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Abstract

Given a positive integer n, and partitions λ and µ of n, let Kλµ denote the Kostka
number, which is the number of semistandard Young tableaux of shape λ and weight
µ. Let J(λ) denote the number of µ such that Kλµ = 1. By applying a result of
Berenshtein and Zelevinskii, we obtain a formula for J(λ) in terms of restricted
partition functions, which is recursive in the number of distinct part sizes of λ. We
use this to classify all partitions λ such that J(λ) = 1 and all λ such that J(λ) = 2.
We then consider signed tableaux, where a semistandard signed tableau of shape λ
has entries from the ordered set {0 < 1̄ < 1 < 2̄ < 2 < · · · }, and such that i and ī
contribute equally to the weight. For a weight (w0, µ) with µ a partition, the signed
Kostka number K±λ,(w0,µ) is defined as the number of semistandard signed tableaux

of shape λ and weight (w0, µ), and J±(λ) is then defined to be the number of weights
(w0, µ) such that K±λ,(w0,µ) = 1. Using different methods than in the unsigned case,

we find that the only nonzero value which J±(λ) can take is 1, and we find all
sequences of partitions with this property. We conclude with an application of
these results on signed tableaux to the character theory of finite unitary groups.
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1 Introduction

Given partitions λ and µ of a positive integer n, the Kostka number Kλµ is the number
of semistandard Young tableaux of shape λ and weight µ. Motivated by the importance
of Kostka numbers and their generalizations in the representation theory of Lie algebras,
Berenshtein and Zelevinskii [1] addressed the question of precisely when it is that Kλµ = 1.
It may be seen, for example, that we always Kλλ = 1. The results of this paper were
motivated by the question: For which partitions λ is it true that Kλµ = 1 if and only if
µ = λ? The answer to this question, given in Corollary 5.1, turns out to be quite nice,
which is that this holds exactly for those partitions λ for which the conjugate partition
λ′ has distinct parts. In fact, using the result of Berenshtein and Zelevinskii, stated in
Theorem 3.1 below, we can give much more information.

After giving some preliminary results and definitions for partitions in Section 2, and
for tableaux in Section 3, we define J(λ) to be the number of partitions µ such that
Kλµ = 1. Our first main result, given in Proposition 4.1 and Theorem 4.1, is a formula
for J(λ) in terms of restricted partition functions, as a recursive formula in terms of the
number of distinct parts of λ. Using this formula, we are then able to give, for certain
forms of λ, a product formula for J(λ). We can apply this machinery quite effectively to
obtain a classification of those λ such that J(λ) = 1 (Corollary 5.1), and those λ such
that J(λ) = 2 (Corollary 5.2), as well as a characterization of those λ such that J(λ) is
prime (Corollary 5.3).

In Section 6, we use completely different methods to analyze a similar question con-
cerning the signed Kostka number. Given a partition λ, a semistandard signed tableau
of shape λ has entries from the ordered set {0 < 1̄ < 1 < 2̄ < 2 < · · · }, where entry wi
of the weight is given by the total number of i’s or ī’s. Signed tableaux are a variation of
symplectic tableaux, which were introduced by King [3] to describe the representations
of Sp(2n,C). Signed tableaux as we use here were applied in [5] to describe multiplicites
in Gelfand-Graev characters of the finite unitary groups. Given a partition λ and a
weight (w0, µ), where µ = (w1, w2, . . . ) is a partition, we define the signed Kostka number
K±λ,(w0,µ) as the number of signed tableaux of shape λ and weight (w0, µ). We then define

J±(λ), given λ, as the number of weights (w0, µ), where µ is a partition, such that the
signed Kostka number K±λ,(w0,µ) = 1. In contrast with the question for unsigned tableaux,

we find that even for multipartitions (or sequences of partitions) λ, the only nonzero value
J±(λ) can take is 1. We prove this statement, and classify all multipartitions λ such that
J±(λ) = 1, in Theorems 6.1 and 6.2. Finally, we give an application to the characters
of the finite unitary group in Corollary 6.2, where we give a set of characters of the fi-
nite unitary group which occur with multiplicity 1 in a unique degenerate Gelfand-Graev
character.

2 Partitions and restricted partitions

A partition of a non-negative integer n, written λ ` n, is a tuple of non-negative integers
λ = (λ1, λ2, . . . , λr) such that λ1 > λ2 > · · · > λr and

∑r
i=1 λi = n. The size of λ
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is then n, written |λ| = n. The numbers λi are the parts of the partition, and the
length of the partition, denoted `(λ), is the number of positive parts of λ. While we
allow parts of a partition to be 0 for some convenience, we consider two partitions to be
identical if there is no difference in their positive parts. For a non-negative integer n, the
partition function p(n) is defined to be the number of distinct partitions of n (note that
p(0) = 1). Another notation for a partition that we will use is λ = (km1

1 , km2
2 , . . . , kmss ),

which denotes the partition with parts λi = k1 for 1 6 i 6 m1, and for 1 < j 6 s, λi = kj
for mj−1 +1 6 i 6 mj−1 +mj. For example, the partition λ = (7, 7, 7, 5, 5, 3, 2, 2, 2, 2, 1, 1)
will be denoted λ = (73, 52, 31, 24, 12) in this notation.

Given a partition λ = (λ1, λ2, . . . , λl), the Young diagram for λ is an array of left-
justified rows of boxes, where the ith row from the top has λi boxes. The conjugate of the
partition of λ, denoted λ′, is obtained by transposing the Young diagram of λ, changing
rows into columns, and vice versa. For example, the Young diagram for λ = (4, 3, 3, 2, 1)
is

,

from which we see that λ′ = (5, 4, 3, 1), with Young diagram

.

The dominance partial order on partitions of some fixed non-negative integer n, written
D, is defined as follows. If λ, µ ` n, then λDµ if, for all m > 1, we have

∑m
i=1 λi >

∑m
i=1 µi.

For example, if λ = (3, 2, 1), µ = (3, 1, 1, 1), and ν = (2, 2, 2), then λDµ and λD ν, while
µ and ν are incomparable.

Define pl(n) to be the number of partitions λ of n such that `(λ) 6 l, and define
p(k, l, n) to be the number of partitions λ of n such that λ1 6 k and `(λ) 6 l. In
particular, note that if l > n, then pl(n) = p(n). Also, p(n− 1, l, n) = pl(n)− 1. For any
n < 0, we define p(k, l, n) = pl(n) = p(n) = 0. We now make some observations which will
be used crucially in the results in Section 4. We give an example with Young diagrams
of the bijection in each proof below to demonstrate the straightforward arguments.

Lemma 2.1. For any positive integers a, b, and n, we have

p(a, b, ab− n) = p(a, b, n).

In particular, if a, b > n, then p(a, b, ab− n) = p(n).

Proof. Let λ ` ab − n such that λ1 6 a and `(λ) 6 b, where λ = (λ1, . . . , λb). The
map λ 7→ µ, where µ is defined by µi = a − λb−i+1 for 1 6 i 6 b, is a bijection from
partitions λ of ab− n with λ1 6 a and `(λ) 6 b to partitions µ of n such that µ1 6 a and
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`(µ) 6 b. Note that the second statement follows from the first, since if a, b > n, then
p(a, b, n) = p(n).

If a = 5, b = 6, and n = 18, then in the proof above, λ = (4, 4, 2, 1, 1) maps to
µ = (5, 4, 4, 3, 1, 1), as follows:

7→ = .

Lemma 2.2. Let m, k > 1. The number of partitions µ ` mk such that `(µ) = m + 1
and µ1 6 k is pm+1(k)− 1.

Proof. Let µ be a partition of mk with `(µ) = m + 1 and µ1 6 k. The map µ 7→ ν,
where ν is defined by νi = µi − 1 for 1 6 i 6 m + 1, defines a bijection from the set of
partitions µ of mk with `(µ) = m + 1 and µ1 6 k to the partitions of ν of mk −m − 1
with `(ν) 6 m + 1 and ν1 6 k − 1. Thus, the number of such partitions µ is equal to
p(k−1,m+ 1,mk−m−1). By Lemma 2.1 with a = k−1, b = m+ 1 and n = k, we have
p(k − 1,m+ 1,mk −m− 1) = p(k − 1,m+ 1, k). Since p(k − 1,m+ 1, k) = pm+1(k)− 1,
the result follows.

That is, in the proof of Lemma 2.2, we subtract 1 from each part of µ, and then apply
the bijection from Lemma 2.1 with a = k − 1, b = m + 1 and n = k. For example, if
m = 5, k = 3, and µ = (3, 3, 3, 3, 2, 1), then the resulting partition of k = 3 after applying
these maps is as follows, where we put dots in boxes which are removed in the subsequent
map:

·
·
·
·

·
·

7→ 7→ = .

Lemma 2.3. Let λ = (km1
1 , k2), with k1 > k2 > 0. The number of partitions µ of m1k1+k2

such that `(µ) = m1 + 1, λD µ, and µm1+1 6= k2 is pm1+1(k1 − k2)− 1.

Proof. First, we claim that if µ ` (m1k1 +k2) and `(µ) = m1 + 1, then λDµ if and only if
µ1 6 k1. If µ1 > k1 = λ1, then it does not hold that λD µ. Conversely, suppose µ1 6 k1.
Then µi 6 k1 for 1 6 i 6 m1, and so for any m 6 m1,

∑m
i=1 µi 6 mk1 =

∑m
i=1 λi. Thus

λD µ.
Now note that if µ ` (m1k1 + k2), `(µ) = m1 + 1 and µ1 6 k1, then µm1+1 > k2. So,

the partitions µ of m1k1 + k2 such that `(µ) = m1 + 1, λD µ, and µm1+1 6= k2 are exactly
those µ ` (m1k1 + k2) such that `(µ) = m1 + 1, µ 6 k1, and µm1+1 > k2 + 1. Given such a
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partition µ, the map µ 7→ ν, where ν is defined by νi = µi− k2− 1 for i 6 m1 + 1, gives a
bijection from partitions µ of m1k1 +k2 such that `(µ) = m1 +1, λDµ, and µm1+1 6= k2 to
partitions ν ofm1k1+k2−(m1+1)(k2+1) such that `(ν) 6 m1+1 and ν1 6 k1−k2−1. That
is, the number of such partitions µ is exactly p(k1−k2−1,m1 +1,m1k1−m1k2 +m1 +1).
By Lemma 2.1 with a = k1 − k2 − 1, b = m1 + 1, and n = k1 − k2, this is equal to
p(k1 − k2 − 1,m1 + 1, k1 − k2) = pm1+1(k1 − k2)− 1.

That is, given µ as in the above proof, we subtract k2 + 1 from each part of µ, and
then apply the bijection from Lemma 2.1 to obtain a restricted partition of k1 − k2. For
example, taking λ = (63, 2), so k1 = 6, k2 = 2, and m1 = 3, let µ = (6, 5, 5, 4). Then, as
shown below, the first map gives ν = (3, 2, 2, 1), and applying the bijection from Lemma
2.1 with a = 3, b = 4, and n = 4, yields the partition (2, 1, 1) of k1 − k2 = 4:

· · ·
· · ·
· · ·

· · ·

7→ 7→ = .

Lemma 2.4. Let λ = (k1, k
j
2), with k1 > k2 > 0. The number of partitions µ of k1 + jk2

such that `(µ) = j + 1, λD µ, and µj+1 6= k2 is pj+1(k1 − k2 − 1− j).

Proof. We claim that if µ ` k1 + jk2 and `(µ) = j+ 1, then λDµ if and only if µj+1 > k2.
If µj+1 < k2, then

∑j
i=1 µi = k1 + jk2 − µj+1 > k1 + (j − 1)k2 =

∑j
i=1 λi, and thus we

cannot have λD µ. Conversely, suppose that µj+1 > k2. Then µi > k2 for each i 6 j + 1.
It follows that λ1 = k1 > µ1, since

∑j+1
i=2 µi > jk2. Also, for any 1 < m 6 j + 1, we have∑m

i=1 λi = k1 + (m− 1)k2 >
∑m

i=1 µi, otherwise we would have
∑j+1

i=1 µi > k1 + jk2, since
µi > k2 for each i 6 j + 1. Thus λD µ and the claim is proved.

We have from the claim that the set of partitions µ of k1 + jk2 such that `(µ) = j+ 1,
λD µ, and µj+1 6= k2 is exactly the set of partitions µ of k1 + jk2 with `(µ) = j + 1 and
µj+1 > k2 + 1. Given such a partition µ, define a partition ν by νi = µi − k2 − 1 for
i = 1, . . . , j + 1, which results in a partition of k1 + jk2− (j + 1)(k2 + 1) = k1− k2− 1− j
of length at most j + 1. Moreover, the map µ 7→ ν provides a bijection from partitions µ
of k1 + jk2 with `(µ) = j + 1, λD µ, and µj+1 6= k2 to partitions ν of k1− k2− 1− j with
length at most j + 1, giving the desired enumeration.

To demonstrate the proof of Lemma 2.4, suppose λ = (13, 12), so k1 = 13, k2 = 1, and
j = 2, and suppose µ = (6, 5, 4), so `(µ) = j + 1 and µj+1 = 4 > k2 + 1. The map sends
µ to ν = (4, 3, 2), as shown below:

· ·
· ·

· ·
7→ .
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3 Tableaux and Kostka multiplicity

A semistandard Young tableau of shape λ, is a filling of the boxes of the Young diagram
for λ with positive integers in such a way that rows are non-decreasing from left to right,
and columns are increasing from top to bottom. The weight of a semistandard Young
tableau is a tuple α = (α1, α2, . . .), where αi is the number of i’s which appear in the
tableau. Note that when α is the weight of a tableau of shape λ, where λ ` n, then∑

i αi = n, that is, α is a composition of n.

Example. Let λ = (5, 4, 2, 1, 1). Then the following are two different semistandard
Young tableaux of shape λ and weight (1, 4, 2, 3, 0, 1, 1):

1 2 2 2 3
2 3 3 4
4 4
6
7

,

1 2 2 2 2
3 3 3 4
4 4
6
7

.

Since all of our tableaux will be semistandard Young tableaux, we will henceforth refer
to them as simply Young tableaux.

Given a partition λ of n and a composition α of n, the Kostka number, denote Kλα,
is defined to be the number of distinct Young tableaux of shape λ and weight α. It is
known that the value of Kλα is invariant under permutation action on the parts of α, and
so we may assume that α is a partition of n. Furthermore, it is known that if λ, µ ` n,
then Kλµ 6= 0 if and only if λD µ (where D is the dominance partial ordering).

As mentioned in the introduction, Kostka numbers play an important role in represen-
tation theory and algebraic combinatorics. If sλ denotes the Schur symmetric function,
and hµ denotes the complete symmetric function, then the Kostka numbers appear in
the transition matrix for these bases (as well as being involved in many other transition
matrices for bases, see [4, Chapter I.6, Table 1]):

hµ =
∑
λDµ

Kλµsλ.

This fact is essentially equivalent to the following statement regarding representations of
the symmetric group. If λ, µ ` n, let Sµ denote the Young subgroup corresponding to µ
of the symmetric group Sn, let 1 denote the trivial representation, and let πλ denote the
complex irreducible representation of Sn indexed by λ. Then (see [2, Corollary 4.9]):

IndSnSµ(1) ∼=
⊕
λDµ

Kλµπλ.

Kostka numbers and their variations also appear in the representation theory of Lie
algebras, Weyl groups, and finite groups of Lie type, all as multiplicities in the decom-
position of some representation (we will see an application of this to the finite unitary
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group). A representation having multiplicity one in the decomposition of another repre-
sentation is an important property in representation theory for many reasons, such as the
multiplicity one representation inheriting certain properties of others, it is an important
question to ask precisely when a Kostka number is equal to 1. This was the motivation
for Berenshtein and Zelevinskii [1, Theorem 1.5] to prove the following criterion for when
Kλµ = 1.

Theorem 3.1 (Berenshtein and Zelevinskii). Let λ = (λ1, . . . , λl) and µ = (µ1, . . . , µl),
where some λi or µi may equal 0 (so there is some choice in l). Then Kλµ = 1 if and only
if there exists a choice of indices 0 = i0 < i1 < · · · < ik = l such that, for j = 1, . . . , k,
the sub-partitions λj = (λij−1+1, . . . , λij) and µj = (µij−1+1, . . . , µij) satisfy the following:

1. |λj| = |µj| and λj D µj, and

2. either λij−1+1 = λij−1+2 = · · · = λij−1 or λij−1+2 = · · · = λij .

Example. While it is well-known that Kλλ = 1 for any partition λ, we may see that it
follows from Theorem 3.1 by choosing ij = j for each j, so that λj = (λj) = µj. Since this
choice of indices immediately satisfies the conditions of the theorem, we have Kλλ = 1.

Example. Let λ = (4, 4, 2, 2, 1) and µ = (4, 3, 3, 2, 1). Consider the indices i1 = 3,
i2 = 5, so that λ1 = (4, 4, 2), µ1 = (4, 3, 3), and λ2 = µ2 = (2, 1). Since these satisfy the
conditions of Theorem 3.1, then Kλµ = 1. In fact, we shall see in Corollary 5.2 that µ is
the only partition other than λ with this property. The unique tableau of shape λ and
weight µ is

1 1 1 1
2 2 2 3
3 3
4 4
5

.

While Berenshtein and Zelevinskii give a certain enumeration of pairs (λ, µ) such that
Kλµ = 1 in terms of Lie theory and a reduction to “primitive pairs” [1, Theorem 1.3], it is
not obvious how to obtain an explicit enumeration of, given a partition λ, all partitions µ
such that Kλµ = 1. We address this question in the next two sections. For this purpose,
for any partition λ ` n, we define J(λ) by

J(λ) = #{µ ` n | Kλµ = 1}.

So, when λ = (n), we have J(λ) = p(n), and when λ = (1n), then J(λ) = 1.

4 A recursion for J(λ)

We begin by evaluating J(λ) when all parts of λ are equal, that is, when λ = (km) for
some m, k > 0. Somewhat surprisingly, if we fix k, then we find that J(km) does not
increase without bound with m, but rather reaches its maximum value for m = k − 1,
and is equal to this value for any m > k − 1.
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Proposition 4.1. Let λ = (km). Then

J(λ) = p(k) + pm+1(k)− 1− bk/2c = p(k) + pm+1(k)− p2(k).

In particular, if m > k − 1, then J(λ) = 2p(k)− 1− bk/2c = 2p(k)− p2(k).

Proof. In applying Theorem 3.1, we must count how many distinct partitions µ ` km are
possible when choosing different indices which give sub-partitions λj of λ. Recall that we
may consider λ as ending with any number of 0’s as parts, which may allow for different
choices of indices which satisfy the conditions of Theorem 3.1.

To better illustrate the counting argument, we consider the running example λ = (43).
First, consider the case when λ1 = (km−1), which corresponds to the choice i1 = m−1.

Then, we are forced to also have µ1 = (km−1) in order to have λ1Dµ1. We must then have
λ2 = (k, 0, . . . , 0), where we may have any number of 0’s appear. In order for λ2 D µ2,
we only require |µ2| = k. Thus, the number of distinct choices for µ ` km in the case
i1 = m − 1 is exactly p(k), corresponding to the p(k) partitions of km with first m − 1
parts equal to k. In the example λ = (43), the µ which we are counting correspond to the
tableaux of shape λ with 1’s and 2’s filling the first two rows, and the third row having
p(4) = 5 possible fillings. Corresponding to the partition (2, 1, 1) of 4 is the following
tableau of shape λ and weight (4, 4, 2, 1, 1):

1 1 1 1
2 2 2 2
3 3 4 5

.

If we consider λ1 = (km), then we are forced to have µ1 = (km) as well, and so
µ = (km), which is accounted for in the first case above, with µ1 = (km−1) and µ2 = (k).
So instead, consider the case that λ1 = (km, 0). Since the case for µ = (km) is already
counted, we do not consider µ1 = (km, 0). In order for λ1 D µ1, we need µ1

1 6 k, and for
the conditions on the indices to be met, we also need `(µ1) = m + 1. Once this choice
for µ1 is made, the partition µ is determined. By Lemma 2.2, the number of such µ1

is equal to pm+1(k) − 1. There is intersection, however, with this set of µ, and those µ
obtained in the case that λ1 = (km−1). The µ that are in common with both cases are
those such that `(µ) = m + 1, and µi = k for 1 6 i 6 m − 1. In the case λ1 = (km−1),
these correspond to when `(µ2) = 2, with µ2 ` k. That is, we have overcounted by the
number of partitions of k with exactly 2 parts, of which there are bk/2c. So, the total
number of µ such that Kλµ = 1 thus far is exactly p(k) + pm+1(k) − 1 − bk/2c. In the
example λ = (43), we are counting those µ with 4 parts and such that µ1 6 4 and µ2 6= 4.
The tableau corresponding to µ = (34) in this count is:

1 1 1 2
2 2 3 3
3 4 4 4

.

Finally, consider when λ1 = (kn1) for some n1 < m− 1. Then for some s > 1, we have
λj = (knj) for 1 6 j < s, with either λs = (kns), (kns , 0), or (k, 0, . . . , 0) (for any number
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of 0’s, with ns = 1), where n1 + · · · + ns = m. This forces µj = (knj) for 1 6 j < s, and
µs to be a partition such that µ is one of the partitions already considered.

So, we have counted the total number of µ such that Kλµ = 1, giving J(λ) = p(k) +
pm+1(k) − 1 − bk/2c, where 1 + bk/2c = p2(k). The second statement follows from the
first since pm+1(k) = p(k) when m+ 1 > k.

We now enumerate J(λ) in the general case. In Theorem 4.1 below, along with Propo-
sition 4.1, we obtain a method of calculating J(λ) recursively, in terms of the number of
distinct part sizes of the partition. That is, if we know J(λ) whenever λ has fewer than s
different part sizes, then we may compute J(λ) whenever λ has s different part sizes. In
the end, the expression for J(λ) is in terms of restricted partition functions of numbers
no larger than the difference of consecutive part sizes.

Theorem 4.1. Let λ = (km1
1 , km2

2 , . . . , kmss ), with s > 2. Then

J(λ) = J(km2
2 , . . . , kmss ) + (pm1+1(k1 − k2)− 1)J(km2−1

2 , km3
3 , . . . , kmss )

+

min{m2,k1−k2−1}∑
j=2

pj+1(k1 − k2 − 1− j)J(km2−j
2 , km3

3 , . . . , kmss ).

Proof. Like in the proof of Proposition 4.1, we apply Theorem 3.1 to count those µ such
that Kλµ = 1, by considering the various possibilities for the first sub-partition λ1 of
λ chosen. As in the proof of Proposition 4.1, we will keep a running example, with
λ = (8, 43, 2, 1), to make the method of enumeration more clear.

First, consider the case when λ1 = (km1
1 ), in which case we are forced to choose

µ1 = (km1
1 ). Let λ̃ = (km2

2 , . . . , kmss ). We must now choose our partition µ as follows, in
order to have Kλµ = 1. Let µ̃ denote the partition obtained by deleting the parts of µ1

from µ. Then the conditions of Theorem 3.1 are satisfied if and only if Kλ̃µ̃ = 1. The total

number of such µ̃, and so the total number of µ in this case, is thus J(λ̃) = J(km2
2 , . . . , kmss ).

Included here are also those cases when λi = (kni1 ) for some ni > 0, 1 6 i 6 d, such that
n1 + · · ·+ nd = m1, since we would then also be forced to choose µ such that its first m1

parts are equal to k1. With λ = (8, 43, 2, 1), these correspond to the tableaux of the form

1 1 1 1 1 1 1 1

where the blank boxes may be filled in J(λ̃) ways, where λ̃ = (43, 2, 1) here.
Now consider the case that λ1 = (km1

1 , k2). We must then choose µ1 ` (m1k1 +k2) such
that `(µ1) = m1 + 1 and λ1 Dµ1. However, if µ1

m1+1 = k2, then µ1 = λ1, and the resulting
µ has k1 as its first m1 parts, which is counted in the first case above. Thus, we must
the count the number of partitions of µ1 with the conditions already stated, and such
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that µ1
m1+1 6= k2. By Lemma 2.3, the number of such µ1 is equal to pm1+1(k1 − k2) − 1,

and recall from the proof of Lemma 2.3, this also implies µ1
m1+1 > k2 + 1. If we now

let λ̃ = (km2−1
2 , km3

3 , . . . , kmss ), and µ̃ denote the partition obtained by deleting the first
m1 + 1 parts of a desired partition µ, then we have Kλµ = 1 if and only if Kλ̃µ̃ = 1. That
is, the total number of µ such that Kλµ = 1 when λ1 = (km1

1 , k2) which were not counted
in the first case is (pm1+1(k1 − k2) − 1)J(km2−1

2 , km3
3 , . . . , kmss ). Included in the count for

this case are all cases for which there are ni > 0, 1 6 i 6 d, with n1 + · · · + nd = m1,
where λi = (kni1 ) for i 6 d − 1 and λd = (knd1 , k2). These are included in the µ1 just
counted which have k1 as their first n1 + · · · + nd−1 parts. In the running example of
λ = (8, 43, 2, 1), we are counting tableaux such that µ1 satisfies `(µ1) = 2, with µ1

2 > 5,
and such that (8, 4)D µ1, and there are p2(4)− 1 = 2 such µ1, which are (7, 5) and (6, 6).
In this case, the tableaux enumerated are of the form

1 1 1 1 1 1 1 2
2 2 2 2

and

1 1 1 1 1 1 2 2
2 2 2 2

,

where the blank boxes may be filled in J(42, 2, 1) ways.
Finally, consider the case when there is a d > 1 and a j 6 m2 such that λd = (k1, k

j
2).

So that we do not count some of the previous cases twice, we restrict j > 2. Here, for each
i < d, λi has all parts equal to k1, forcing µi for i < d to be the same, and so the first m1−1
parts of µ are equal to k1. We must count the number of µd such that µd ` (k1 + jk2),
`(µd) = j + 1, and λd D µd. As in the proof of Lemma 2.4, this implies µdj+1 > k2. If

µdj+1 = k2, then the resulting µ can be obtained by considering λd = (k1, k
j−1
2 ). To prevent

overcounting in this way, we must restrict µdj+1 6= k2, so µdj+1 = µm1+j > k2. Furthermore,
for any l < j, if λd = (k1, k

l
2), then we necessarily have µm1+j 6 k2. That is, we are

counting all new cases by counting the partitions µd of k1 + k2j with `(µd) = j + 1 and
µdj+1 6= k2. By Lemma 2.4, the number of such partitions µd is pj+1(k1 − k2 − 1 − j).
Similar to the previous cases, the number of ways to choose the rest of the partition µ so
that Kλµ = 1 is J(km2−j

2 , km3
3 , . . . , kmss ). So, for our fixed j, 2 6 j 6 m2, the total number

of possible µ is pj+1(k1−k2− 1− j)J(km2−j
2 , km3

3 , . . . , kmss ). Since this expression vanishes
when j > k1 − k2 − 1, we need only consider when j 6 min{m2, k1 − k2 − 1}. In the case
λ = (8, 43, 2, 1), we have m2 = k1 − k2 − 1 = 3, so we must consider j = 2, 3. For j = 2,
we have λ1 = (8, 42), and we must have `(µ1) = 3 and λ1 D µ1, and µ1

3 > 5. There is
p3(1) = 1 such partition, which is µ1 = (6, 52). The resulting tableaux are of the form

1 1 1 1 1 1 2 3
2 2 2 2
3 3 3 3

the electronic journal of combinatorics 19(4) (2012), #P52 10



where the empty boxes may be filled in J(4, 2, 1) ways. For j = 3, λ1 = (8, 43), and µ1

must satisfy `(µ1) = 4, λ1 Dµ1, and µ1
4 > 5. There is again only p4(0) = 1 such partition,

given by µ1 = (54). The corresponding tableaux of shape λ are of the form

1 1 1 1 1 2 3 4
2 2 2 2
3 3 3 3
4 4 4 4

with J(2, 1) possible ways to fill in blank boxes.
We have now accounted for any µ arising from possible choices of sub-partitions of λ,

and taking the sum of all of these cases gives the result.

We now obtain some interesting properties of J(λ) which follow from Theorem 4.1.

Corollary 4.1. If m1 > k1−k2−1, then J(km1
1 , km2

2 , . . . , kmss ) = J(kk1−k2−1
1 , km2

2 , . . . , kmss ).
If k1 − k2 = 1, then J(km1

1 , km2
2 , . . . , kmss ) = J(km2

2 , . . . , kmss ).

Proof. If m1 > k1− k2− 1, then pm1+1(k1− k2) = p(k1− k2) = pk1−k2(k1− k2), and when
k1 − k2 = 1, pm1+1(k1 − k2) − 1 = pj+1(k1 − k2 − 1 − j) = 0, and so the results follows
immediately from Theorem 4.1.

Corollary 4.2. Let λ = (λ1, λ2, . . . , λ`) = (km1
1 , km2

2 , . . . , kmss ), and λ̃ = (λi, λi+1, . . . , λ`)
for some 1 6 i 6 `. Then J(λ̃) 6 J(λ).

Proof. It is enough to prove the statement for i = 2. If m1 = 1, then the first term in the
recursive formula for J(λ) in Theorem 4.1 is J(λ̃), and the result follows. Suppose m1 > 1.
If k1 − k2 = 1, then by Corollary 4.1, J(λ) = J(λ̃) = J(km2

2 , . . . , kmss ). If k1 − k2 > 1,
then the second term of the formula for J(λ) in Theorem 4.1 is (pm1+1(k1− k2)− 1)J(λ̃),
where pm1+1(k1 − k2) > 1, and the result follows again.

When a partition λ has distinct parts, then the formula in Theorem 4.1 simplifies to
a particularly nice form, as follows.

Corollary 4.3. Let λ = (k1, k2, . . . , ks) with k1 > k2 > · · · > ks > 0, so λ has distinct
parts. Let Ji = J(ks−i+1, ks−i+2, . . . , ks) for 1 6 i 6 s, and define J0 = 1, k0 = 0. Then,
for 1 < i 6 s, Ji = Ji−1 + b(ki − ki−1)/2cJi−2

Proof. Since mi = 1 for 1 6 i 6 s, then the third term in the equation for J(λ) in
Theorem 4.1 is an empty sum. Also, pmi+1(ki−ki−1)−1 = b(ki−ki−1)/2c, and the result
follows from Theorem 4.1.

Example 1. If m > 1 and λ = (2m − 1, 1), then J(λ) = m. In particular, J(λ)
may take any positive integer value. In fact, for any positive integers m and l > 2,
we may find a partition λ such that J(λ) = m and `(λ) = l, since by Corollary 4.1,
J(2ml−2, 2m−1, 1) = J(2m−1, 1) = m. Or, if we would like such a partition with distinct
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parts, then also by Corollary 4.1, if λ = (2m − 1 + l − 2, 2m − 1 + l − 3, . . . , 2m − 1, 1),
then J(λ) = m.

Example 2. Consider λ = (2n− 1, 2n− 3, . . . , 3, 1). Then ki − ki−1 = 2 for each i, and
J1 = J(1) = 1. It follows from Corollary 4.3 that J(λ) = Fn+1, the (n + 1)-st Fibonacci
number.

5 A product formula

We now obtain a result that allows us to compute J(λ) by decomposing λ, under certain
conditions. In particular, J(λ) may be written as a product of the J-values of smaller
partitions under these conditions. The inequalities we obtain below without restrictions
are also useful, in the corollaries which follow.

Theorem 5.1. Let λ = (km1
1 , km2

2 , . . . , kmss ), with s > 2. Then for any 1 < i 6 s, we have

J(λ) > J((k1 − ki + 1)m1 , (k2 − ki + 1)m2 , . . . , 1mi),

and

J(λ) 6 J((k1 − ki + 1)m1 , (k2 − ki + 1)m2 , . . . , 1mi)J(kmii , k
mi+1

i+1 , . . . , kmss ).

If either ki−1 − ki = 1 or mi > ki−1 − ki+1 − 2, then

J(λ) = J((k1 − ki + 1)m1 , (k2 − ki + 1)m2 , . . . , 1mi)J(kmii , k
mi+1

i+1 , . . . , kmss ).

Proof. Consider the statements for i = 2. By Theorem 4.1, we have

J((k1 − k2 + 1)m1 , 1m2) = 1 + (pm1+1(k1 − k2)− 1) +

min{m2,k1−k2−1}∑
j=2

pj+1(k1 − k2 − 1− j),

since J(1m2) = J(1m2−j) = 1 for any j 6 m2. Since J(km2−j
2 , km3

3 , . . . , km2
s ) > 1 for

0 6 j 6 m2, it follows from the formula for J(λ) in Theorem 4.1 that J(λ) > J((k1 −
k2 + 1)m1 , 1m2). Also,

J((k1 − k2 + 1)m1 , 1m2)J(km2
2 , km3

3 , . . . , kmss ) = J(km2
2 , km3

3 , . . . , kmss ) (5.1)

+ (pm1+1(k1 − k2)− 1)J(km2
2 , km3

3 , . . . , kmss )

+

min{m2,k1−k2−1}∑
j=2

pj+1(k1 − k2 − 1− j)J(km2
2 , km3

3 , . . . , kmss ).

Now, by Corollary 4.2, J(km2−j
2 , km3

3 , . . . , kmss ) 6 J(km2
2 , km3

3 , . . . , kmss ) for any j 6 m2. It
follows from the formula for J(λ) in Theorem 4.1 that we have

J(λ) 6 J((k1 − k2 + 1)m1 , 1m2)J(km2
2 , km3

3 , . . . , kmss ).
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In the case k1 − k2 = 1, then equality follows since by Corollary 4.1, J(2m1 , 1m2) = 1 and
J(km1

1 , km2
2 , . . . , kmss ) = J(km2

2 , km3
3 , . . . , kmss ).

Now suppose m2 > k1 − k3 − 2. Then for 0 6 j 6 k1 − k2 − 1 and j 6 m2, we have
m2 > m2 − j > k2 − k3 − 1. Then by Corollary 4.1,

J(km2
2 , km3

3 , . . . , kmss ) = J(km2−j
2 , km3

3 , . . . , kmss ) = J(kk2−k3−1
2 , km3

3 , . . . , kmss ).

By (5.1) and Theorem 4.1, we obtain J(λ) = J((k1− k2 + 1)m1 , 1m2)J(km2
2 , km3

3 , . . . , kmss ),
as claimed.

By induction, suppose the statements hold for all indices up to some i > 2 for any
partition. By Theorem 4.1, we have

J((k1 − ki+1+ 1)m1 , (k2 − ki+1 + 1)m2 , . . . , 1mi+1) = J((k2 − ki+1 + 1)m2 , . . . , 1mi+1)

(5.2)

+ (pm1+1(k1 − k2)− 1)J((k2 − ki+1 + 1)m2−1, . . . , 1mi+1)

+

min{m2,k1−k2−1}∑
j=2

pj+1(k1 − k2 − 1− j)J((k2 − ki+1 + 1)m2−j, . . . , 1mi+1).

By the induction hypothesis, we have, for any j such that 0 6 j 6 m2,

J(km2−j
2 , km3

3 , . . . , kmss ) > J((k2 − ki+1 + 1)m2−j, (k3 − ki+1 + 1)m3 , . . . , 1mi+1),

and it follows from the expression for J(λ) in Theorem 4.1 that

J(λ) > J((k1 − ki+1 + 1)m1 , (k2 − ki+1 + 1)m2 , . . . , 1mi+1).

This completes the induction argument for the first inequality.
We also have, by our induction hypothesis for the other two claims, that for any

0 6 j 6 m2,

J(km2−j
2 , km3

3 , . . . , kmss ) 6 J((k2 − ki+1 + 1)m2−j, (k3 − ki+1 + 1)m3 , . . . , 1mi+1)

· J(k
mi+1

i+1 , . . . , kmss ),

where equality holds when either ki − ki−1 = 1 or mi+1 > ki − ki+2 − 2. By applying this
induction hypothesis and Theorem 4.1, we have

J(λ) = J(km2
2 , . . . , kmss ) + (pm1+1(k1 − k2)− 1)J(km2−1

2 , km3
3 , . . . , kmss )

+

min{m2,k1−k2−1}∑
j=2

pj+1(k1 − k2 − 1− j)J(km2−j
2 , km3

3 , . . . , kmss )

6
[
J((k2 − ki+1 + 1)m2 , . . . , 1mi+1)

+ (pm1+1(k1 − k2)− 1)J((k2 − ki+1 + 1)m2−1, . . . , 1mi+1)

+

min{m2,k1−k2−1}∑
j=2

pj+1(k1 − k2 − 1− j)J((k2 − ki+1 + 1)m2−j, . . . , 1mi+1)
]

· J(k
mi+1

i+1 , . . . , kmss )
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where equality holds if ki− ki−1 = 1 or mi+1 > ki− ki+2− 2. Therefore, by (5.2), we have

J(λ) 6 J((k1 − ki+1 + 1)m1 , (k2 − ki+1 + 1)m2 , . . . , 1mi+1)J(k
mi+1

i+1 , . . . , kmss ),

with equality when either ki − ki−1 = 1 or mi+1 > ki − ki+2 − 2, which completes the
induction.

Example. Consider λ = (182, 16, 152, 12, 85, 5). To compute J(λ) using Theorem 4.1
would require several steps in the recursion. Instead, we apply Theorem 5.1, and working
from smaller parts to larger parts of λ, we obtain

J(λ) = J(112, 9, 82, 5, 15)J(85, 5)

= J(42, 2, 12)J(82, 5, 15)J(85, 5).

It is now relatively quick to apply Theorem 4.1 and compute that J(42, 2, 12) = 2,
J(82, 5, 15) = 7, and J(85, 5) = 9, giving J(λ) = 126.

We now use the inequality statements in Theorem 5.1 to obtain several results on
classifying which λ satisfy J(λ) = n for small fixed n. First, we answer the question
of which partitions λ satisfy Kλµ = 1 if and only if λ = µ. While this result may be
obtained by a combinatorial argument, we note that it follows almost immediately from
the machinery that has been established.

Corollary 5.1. Let λ = (km1
1 , . . . , kmss ). Then J(λ) = 1 if and only if ki−1 − ki = ks = 1

for all i > 2. Equivalently, J(λ) = 1 if and only if λ′ has distinct parts.

Proof. First, if ki−1 − ki = ks = 1 for all i > 2, then it follows from Corollary 4.1 that
J(λ) = (1ms) = 1. Conversely, suppose that either ks > 1 or ki−1 − ki > 1 for some
2 6 i 6 s. If ks > 1, then by Corollary 4.2, J(λ) > J(ks) = p(ks) > 1. If ki−1− ki > 1 for
some 2 6 i 6 s, then by Theorem 5.1, followed by applying Corollary 4.2, we have

J(λ) > J((k1 − ki + 1)m1 , . . . , (ki−1 − ki + 1)mi−1 , 1mi) > J(ki−1 − ki + 1, 1mi).

By Theorem 4.1, since J(1m) = 1 for any m, we have J(ki−1−ki+1, 1mi) > p2(ki−1−ki) >
2, since ki−1 − ki > 2. Thus J(λ) > 1.

Finally, it follows from the definition of λ′ that the parts of λ′ are distinct if and only
if ki−1 − ki = ks = 1 for all i > 1.

It is slightly more complicated to describe the set of λ such that J(λ) = 2, which we
do now.

Corollary 5.2. Let λ = (km1
1 , . . . , kmss ), and set ks+1 = 0. Then J(λ) = 2 if and only if

one of the following conditions holds:

1. There exists a j, 1 6 j 6 s, such that kj − kj+1 = 2, and ki− ki+1 = 1 for all i 6= j,
1 6 i 6 s.
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2. There exists a j, 1 6 j < s, such that kj − kj+1 = 3, mj = mj+1 = 1, and
ki − ki+1 = 1 for all i 6= j, 1 6 i 6 s.

Proof. If either of the conditions holds, then by Corollary 4.1, we must have J(λ) =
J(k

mj
j , k

mj+1

j+1 , . . . , kmss ). Since kj+1 − kj+2 = 1, then by Theorem 5.1, we have

J(λ) = J((kj − kj+1 + 1)mj , 1mj+1)J(k
mj+1

j+1 , . . . , kmss )

= J((kj − kj+1 + 1)mj , 1mj+1),

where the second equality follows from Corollary 4.1 and the assumption that ki−ki+1 = 1
for i 6= j. Under the condition that kj − kj+1 = 2, we have J(λ) = J(3mj , 1mj+1), and
it follows from Theorem 4.1 that J(λ) = 2. If kj − kj+1 = 3 and mj = mj+1 = 1, then
J(λ) = J(4, 1) = 2.

Now suppose J(λ) = 2. By Corollary 5.1, there must be at least one j such that
kj−kj+1 > 1. Suppose that, for some j, kj−kj+1 > 4. Then, by Corollary 4.2 and Theorem
5.1, J(λ) > J(kj−kj+1+1, 1mj+1). Then by Theorem 4.1, J(λ) > p2(kj−kj+1) > p2(4) = 3.
Next suppose that for some j, kj − kj+1 = 3 and either mj > 1 or mj+1 > 1. Then
J(λ) > J(4mj , 1mj+1). By Theorem 4.1, if mj > 1, then J(4mj , 1mj+1) > pmj+1(3) = 3. If
mj = 1 and mj+1 > 1, then J(4, 1mj+1) = p2(3) + p3(0) = 3. If ks = 3, then by Corollary
4.2, J(λ) > J(3) = p(3) = 3. Finally, suppose that there are two different indices, j and
j′, such that kj − kj+1 > 2 and kj′ − kj′+1 > 2, and we take j′ to be minimal such that
j′ > j with this property. Thus, either j′ = j + 1, or for all i such that j < i < j′, we
have ki − ki+1 = 1. If j′ = j + 1, we have, by Corollary 4.2 and Theorem 5.1,

J(λ) > J(kj − kj+2 + 1, (kj+1 − kj+2 + 1)mj+1 , 1mj+2).

Since kj+1 − kj+2 > 2, then J((kj+1 − kj+2 + 1)mj+1 , 1mj+2) > 2. By Theorem 4.1, then,

J(kj − kj+2 + 1, (kj+1 − kj+2 + 1)mj+1 , 1mj+2) > 2 + (p2(kj − kj+1)− 1) > 3,

since kj − kj+1 > 2. So J(λ) > 2 in this case. If j′ > j + 1, then there is an i, j < i < j′,
such that ki − ki+1 = 1. By Theorem 5.1,

J(λ) = J((k1 − ki+1 + 1)m1 , . . . , 1mi+1)J(k
mi+1

i+1 , . . . , kmss ).

Since (kj − ki+1 + 1)− (kj+1 − ki+1 + 1) = kj − kj+1 > 2, then by Corollary 5.1, J((k1 −
ki+1 + 1)m1 , . . . , 1mi+1) > 2. Since kj′ − kj′+1 > 2, then J(k

mi+1

i+1 , . . . , kmss ) > 2, again by
Corollary 5.1. Thus J(λ) > 4 in this case. Therefore, if neither conditions 1 nor 2 hold,
then J(λ) 6= 2.

We could, with more effort, attempt to classify λ such that J(λ) = 3, J(λ) = 4, and so
on, undoubtedly with longer and longer lists of conditions. Instead, we prove the following
general result in this direction.

Corollary 5.3. Suppose λ = (km1
1 , . . . , kmss ) and that J(λ) is prime. Then there exist j

and j′, j 6 j′, such that, for all i such that 0 < i < j or j′ < i < s + 1, ki − ki+1 = 1,
and for all i such that j 6 i 6 j′, ki − ki+1 > 1.
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Proof. Let j be minimal such that kj − kj+1 > 1, and such a j exists by Corollary 5.1.
That is, ki − ki+1 = 1 for all i < j. If for all i > j, we have ki − ki+1 > 1, we are done
by taking j′ = s. Otherwise let j′ be minimal such that j 6 j′ < s, kj′ − kj′+1 > 1, and
kj′+1 − kj′+2 = 1, so ki − ki+1 > 1 whenever j 6 i 6 j′. Then by Theorem 5.1, we have

J(λ) = J((k1 − kj′+2 + 1)m1 , . . . , 1mj′+2)J(k
mj′+2

j′+2 , . . . , kmss ).

Since (kj′−kj′+2 +1)− (kj′+1−kj′+2 +1) = kj′−kj′+1 > 1, then by Corollary 5.1, J((k1−
kj′+2 + 1)m1 , . . . , 1mj′+2) > 1. Since J(λ) is prime, we must have J(λ) = J((k1 − kj′+2 +
1)m1 , . . . , 1mj′+2) and J(k

mj′+2

j′+2 , . . . , kmss ) = 1. By Corollary 5.1, and since kj′+1−kj′+2 = 1,
we must have ki − ki+1 = 1 for all i > j′.

6 Signed tableaux

Augment the non-negative integers by symbols ī, for each positive integer i, such that
i− 1 < ī < i, so

0 < 1̄ < 1 < 2̄ < 2 < 3̄ < 3 < · · · .

Given a partition λ, a signed Young tableau of shape λ is a filling of the Young diagram for
λ with elements from the set {0, 1̄, 1, 2̄, 2, 3̄, 3, . . .}, with rows non-decreasing from left to
right, and columns increasing from top to bottom, with respect to the order just defined.
We shall refer to these as simply signed tableaux from now on. The weight of a signed
tableau T is a tuple wt(T ) = (w0, w1, w2, . . .), where w0 is the number of 0’s in T , and for
i > 0, wi is the number of i’s plus the number of ī’s in T .

For example, if λ = (5, 4, 3, 3, 1), then

T =

0 0 1̄ 1̄ 1
1̄ 1̄ 1 2
2̄ 2̄ 3̄
2 3̄ 3
5̄

is a signed tableaux of shape λ and weight wt(T ) = (2, 6, 4, 3, 0, 1).
Given a partition λ and a tuple w = (w0, w1, w2, . . .), define the signed Kostka number

K±λ,w to be the number of signed tableaux of shape λ and weight w. The signed Kostka
numbers appear naturally in symmetric function theory, like their unsigned counterpart,
in the following way. For any positive integer i, let hi denote the complete symmetric
function of degree i, and for any partition λ of n, let sλ be the Schur symmetric function.
Let Pn denote the set of all partitions of n. Then, for any positive integer n, and any
tuple (w0, w1, . . . , w`) such that

∑`
j=0 wj = n, as shown in [5, Lemma 4.2(a)], we have

hw0

∏̀
j=0

wj∑
i=0

hihwj−i =
∑
λ∈Pn

(
K±λ,(w0,w1,...,w`)

)
sλ. (6.1)
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It follows immediately from (6.1) that the signed Kostka number K±λ,(w0,w1,...,w`)
is invariant

under both inserting or removing 0’s from (w1, . . . , w`) and under permutation action on
(w1, . . . , w`). When studying the signed Kostka number, then, we often consider weights
w = (w0, µ) such that µ is a partition.

Signed tableaux come up naturally when computing multiplicities of characters in
degenerate Gelfand-Graev characters of finite unitary groups [5], and in this context the
weight (w0, w1, w2, . . .) also has the property that µ = (w1, w2, . . .) is a partition. We thus
address the question: Given a partition λ, for what non-negative integer w0 and partition
µ (with |λ| = w0 + |µ|) is it true that K±λ,(w0,µ) = 1? The next result tells us that there

are quite strong restrictions on λ for there to even exist a weight w such that K±λ,w = 1.
We note that the main idea of the following result is very similar to [5, Proposition 5.1]
and its proof.

Proposition 6.1. Given a partition λ and a tuple w = (w0, w1, w2, . . .), suppose that
K±λ,w = 1, so |λ| =

∑
iwi, and let T be the unique signed tableau of shape λ and weight

w. Then, λ has at most one part with odd multiplicity, and if such a part exists it must
have size w0, otherwise w0 = 0. Furthermore, for every positive integer i, any i occurring
in T must be directly below some ī, and any ī in T must be directly above some i. That
is, if we remove the first w0 boxes from the first row of T (which we denote T/(w0)), the

rest of the tableau is tiled with vertical dominoes of the form ī
i

.

Proof. We first explain the last statement, as it implies the other statements. Suppose
that in the tableau T , there is some ī with no i below it. Taking the ī furthest to the
right in the same row, we may change that ī to an i to obtain a second signed tableau of
the same shape and weight. Similarly, if there is some i with no ī above it, then consider
the i furthest to the left in the same row, and we may change it to an ī, contradicting the
assumption that K±λ,w = 1.

Now suppose λ has no parts with odd multiplicity, which means every column of λ
has even length. If w0 > 1, then the first column of T/(w0) may not be tiled by vertical
dominoes, a contradiction. Thus w0 = 0 in this case. Now suppose λ has parts with
odd multiplicity, and that y is the largest part with odd multiplicity. We show w0 = y.
If w0 < y, then the yth column of λ has odd length, and T/(w0) cannot be tiled with
vertical dominoes, a contradiction. If w0 > y, then the w0-th column of T/(w0) has odd
length, and cannot be tiled with vertical dominoes. Thus w0 = y. Finally, suppose that
λ has another part with odd multiplicity, say of size x, where we then must have x < y.
This implies the xth column of λ has even length. Then x < w0 = y, and the xth column
of T/(w0) may not be tiled by vertical dominoes. Thus λ has at most one part with odd
multiplicity, which has size w0 if it exists, and w0 otherwise.

Similar to the previous sections, if we define J±(λ) to be the number of weights w
such that K±λ,w = 1, then Proposition 6.1 says that for any partition λ, J±(λ) = 0 unless
λ has at most one part with odd multiplicity. In fact, in the case that λ has at most one
part with odd multiplicity, we will be able to say there is a unique weight w = (wo, µ)
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such that µ is a partition with the property that K±λ,(w0,µ) = 1. Given a partition λ with
at most one part with odd multiplicity, define the maximal signed tableau of shape λ as
follows.

For each column of the Young diagram of λ of odd length (that is, columns which
intersect a part with odd multiplicity), say of length 2l + 1, fill these boxes from top to
bottom with the elements 0, 1̄, 1, 2̄, 2, . . . , l̄, l. For each column of even length, say 2h, fill
these boxes with the elements 1̄, 1, 2̄, 2, . . . , h̄, h. For example, if λ = (6, 6, 4, 4, 4, 3, 3, 1, 1),
the maximal signed tableaux of shape λ is

Tmax =

0 0 0 0 1̄ 1̄
1̄ 1̄ 1̄ 1̄ 1 1
1 1 1 1
2̄ 2̄ 2̄ 2̄
2 2 2 2
3̄ 3̄ 3̄
3 3 3
4̄
4

.

The maximal weight of such a λ is the weight wt(Tmax) of the maximal signed tableau
of shape λ. In the above example, the maximal weight is (4, 12, 8, 6, 2). Specifically, let
λ = (λ1, λ2, . . . , λ`) = (km1

1 , km2
2 , . . . , k

mj
j , . . . , kmss ), where if kj is the unique part of λ

with odd multiplicity mj, then set w0 = kj, and if λ has no part with odd multiplicity,
set w0 = 0 and assume mj is even. The maximal weight is then given by (w0, µ), where
µ is the partition

µ = ((2k1)m1/2, (2k2)m2/2, . . . , (2kj)
bmj/2c, . . . , (2ks)

ms/2).

If (w0, µ) is the maximal weight for a partition λ, note that K±λ,(w0,µ) = 1 by construc-
tion, since, given that w0 is the number of 0’s in a signed tableau of shape λ, then µ1 is
the maximum number of 1̄’s and 1’s that can be in the tableau, and µ2 is the maximum
number of 2̄’s and 2’s that can be in the tableau, and so on, so that the maximum tableau
of shape λ is the only such tableau of this shape and weight.

Next we show that the converse of this statement is true as well. That is, if λ is a
partition with at most one part with odd multiplicity, we will prove that K±λ,w = 1 for
some w = (w0, µ) with µ a partition if and only if w = (w0, µ) is the maximal weight for
λ, and otherwise K±λ,w = 0. We will actually prove a stronger statement than this, by
considering sequences of signed tableaux.

Let λ = (λ(j)) = (λ(1), λ(2), . . . , λ(n)) be a finite sequence of partitions, or a mul-
tipartition. A finite sequence of signed tableaux, T = (T (j)) = (T (1), T (2), . . . , T (n)) is
said to have shape λ if T (j) has shape λ(j) for each i. Define the weight of T to be
wt(T ) =

∑n
j=1 wt(T (j)), where the sum of weights is taken component-wise. Given a

finite sequence of partitions λ, and a tuple w, define K±λ,w to be the number of sequences
of signed tableaux T of shape λ and weight w.

Given a sequence of partitions λ, by Proposition 6.1, in order for there to exist a
weight w such that K±λ,w = 1, it must be that for every j, λ(j) must have at most one part
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with odd multiplicity, and w0 must be the sum of those part sizes with odd multiplicity.
When λ satisfies this condition, define the maximal weight for the sequence λ to be the
sum of the maximal weights of each λ(j) in the sequence. We may now prove the following
uniqueness result.

Theorem 6.1. Let λ = (λ(j)) be a sequence of partitions. Suppose w = (w0, µ) is such
that µ is a partition, and such that K±λ,(w0,µ) = 1. Then each λ(j) has at most one part with

odd multiplicity, (w0, µ) is the maximal weight for λ, and the unique sequence of signed

tableaux Tmax = (T
(j)
max) of shape λ and weight (w0, µ) is the sequence such that each T

(j)
max

is the maximal signed tableau of shape λ(j).

Proof. It follows directly from Proposition 6.1 that each λ(j) has at most one part with odd
multiplicity, by considering each tableau in the sequence individually. So, suppose that
T = (T (j)) is a sequence of signed tableaux of shape λ, such that wt(T ) = (v0, ν) where
ν is a partition, and suppose T is not the sequence Tmax of maximal signed tableaux. We
must show that K±λ,(v0,ν) 6= 1.

By Proposition 6.1, we may assume that for each j, the number of 0’s in T (j) is equal
to the part size of λ(j) with odd multiplicity, and we may assume that in T (j), for any
positive integer i, there is a ī directly above any i, and an i directly below any ī.

Since we are assuming T is not the sequence of maximal tableaux, let r be the least
positive integer such that T (r) is not the maximal tableau of shape λ(r). Consider the first
(top-most) row of T (r) which differs from the maximal signed tableau, and consider the
first (left-most) entry of that row at which this difference occurs. This entry must be of
the form ī, since there must be an ī above any i. By definition of this entry differing from
the maximal signed tableau, then above this ī, there must be some non-negative integer
a, where a < i − 1, or this entry is in the first row, and i > 1. In either case, in the
tableau T (r), there is an entry ī, with i > 1, and with no i− 1 directly above it.

Now, we claim there must be a tableau T (r′) in the sequence T which contains an
entry i−1 with no ī below it. Otherwise, since there is some ī with no i−1 directly above
it, then the total number of ī’s would exceed the total number of i− 1’s in T . However,
we are assuming from Proposition 6.1 that the number of i− 1’s is equal to the number
of i− 1’s, and the number of i’s is equal to the number of ī’s, which would imply that
in wt(T ) = (v0, ν1, ν2, . . .), we have νi > νi−1, contradicting the assumption that ν is a
partition.

We now have, in T (r), a left-most entry ī with no i− 1 directly above it, and in T (r′),
consider a right-most entry i− 1 with no ī directly below it. These two entries cannot be
adjacent with r = r′, since above the i− 1 there must be a i− 1, while above the ī there
must be an entry strictly less than i− 1.

Now, exchange these two entries. We claim that this defines a sequence of signed
tableaux, S = (S(j)), where S(j) = T (j), unless j = r or j = r′, in which case the entries
just described have been exchanged. Consider first S(r), and the entry containing i − 1
which previously contained ī. To the right of this entry is an entry ī or greater, and
below the entry is an i. Since this entry was chosen as the first difference in T (r) from the
maximal tableau of shape λ(r), then above it must be an entry less than i− 1, and to its
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left an entry less than ī. Thus, S(r) is a signed tableau. In the entry of S(r′) containing
ī which previously contained i − 1, there is no ī below it, so the entry must be i+ 1 or
larger. To the right of this ī, there must be an entry ī or larger, since if there was an
i − 1, it would have to have a ī below it (since we chose the right-most i − 1 with no ī
below it), which is impossible, since to the left of that entry is an entry i+ 1 or larger. It
follows that S(r′) is a signed tableau. Thus, S is a second sequence of signed tableaux of
shape λ and weight (v0, ν), meaning K±λ,(v0,ν) > 1.

By applying Proposition 6.1 and Theorem 6.1 to a single partition, we have that
K±λ,(w0,µ) = 1 if and only if λ has at most one part with odd multiplicity and (w0, µ) is the
maximal weight for λ. This may rephrased as follows.

Corollary 6.1. For any partition λ, J±(λ) = 1 if and only if λ has at most one part with
odd multiplicity, and otherwise J±(λ) = 0.

For a sequence of more than one partition, the converse of Theorem 6.1 does not hold.
For example, consider the pair of partitions λ(1) = (2, 2, 1), λ(2) = (2, 2, 1, 1), for which the
maximum weight is (w0, µ) = (1, 6, 2). However, the following is a sequence of tableaux
of shape (λ(1), λ(2)) and weight (w0, µ), but is not the sequence of maximal tableaux:

1̄ 1̄
1 1
2

,

0 1̄
1̄ 1
1
2̄

.

In the next result, we give a necessary and sufficient condition on a sequence of partitions
λ for there to be a weight such that K±λ,(w0,µ) = 1, which we know must be unique by
Theorem 6.1.

Theorem 6.2. Let λ = (λ(j)) be a sequence of partitions, and (w0, µ) be such that µ is a
partition. Then K±λ,(w0,µ) = 1 if and only if every odd length column of every λ(j) is longer

than every even length common of every λ(j), and (w0, µ) is the maximal weight for λ.

Proof. Suppose that K±λ,(w0,µ) = 1. By Theorem 6.1, we know that (w0, µ) must be the

maximal weight for λ. Suppose that there is some odd length column, of λ(j), which is
shorter than some even length column, of λ(j′). Then we may assume j 6= j′. Consider
the right-most odd length column in λ(j), say of length 2h + 1, and the left-most even
length column in λ(j′), say of length 2l, so l > h. In the maximal tableau of shape λ, this
odd length column has entries 0, 1̄, 1, . . . , h̄, h, while the even length column has entries
1̄, 1, . . . , l̄, l. Replace the entries in the odd length column with the entries 1̄, 1, . . . , h̄, h, l,
and the entries in the even length column with the entries 0, 1̄, 1, . . . , h− 1, h− 1, h̄. For
example, suppose h = 2 and l = 3. Including the columns on either side of the columns
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of interest, this would look as follows:

0 0 1̄
1̄ 1̄ 1
1 1 2̄
2̄ 2̄ 2
2 2

and

0 1̄ 1̄
1̄ 1 1
1 2̄ 2̄
2̄ 2 2
2 3̄ 3̄
3̄ 3 3
3

change to

0 1̄ 1̄
1̄ 1 1
1 2̄ 2̄
2̄ 2 2
2 3

and

0 0 1̄
1̄ 1̄ 1
1 1 2̄
2̄ 2̄ 2
2 2 3̄
3̄ 3̄ 3
3

.

By our choice of columns, this defines a new sequence of signed tableaux of shape λ and
weight (w0, µ), and so K±λ,(w0,µ) > 1, a contradiction.

Conversely, suppose that everyone odd length column of every λ(j) is longer than every
even length column of every λ(j). We must show that the only sequence of signed tableaux
of shape λ and maximal weight is the sequence of maximal tableaux. By the definition
of the maximum tableau T

(j)
max of shape λ(j), T

(j)
max contains the maximum number of 1̄’s,

1’s, 2̄’s,..., possible, given that the tableau contains the number of 0’s equal to the size
of the part with odd multiplicity. Therefore, in order for there to be another sequence of
tableaux of shape λ and weight (w0, µ), one of the tableau in the sequence must have a
different number of 0 than the number of odd length columns of that partitions, which is
equal to the size of the part with odd multiplicity.

Consider all columns whose length is maximum among all λ(j). If this length is even,
then there are no columns of odd length by assumption, and so w0 = 0, and thus the
sequence of maximal tableaux, by construction, is the only sequence of tableaux of shape
λ and weight (w0, µ). If this length is odd, say of length 2h1 + 1, then the largest of
any entry in the sequence of tableaux is h1. In any of these longest columns, then, the
entries from top to bottom must be 0, 1̄, 1, . . . , h1, h1, since these are the only entries used
in any of the tableaux. If the next longest column is of even length, then there are no
other odd length columns, and so all 0’s must be in the same positions as they are in the
sequence of maximal tableaux, and we are done. Otherwise, if the next longest column is
of odd length 2h2 + 1, then the largest entry in any column of this length or shorter is h2,
and there is no choice but for all columns of this length to have entries 0, 1̄, 1, . . . , h2, h2.
Again, if there are no other odd length columns, then all 0’s are in the same place as they
are in the sequence of maximal tableaux. Otherwise, we continue in this way until no
other odd length columns are left. Thus, when (w0, µ) is the maximal weight for λ, we
have K±λ,(w0,µ) = 1.

We conclude by giving an application to the representations of the finite unitary group,
following [5]. Let Fq be a finite field with q elements, F̄q an algebraic closure, and define
the map F on F̄×q by F (a) = a−q. Let Φ be the set of F -orbits on F̄×q , and let Θ be a
certain set of F -orbits which are dual to Φ, for a precise definition see [5, Section 2.4]. Let
U(n,Fq) denote the unitary group defined over Fq. The irreducible complex characters of
U(n,Fq) are parameterized by functions λ : Θ → P , where P is the set of all partitions,
such that

∑
ϕ∈Θ |ϕ||λ(ϕ)| = n (see [5, Section 2.5]). Such λ are called Θ-multipartitions
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of n. Let χλ denote the complex irreducible character of U(n,Fq) corresponding to the
Θ-multipartition λ.

The degenerate Gelfand-Graev characters of U(n,Fq) are representations obtained by
induced one-dimensional characters from the Sylow p-subgroup of U(n,Fq), where p =
char(Fq). The distinct degenerate Gelfand-Graev characters of U(n,Fq) are parameterized
by pairs (k, ν), where k is a positive integer, and ν is a partition, such that k + 2|ν| = n,
and the degenerate Gelfand-Graev character corresponding to (k, ν) is denoted Γ(k,ν) (see
[5, Section 4.2]).

In [5, Theorem 4.4], it is shown that the multiplicity of χλ in Γ(k,ν) is another variation
of the Kostka number, namely, the number of battery tableaux of shape λ and weight (k, ν)
(see [5, Section 4.3]). In particular, a battery tableau is a certain sequence of tableaux
indexed by Θ, such that when ϕ ∈ Θ and |ϕ| is even, then λ(ϕ) is a signed tableau. The
following result gives a specific set of characters of U(n,Fq) which appear with multiplicity
1 in exactly one degenerate Gelfand-Graev character.

Corollary 6.2. Let λ be a Θ-partition of n, and let Θλ be the support of λ, that is, the set
of all ϕ ∈ Θ such that λ(ϕ) is not the empty partition. Suppose there is an even integer
m such that |ϕ| = m for every ϕ ∈ Θλ. Then χλ appears with multiplicity 1 in Γ(k,ν) if
and only if every odd length column of every λ(ϕ) is longer than every even length column
of every λ(ϕ), ϕ ∈ Θλ, and (k, ν) is m/2 times the maximal weight for the sequence of
partitions (λ(ϕ))ϕ∈Θλ

.

Proof. This follows immediately from Theorems 6.1 and 6.2, and [5, Theorem 4.4].

Note that Corollary 6.2 explains the second example in the concluding remarks of [5].
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