $K_{H(\varepsilon^*)}$, it can be list-colored by Thm. 3.2. Otherwise $G \setminus \{x^*\}$ does contain $K_{H(\varepsilon^*)}$. $G \setminus \{x^*\}$ might have a 2-cell embedding on S_{ε^*} or it might not. In the former case, by induction on n it can be list-colored. Suppose that $G \setminus \{x^*\}$ does not have a 2-cell embedding on S_{ε^*} . Then the face f^* that was formed by deleting x^* is the one and only non-2-cell face of that embedding since no other face of G has been changed by the deletion of x^* . Then we cut along noncontractible cycles within f^* , as described in Lemma 4.1, until every face, derived from f^* , is a 2-cell in $G \setminus \{x^*\}$ now embedded on $S_{\varepsilon'}$ with $\varepsilon' < \varepsilon^*$. We have $H(\varepsilon') = H(\varepsilon^*)$ since $G \setminus \{x^*\}$ contains $K_{H(\varepsilon^*)}$. Thus $G \setminus \{x^*\}$ can be list-colored by induction on the Euler genus, and in all cases that coloring extends to G since x^* has a list of size $H(\varepsilon^*)$ which is larger than its degree.

We return to the claim that there are two vertices of $K_{H(\varepsilon^*)}$ that lie only on 2-cell faces of its embedding on S_{ε^*} , given that every vertex of $V(G) \setminus \{V(K_{H(\varepsilon^*)}) \cup \{v_i^*\}\}$ lies in a non-2-cell face of the embedded $K_{H(\varepsilon^*)}$. Since the number of vertices of G, n^* , is greater than $H(\varepsilon^*) + 1$, there are some non-2-cell faces containing other vertices of G. We count the maximum number of vertices of $K_{H(\varepsilon^*)}$ that lie on these non-2-cells to show that number is at most $H(\varepsilon^*) - 2$.

As in Lemma 4.1 we repeatedly cut each non-2-cell face of the embedded $K_{H(\varepsilon^*)}$ until all remaining faces, the original and the derived, are 2-cells; suppose $K_{H(\varepsilon^*)}$ is then embedded on $S_{\varepsilon'}$ with $\varepsilon' < \varepsilon^*$. We know that every vertex originally on a non-2-cell face of $K_{H(\varepsilon^*)}$ is represented on at least one derived face and we show below that the total number of vertices on derived faces is at most $H(\varepsilon^*) - 2$. We also know that $\varepsilon' \ge I(H(\varepsilon^*))$. Let $n_1 = \varepsilon' - I(H(\varepsilon^*))$, which is nonnegative, and $n_2 = \varepsilon^* - \varepsilon'$, which is positive. The variable n_1 will determine the face sizes in the 2-cell embedding of $K_{H(\varepsilon^*)}$ on $S_{\varepsilon'}$ (see Table 1), and n_2 will determine the maximum number of derived faces that have been created.

We consider the modulo 3 class of $H(\varepsilon^*)$, and we begin with the case of $H(\varepsilon^*) = 3i+4$, $i \ge 1$. We know that $\varepsilon^* \in \{(3i^2+i)/2, \ldots, (3i^2+3i)/2\} = \{I(3i+4), \ldots, I(3i+4)+i\}$ so that $n_1 + n_2 \le i$ by Lemma 2.1. By Cor. 4.2 the number of derived faces is at most n_2 . We can determine the possible face sizes of a 2-cell embedding of $K_{H(\varepsilon^*)}$ on $S_{\varepsilon'}$ with $\varepsilon' = I(3i+4) + n_1$. A 2-cell embedding on $S_{I(3i+4)}$ is necessarily a triangulation. A 2-cell embedding on $S_{I(3i+4)+1}$ consists of triangles except possibly for one 6-region, or triangles plus two faces whose sizes sum to 9, or triangles plus three faces whose sizes sum to 12 (necessarily three 4-regions). More generally when $\varepsilon' = I(3i+4) + n_1$, then the embedding might consist of triangles plus one $(3n_1 + 3)$ -region, or triangles plus two faces whose sizes sum to $3n_1 + 6$, or triangles plus three faces whose sizes sum to $3n_1 + 9$, etc. And if we choose n_2 faces, all the derived faces, the sum of their sizes can be at most $3n_1 + 3n_2 \le 3i < 3i + 2 = H(\varepsilon^*) - 2$.

For $i \ge 1$, the same calculation holds when $H(\varepsilon^*) = 3i + 3$, and when $H(\varepsilon^*) = 3i + 5$, a similar count will work. In the latter case we have $n_1 + n_2 \le i - 1$, though the face sizes may be slightly larger. A 2-cell embedding of $K_{H(\varepsilon^*)}$ on $S_{I(3i+5)}$ may have triangles plus a 5-region or triangles plus two 4-regions. In general a 2-cell embedding of $K_{H(\varepsilon^*)}$ on $S_{I(3i+5)+n_1}$ might have triangles plus one $(3n_1 + 5)$ -region or triangles plus two regions whose sizes sum to $3n_1 + 8$, etc. With n_2 faces, all the derived faces, their sum of sizes can be at most $3n_1 + 3n_2 + 2 \leq 3i - 1 < 3i + 3 = H(\varepsilon^*) - 2$.

We now complete the proof our main result, Thm. 1.3.

Proof of Thm. 1.3. If G has a non-2-cell embedding on S_{ε} that contains $K_{H(\varepsilon)}$, we can perform surgery on the non-2-cell faces, as we did in the proof of Lemma 4.1 and Thm. 4.3, to obtain a 2-cell embedding of G on a surface of Euler genus $\varepsilon' < \varepsilon$ that still contains $K_{H(\varepsilon)}$, and hence $H(\varepsilon') = H(\varepsilon)$. We can thus apply Thm. 4.3 to G on $S_{\varepsilon'}$. This shows that the result holds for every embedding, 2-cell or non-2-cell, and Thm. 1.3 follows. \Box

The distance bound of 4 in Thms. 1.3 and 4.3 is best possible, for consider $K_{H(\varepsilon)}$ with a pendant edge attaching a degree-1 vertex to each vertex of $K_{H(\varepsilon)}$. Give each degree-1 vertex the list {1} and place that vertex in the set P. When every other vertex has an identical $H(\varepsilon)$ -list that contains 1, the graph is not list-colorable and dist(P) = 3.

The second corollary of Section 1 now follows easily.

Proof of Cor. 1.5. Let f_1, \ldots, f_j be the faces with vertices with smaller lists. Add a vertex x_i to f_i and make it adjacent to all vertices of $V(f_i)$. Give each x_i a 1-list $\{\alpha\}$ where α appears in no list of a vertex of G, and add α to the list of each vertex of $V(f_i)$, now the neighbors of x_i . Then $G \cup \{x_1, \ldots, x_j\}$ can be list-colored by Thm. 1.3 since with $P = \{x_1, \ldots, x_j\}$, $dist(P) \ge 4$, and this coloring is a list-coloring of G.

5 Concluding Questions

- 1. Škrekovski [14] has shown the extension of Dirac's theorem that if G is embedded on $S_{\varepsilon}, \varepsilon \ge 5, \varepsilon \ne 6, 9$, and does not contain $K_{H(\varepsilon)-1}$ or $K_{H(\varepsilon)-4} + C_5$, then G can be $(H(\varepsilon) - 2)$ -colored. Is the same true for list-coloring?
- 2. If G embeds on S_{ε} and does not contain one of the two graphs of Question 1, if the vertices of one face have at least $(H(\varepsilon) 2)$ -lists, and if all other vertices have at least $H(\varepsilon)$ -lists, can G be list-colored?

Acknowledgements

We wish to thank D. Archdeacon and a referee for helpful comments and Z. Dvořák and K.-I. Kawarabayashi for information on background material.

References

- M. O. Albertson. You can't paint yourself into a corner. J. Combin. Theory Ser. B, 73:189–194, 1998.
- [2] M. O. Albertson and J. P. Hutchinson. The independence ratio and genus of a graph. *Trans. Amer. Math. Soc.*, 226:161–173, 1977.

- [3] M. O. Albertson and J. P. Hutchinson. Graph color extensions: when Hadwiger's conjecture and embeddings help. *Electron. J. Combinatorics*, 9:R37, 2002.
- [4] M. Axenovich, J. P. Hutchinson, and M. A. Lastrina. List precoloring extension in planar graphs. *Discrete Math.*, 311:1046–1056, 2011.
- [5] T. Böhme, B. Mohar, and M. Stiebitz. Dirac's map-color theorem for choosability. J. Graph Theory, 32:327–339, 1998.
- [6] M. DeVos, K.-I. Kawarabayashi, and B. Mohar. Locally planar graphs are 5choosable. J. Combin. Theory Ser. B, 98:1215–1232, 2008.
- [7] G. Dirac. Short proof of a map-colour theorem. Canad. J. Math., 9:225–226, 1957.
- [8] Z. Dvořák, B. Lidický, and B. Mohar. 5-choosability of graphs with crossings far apart. Manuscript, 2011.
- [9] Z. Dvořák, B. Lidický, B. Mohar, and L. Postle. 5-list-coloring planar graphs with distant precolored vertices. Manuscript, 2011.
- [10] T. Jensen and B. Toft. Graph Coloring Problems. John Wiley and Sons, New York, USA, 1995.
- [11] K.-I. Kawarabayashi and B. Mohar. List-color-critical graphs on a fixed surface. In Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1156–1165, 2009. SODA '09.
- [12] D. Král' and R. Skrekovski. The last excluded case of Dirac's map-color theorem for choosability. J. Graph Theory, 51:319–354, 2006.
- [13] B. Mohar and C. Thomassen. *Graphs on Surfaces*. Johns Hopkins University Press, Baltimore, MD, USA, 2001.
- [14] R. Skrekovski. A theorem on map colorings. Bull. of Inst. of Comb. and Applic., 35:53–60, 2002.
- [15] C. Thomassen. Every planar graph is 5-choosable. J. Combin. Theory Ser. B, 62(1):180–181, 1994.
- [16] C. Thomassen. Color-critical graphs on a fixed surface. J. Combin. Theory Ser. B, 70:67–100, 1997.
- [17] Z. Tuza and M. Voigt. A note on planar 5-list-colouring: non-extendability at distance
 4. Discrete Math., 251:169–172, 2002.