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Abstract

There has been much recent interest in random graphs sampled uniformly from
the n-vertex graphs in a suitable structured class, such as the class of all planar
graphs. Here we consider a general bridge-addable class A of graphs – if a graph
is in A and u and v are vertices in different components then the graph obtained
by adding an edge (bridge) between u and v must also be in A. Various bounds
are known concerning the probability of a random graph from such a class being
connected or having many components, sometimes under the additional assumption
that bridges can be deleted as well as added. Here we improve or amplify or gener-
alise these bounds (though we do not resolve the main conjecture). For example, we
see that the expected number of vertices left when we remove a largest component
is less than 2. The generalisation is to consider ‘weighted’ random graphs, sampled
from a suitable more general distribution, where the focus is on the bridges.
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1 Introduction

A bridge in a graph is an edge e such that the graph G \ e obtained by deleting e has
one more component. A class A of graphs is bridge-addable if for all graphs G in A and
all vertices u and v in distinct connected components of G, the graph G + uv obtained
by adding an edge between u and v is also in A. The concept of being bridge-addable
(or ‘weakly addable’) was introduced in McDiarmid, Steger and Welsh [11] in the course
of studying random planar graphs. (For an overview on random planar graphs see the
survey paper [5] of Giménez and Noy.) Examples of bridge-addable classes of graphs
include forests, series-parallel graphs, planar graphs, and indeed graphs embeddable on
any given surface.
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In the rest of this section, we first describe what is known concerning connectedness
and components for random graphs sampled uniformly from a bridge-addable class; then
describe the new results here for such random graphs; and finally briefly discuss random
rooted graphs. Random graphs from a weighted class are introduced in Section 2; and
new general results are presented, which extend the results on uniform random graphs.
After that come the proofs, first for non-asymptotic results then for asymptotic results
and finally for the rooted case.

Background results for uniform random graphs
If A is finite and non-empty we write R ∈u A to mean that R is a random graph

sampled uniformly from A. (We consider graphs to be labelled.) The basic result on
connectivity for a bridge-addable set of graphs is Theorem 2.2 of [11]: if A is a finite
bridge-addable set of graphs and R ∈u A then

P(R is connected) > e−1. (1)

Indeed, a stronger result is given in [11], concerning the number κ(R) of components of
R; namely that κ(R) is stochastically at most 1 + Po(1) where Po(λ) denotes a Poisson-
distributed random variable with mean λ, that is

κ(R) 6s 1 + Po(1). (2)

(Recall that X 6s Y means that P(X 6 t) > P(Y 6 t) for each t.) Note that from (2)
we have

P(R is connected) = P(κ(R) 6 1) > P(Po(1) 6 0) = e−1

and we obtain (1). Also from (2) we have E[κ(R)] 6 2 (see (17) below).
For any set A of graphs, we let An denote the set of graphs in A on vertex set

[n] := {1, . . . , n}; and we write Rn ∈u A to mean that Rn is uniformly distributed over
An. (It is convenient to have the subscript n on R rather than on A.) We always assume
that An is non-empty at least for large n.

The class F of forests is of course bridge-addable. For Rn ∈u F a result of Rényi [17]

shows that P(Rn is connected) → e−
1
2 as n → ∞, and indeed κ(Rn) converges in distri-

bution to 1 + Po(1
2
). For background on random trees and forests see the books [4, 14].

It was noted in [12] that plausibly forests form the ‘least connected’ bridge-addable set of
graphs, and in particular it should be possible to improve the bound in (1) asymptotically.

Conjecture 1.1. [12] If A is bridge-addable and Rn ∈u A then

lim inf
n→∞

P(Rn is connected) > e−
1
2 . (3)

Balister, Bollobás and Gerke [2, 3] showed that inequality (3) holds if we replace

e−
1
2 ≈ 0.6065 by the weaker bound e−0.7983 ≈ 0.4542. This result has recently been

improved by Norine [15]. Recently Addario-Berry, McDiarmid and Reed [1], and Kang

and Panagiotou [7], separately showed that (3) holds with the desired lower bound e−
1
2 , if

we suitably strengthen the condition on A. Call a set A of graphs bridge-alterable if it is
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bridge-addable and also closed under deleting bridges. Thus A is bridge-alterable exactly
when it satisfies the condition that, for each graph G and bridge e in G, the graph G is in
A if and only if G \ e is in A. Observe that each of the bridge-addable classes of graphs
mentioned above is in fact bridge-alterable. If A is a bridge-alterable set of graphs and
Rn ∈u A then [1, 7]

lim inf
n→∞

P(Rn is connected) > e−
1
2 . (4)

Since the class F of forests is bridge-alterable, this result is best-possible for a bridge-
alterable set of graphs. The full version of Conjecture 1.1 (for a bridge-addable set) is
still open.

Next let us consider the ‘fragment’ of a graph G: we let frag(G) be the number of
vertices remaining when we remove a largest component. For the class F of forests, if
Rn ∈u F then

E[frag(Rn)]→ 1 as n→∞. (5)

It was shown in [9] that, if A is a bridge-addable class of graphs which satisfies the further
condition that it is closed under forming minors (and so A is bridge-alterable), then there
is a constant c = c(A) such that, for Rn ∈u A

E[frag(Rn)] 6 c for all n. (6)

New results for uniform random graphs
In the present paper we much improve inequality (6) and extend all the above results to

more general distributions (similar to distributions considered in [10]), though we continue
to consider uniform random graphs in this section. (All the results presented here are
special cases of results discussed in the following section.)

In particular we see that, if A is any bridge-addable class of graphs (with no further
conditions) and Rn ∈u A, then

E[frag(Rn)] < 2 for all n; (7)

and if A is bridge-alterable then

lim sup
n→∞

E[frag(Rn)] 6 1. (8)

Observe from the limiting result (5) that this last bound is optimal for a bridge-alterable
set of graphs, but perhaps it holds for any bridge-addable set of graphs– see Section 6.

We also strengthen the inequality (4) in much the same way that the inequality (2)
strengthens (1). Given non-negative integer-valued random variablesX1, X2, . . . and Y , we
say that Xn is stochastically at most Y asymptotically, and write Xn �s Y asymptotically,
if for each fixed t > 0,

lim sup
n→∞

P(Xn > t) 6 P(Y > t).
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(Note that, as well as using the word ‘asymptotically’, we write �s rather than 6s here.)
Our strengthening of (4) is that, if A is bridge-alterable and Rn ∈u A, then

κ(Rn) �s 1 + Po(
1

2
) asymptotically . (9)

Random rooted graphs
It may be enlightening to consider rooted graphs, where we find contrasting behaviour.

We say that a graph is rooted if each component has a specified root vertex. Such graphs
are often met in combinatorial enumeration: for example, the planar graphs are obtained
by starting with a planar graph G which has minimum degree at least two, and substi-
tuting a rooted tree for each vertex of G.

We will use the notation Go for a rooted graph; and given a class A of graphs we write
Ao for the corresponding class of rooted graphs. Thus a connected graph in An yields
n rooted graphs in the corresponding set Aon; a graph in An which has two components,
with respectively a and n − a vertices, yields a(n − a) rooted graphs in Aon; and so on.
We use the notations Ro ∈u Ao and Ro

n ∈u Ao as before, to indicate that Ro is sampled
uniformly from Ao (assumed finite) and Ro

n is uniformly sampled from Aon.
Now let A be a finite bridge-addable set of graphs, and let Ro ∈u Ao. Since a graph

with several non-singleton components generates many rooted graphs, it is not imme-
diately clear to what extent the earlier results on connectedness and components will
survive. We will see that the analogues of (1) and (2) both hold:

P(Ro is connected) > e−1 (10)

and indeed
κ(Ro) 6s 1 + Po(1). (11)

Now consider the class F of forests, and let Ro
n ∈u Fo. Then as n→∞

P(Ro
n is connected) = (

n

n+ 1
)n−1 → e−1

and indeed κ(Ro
n) converges in distribution to 1 + Po(1). Thus (10) and (11) are best

possible, in contrast to the unrooted case. Further, E[frag(Ro
n)]→∞ as n→∞, so there

is no analogue for (7) or (8) for rooted graphs.

In all these results the crucial feature is the behaviour of the bridges. We shall bring
this out by singling out bridges in the more general distributions we next introduce for
our random graphs.

2 Random weighted graphs

Given a graph G with vertex set V , let e(G) denote the number of edges, let e0(G) denote
the number of bridges (edges in 0 cycles) and let G̃ denote the graph on V obtained from
G by removing all bridges. Thus κ(G̃) = κ(G) + e0(G).
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Let λ > 0 and ν > 0, and let f(G) > 0 for each bridge-free graph G. We call (λ, ν, f)
a weighting and define the weight τ(G) of G by setting

τ(G) = f(G̃)λe0(G)νκ(G). (12)

Given a set A of graphs, let τ(A) denote
∑

G∈A τ(G). When 0 < τ(A) < ∞, we let
R ∈τ A mean that R is a random graph sampled from A with P(R = G) = τ(G)/τ(A)
for each graph G ∈ A. Also we write Rn ∈τ A to mean Rn ∈τ An, as in the uniform case.

In the special case when λ = ν = 1 and f(G) ≡ 1, clearly R ∈τ A and Rn ∈τ A
mean the same as R ∈u A and Rn ∈u A respectively. When f(G) ≡ λe(G) we have
τ(G) = λe(G)νκ(G), and we do not single out bridges. This case corresponds to the Erdős-
Rényi random graph Gn,p when ν = 1 (with λ = p/(1− p)), and in general it corresponds
to the random-cluster model (see for example [6]).

Suppose now that we are given a set A of graphs and a weighting (λ, ν, f), and that
0 < τ(A) <∞ or τ(An) > 0 as appropriate. We generalise and sometimes amplify all the
results presented in the last section. For the asymptotic results we need to assume that
A is bridge-alterable rather than just bridge-addable.

We first state two non-asymptotic results; then present some results on random forests,
and consider asymptotic results; and finally we consider random rooted graphs. The first
result generalises the inequalities (1) and (2), and is used several times in [10]; and the
second result generalises inequality (7).

Theorem 2.1. If A is finite and bridge-addable and R ∈τ A, then

κ(R) 6s 1 + Po(ν/λ);

and in particular P(R is connected) > e−ν/λ, and E[κ(R)] 6 1 + ν/λ.

Theorem 2.2. If A is finite and bridge-addable and R ∈τ A, then

E[frag(R)] <
2ν

λ
.

Before we introduce the asymptotic results for a general bridge-alterable set of graphs,
let us record some results on random forests Rn ∈τ F which generalise the results men-
tioned earlier for uniform random forests Rn ∈u F – see for example [10] where these
results are proved in a general setting. Observe that τ(F ) = f(K̄n)(λ/ν)e(F )νn for each
F ∈ Fn (where K̄n denotes the graph on [n] with no edges): thus τ(F ) ∝ (λ/ν)e(F ), and
the only aspect of the weighting that matters is the ratio λ/ν.

Theorem 2.3. Consider Rn ∈τ F , where F is the class of forests. Then κ(Rn) converges
in distribution to 1+Po( ν

2λ
), so P(Rn is connected)→ e−

ν
2λ ; E[κ(Rn)]→ 1+ ν

2λ
as n→∞;

and E[frag(Rn)]→ ν
λ

as n→∞.

Now we consider asymptotic results for a bridge-alterable set of graphs. These results
generalise and amplify inequalities (4) and (8); and Theorem 2.3 shows that each of
inequalities (13) to (16) is best-possible for a bridge-alterable class of graphs.

the electronic journal of combinatorics 19(4) (2012), #P53 5



Theorem 2.4. Suppose that A is bridge-alterable and Rn ∈τ A. Then

κ(Rn) �s 1 + Po(
ν

2λ
) asymptotically, (13)

and so in particular
lim inf
n→∞

P(Rn is connected) > e−
ν
2λ ; (14)

and
lim sup
n→∞

E[κ(Rn)] 6 1 +
ν

2λ
. (15)

Theorem 2.5. If A is bridge-alterable and Rn ∈τ A, then

lim sup
n→∞

E[frag(Rn)] 6
ν

λ
. (16)

Now consider rooted graphs, starting with rooted forests. Recall that Fo denotes the
class of rooted forests.

Theorem 2.6. Consider Ro
n ∈τ Fo. As n → ∞, κ(Ro

n) converges in distribution to
1 + Po( ν

λ
); and so P(Ro

n is connected) → e−
ν
λ , and E[κ(Ro

n)] → 1 + ν
λ

as n → ∞. In
contrast, E[frag(Ro

n)]→∞ as n→∞.

Our final result here is non-asymptotic and may be compared with Theorem 2.1. It
generalises (10) and (11). Theorem 2.6 on rooted forests shows that it is best possible,
and that there is no rooted-graph analogue for Theorem 2.2 (which bounds E[frag(Rn)]).

Theorem 2.7. Let A be finite and bridge-addable, and let Ro ∈τ Ao. Then

κ(Ro) 6s 1 + Po(ν/λ);

and in particular P(Ro is connected) > e−ν/λ, and E[κ(Ro)] 6 1 + ν/λ.

3 Proofs for non-asymptotic results

In this section we prove the non-asymptotic results above, namely Theorems 2.1, 2.2,
except that we leave proofs for rooted graphs to Section 5.

Given a graph G, let Bridge(G) denote the set of bridges, and note that |Bridge(G)| =
e0(G); and let Cross(G) denote the set of ‘non-edges’ or ‘possible edges’ between compo-
nents, and let cross(G) = |Cross(G)|. We start with two basic lemmas about graphs. The
first is just an observation, and needs no proof.

Lemma 3.1. Let the set A of graphs be bridge-addable. If G ∈ A and e ∈ Cross(G), then
the graph G′ = G + e obtained from G by adding e is in A and e is a bridge of G′; and
τ(G) = τ(G′) · (ν/λ).
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Lemma 3.2. [11] If the graph G has n vertices, then e0(G) 6 n−κ(G); and if κ(G) = k+1
then cross(G) > k(n− k) +

(
k
2

)
> k(n− k).

Proof. Observe that κ(G) + e0(G) = κ(G̃) 6 n, so e0(G) 6 n − κ(G). Now consider
the second inequality, and assume that κ(G) = k + 1. Since if 0 < |X| 6 |Y | then
|X||Y | > (|X| − 1)(|Y | + 1), we see that cross(G) is minimised when G consists of k
singleton components and one other component.

Now let us recall a well-known elementary fact. Let X and Y be random variables
taking non-negative integer values, and suppose that X 6s Y : then

EX 6 EY. (17)

To prove this, note that

EX =
∑
t>1

P(X > t) 6
∑
t>1

P(Y > t) = EY.

The next two lemmas concern bounding a random variable by a Poisson-distributed
random variable. The first lemma is stated in a general form which quickly gives the
second and which is suitable also for using later.

Lemma 3.3. Let the random variable X take non-negative integer values. Let α > 0 and
let Y ∼ Po(α). Let k0 be a positive integer, and suppose that

P(X = k + 1) 6
α

k + 1
P(X = k) for each k = 0, 1, . . . , k0 − 1.

Then
P(k0 > X > k) 6 P(Y > k) for each k = 0, 1, . . . , k0.

Proof. Observe that, for each k = 0, 1, . . . , k0 − 1 we have

P(X = k + i) 6
αi

(k + i)i
P(X = k) for each i = 1, . . . , k0 − k.

(Here we are using (x)i to denote the i-term product x(x − 1) · · · (x − i + 1).) Clearly
P(k0 > X > 0) 6 1 = P(Y > 0). Let k0 > k > 0 and suppose that P(k0 > X > k) 6
P(Y > k). We want to show that P(k0 > X > k + 1) 6 P(Y > k + 1) to complete the
proof by induction. This is immediate if P(X = k) > P(Y = k), so assume that this is
not the case. Then

P(k0 > X > k + 1) =

k0−k∑
i=1

P(X = k + i)

6 P(X = k)
∑
i>1

αi

(k + i)i

the electronic journal of combinatorics 19(4) (2012), #P53 7



6 P(Y = k)
∑
i>1

αi

(k + i)i

= P(Y > k + 1)

as required.

From the last lemma with k0 large we obtain

Lemma 3.4. (see [11]) Let the random variable X take non-negative integer values. Let
α > 0 and suppose that

P(X = k + 1) 6
α

k + 1
P(X = k) for each k = 0, 1, 2, . . .

Then X 6s Y where Y ∼ Po(α).

Proof. Fix k > 0. Let ε > 0 and choose k0 > k such that P(X > k0) < ε. By Lemma 3.3

P(X > k) = P(k0 > X > k) + P(X > k0) 6 P(Y > k) + ε,

and thus P(X > k) 6 P(Y > k).

Proof of Theorem 2.1 It suffices to assume that A is An for some n, since the sets An
are disjoint. Let Akn denote the set of graphs in An with k components. Let 1 6 k 6 n−1.
By Lemmas 3.1 and 3.2

τ(Akn) · (n− k) >
∑

G∈Akn, e∈Bridge(G)

τ(G)

>
λ

ν

∑
G′∈Ak+1

n , e∈Cross(G′)

τ(G′)

>
λ

ν
τ(Ak+1

n ) · k(n− k)

Therefore
τ(Ak+1

n ) 6
ν

λk
τ(Akn).

Thus for R ∈τ A

P(κ(R) = k + 1) 6
ν

λk
P(κ(R) = k) for each k = 1, 2, . . . .

and so, writing X = κ(R)− 1

P(X = k + 1) 6
ν

λ(k + 1)
P(X = k) for each k = 0, 1, 2, . . . ,

Hence if α = ν/λ and Y ∼ Po(α) we have X 6s Y by Lemma 3.4. Finally, by (17),
E[κ(R)] = 1 + E[X] 6 1 + E[Y ] = 1 + ν/λ. 2

To prove Theorem 2.2 we use two lemmas. The first is another basic lemma on graphs,
from [8]. We include the short proof here for completeness.
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Lemma 3.5. [8] If the graph G has n vertices, then cross(G) > (n/2) · frag(G).

Proof. An easy convexity argument shows that if x, x1, x2, . . . are positive integers such
that each xi 6 x and

∑
i xi = n then

∑
i

(
xi
2

)
6 1

2
n(x− 1). For, if n = ax+ y where a > 0

and 0 6 y 6 x− 1 are integers, then∑
i

(
xi
2

)
6 a

(
x

2

)
+

(
y

2

)
6 a

(
x

2

)
+
y(x− 1)

2
=

1

2
n(x− 1).

Hence if we denote the maximum number of vertices in a component by x, so that
frag(G) = n− x, then

cross(G) >

(
n

2

)
− 1

2
n(x− 1) =

1

2
n(n− x) =

1

2
n frag(G)

as required.

The next lemma is phrased generally so that it can also be used later.

Lemma 3.6. Let A = An be bridge-addable, and let R ∈τ A. Let β > 0 and assume that
cross(G) > βn · frag(G) for each G ∈ A. Then

E[frag(R)] 6
ν

βλ
.

Proof. Using Lemma 3.1 for the second inequality,

βn
∑
G∈A

τ(G) frag(G) 6
∑

G∈A, e∈Cross(G)

τ(G)

6
ν

λ

∑
G′∈A, e∈Bridge(G′)

τ(G′)

=
ν

λ

∑
G∈A

τ(G) · e0(G).

Thus

E[frag(R)] 6
1

βn

ν

λ
E[e0(R)] <

ν

βλ

as required.

Proof of Theorem 2.2 As in the proof of Theorem 2.1 it suffices to assume that A is
An for some n. By Lemma 3.5, we may now complete the proof using Lemma 3.6 with
β = 1

2
. 2
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4 Proofs of asymptotic results

In this section we prove the asymptotic results Theorems 2.4 and 2.5. Assume throughout
that A is bridge-alterable. Let us focus first on Theorem 2.4, and in particular on (13).
The proof goes roughly as follows. We first see that it suffices to prove inequality (20)
below concerning κ(RF), where RF is a random forest on [n] which we define below, with
probabilities depending on degrees. Then we use a key result from [1] which tells us about
average sizes of components of RT with an edge deleted, where RT is RF conditioned on
being a tree. We find that P(κ(RF) = 2) is suitably smaller than P(κ(RF) = 1); and from
this we deduce that in general P(κ(RF) = k + 1) is suitably smaller than P(κ(RF) = k),
and so we can use Lemma 3.3.

Now for more details. We may define an equivalence relation on graphs by setting
G ∼ H if G̃ = H̃. Let [G] denote the equivalence class of G, that is, the set of graphs H
such that H̃ = G̃. Let W be a positive integer. Since A is bridge-alterable, if G ∈ AW
then [G] ⊆ AW . Thus AW can be written as a disjoint union of equivalence classes.

To prove (13), we may fix a (large) positive integer W , a bridgeless graph G0 ∈ AW ,
an integer t > 1 and real ε > 0; and prove that, if RG0 ∈τ [G0] then

P(κ(RG0) > t+ 1) 6 P(Po(
ν

2λ
) > t) + ε (18)

if W is sufficiently large. Since we are now restricting attention to [G0] we may assume
that f(G0) = 1. Denote κ(G0) by n: we may assume that n > 2 (for otherwise the
connected graph G0 is the only graph in [G0]).

Write C1, . . . , Cn for the components of G0, and let wi = |V (Ci)| for i = 1, . . . , n, so
that W =

∑n
i=1wi. We use the vector w = (w1, . . . , wn) together with the weighting τ to

define a probability measure on the set Fn of forests on [n]. Given F ∈ Fn, let

mass(F ) =
n∏
i=1

w
dF (i)
i · λe(F )νκ(F )

where dF (i) denotes the degree of vertex i in the forest F . Also, let K =
∑

F∈Fn mass(F ),
and let RF be a random element of Fn with P(RF = F ) = mass(F )/K for each F ∈ Fn.
Corresponding to Lemma 2.3 of [1], we have

κ(RG0) =s κ(RF). (19)

Proof of (19) Denote [G0] by B. Given H ∈ B, let g(H) be the graph obtained from H
by contracting each Ci to the single vertex i. Then g(H) ∈ Fn and κ(H) = κ(g(H)). Also,

for each F ∈ Fn, the set g−1(F ) has cardinality
∏n

i=1w
dF (i)
i , and so τ(g−1(F )) = mass(F ).

It follows that

P(κ(RG0) = k) =
τ({H ∈ B : κ(H) = k})

τ(B)

=

∑
{F∈Fn:κ(F )=k} τ(g−1(F ))∑

F∈Fn τ(g−1(F ))
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=

∑
{F∈Fn:κ(F )=k}mass(F )

K
= P(κ(RF) = k)

as required. 2

Now that we have established (19), in order to prove (18) we may show that

P(κ(RF) > t+ 1) 6 P(Po(
ν

2λ
) > t) + ε (20)

if W is sufficiently large.
Given a graph H on [n], let

crossw(H) =
∑

uv∈Cross(H)

wuwv.

Observe that crossw(H) equals the sum of w(C)w(C ′) over the unordered pairs C and C ′ of
components of H, where w(C) denotes

∑
i∈V (C) wi. For forests F, F ′ ∈ Fn such that F can

be obtained from F ′ by deleting an edge uv, observe that mass(F ′) = λ
ν
·mass(F ) ·wuwv.

For such F, F ′ we let

ϕ(F ′, F ) =
ν

λ
· mass(F ′)

crossw(F )
. (21)

For all other pairs F, F ′, we let ϕ(F ′, F ) = 0.
For i = 1, . . . , n, let F in be the set of forests in Fn with i components. For each

F ∈ F i+1
n we have∑

F ′∈Fin

ϕ(F ′, F ) =
mass(F )

crossw(F )

∑
uv∈Cross(F )

wuwv = mass(F );

and thus for each i = 1, . . . , n− 1∑
F ′∈Fin

∑
F∈Fi+1

n

ϕ(F ′, F ) =
∑

F∈Fi+1
n

mass(F ) = K · P(RF ∈ F i+1
n ) (22)

as in Lemma 3.1 of [1].
Given a tree T on [n] and an integer k with 1 6 k 6 bW/2c, let c(T, k) be the number

of edges e in T such that T \e has a component with weight k. Let RT be RF conditioned
on being a tree, so that RT is a random tree on [n] with P(RT = T ) ∝ mass(T ). The
distribution of RT is exactly as in [1] – the weighting is not relevant here, since e(T ) = n−1

and κ(T ) = 1 are fixed, and thus P(RT = T ) ∝
∏n

i=1 w
dT (i)
i . Hence from Section 4 of [1]

we see that for any η > 0, for W sufficiently large we have∑
k>1

E[c(RT , k)]

k(W − k)
6 (1 + η) · 1

2
. (23)
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By (22) with i = 1, corresponding to lemma 4.1 of [1] we have

P(RF ∈ F2
n) =

1

K

ν

λ

∑
T∈F1

n

mass(T )
∑
e∈T

1

crossw(T − e)

= P(RF ∈ F1
n)

ν

λ

∑
T∈F1

n

P(RT = T )
∑
k>1

c(RT , k)

k(W − k)

and so

P(RF ∈ F2
n) = P(RF ∈ F1

n)
ν

λ

∑
k>1

E[c(RT , k)]

k(W − k)
. (24)

From (23) and (24) we see that for all η > 0, for W sufficiently large, for all w1, . . . , wn
with

∑n
j=1wj = W ,

P(RF ∈ F2
n) 6 (1 + η)

ν

2λ
P(RF ∈ F1

n). (25)

Now we can complete the proof of (20) (and thus of (13) in Theorem 2.4) as follows,
as in the proof of Claim 2.2 in [1]. The next lemma will allow us to assume that n is
large, as well as being useful later. Using (22) and the proof of Lemma 3.2 of [1] we find:

Lemma 4.1. For each i = 1, . . . , n− 1

P(RF ∈ F i+1
n ) 6

P(RF ∈ F in)

i

n

W

ν

λ
. (26)

If W > 2n then by the above result and Lemma 3.4, κ(RF) 6s 1 + Po( ν
2λ

) and so (20)
holds. Thus we may assume from now on that W < 2n.

Next we introduce Lemma 3.3 of [1]. For each finite non-empty set V of positive
integers, let GV denote the set of all graphs on the vertex set V , and let GkV denote the
set of all graphs in GV with exactly k components. For each positive integer n, let µn be
a measure on the set of all graphs with vertex set a subset of [n] which is multiplicative
on components ; that is, if G has components H1, . . . , Hk then µn(G) =

∏k
i=1 µn(Hi).

Observe that we obtain such a measure if we set µn(G) = mass(G) when G is a forest
and µn(G) = 0 otherwise.

Lemma 4.2. ([1]) Suppose there exist α > 0 and integers n > m0 > 1 such that

µn(G2
V ) 6 αµn(G1

V ) for all V ⊆ {1, . . . , n} with |V | > m0. (27)

Then for all integers k > 1 and n > km0

µn(Gk+1
[n] ) 6

α

k
µn(Gk[n]). (28)
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We may now complete the proof of (20). Fix j > t large enough that∑
i>j

(ν
λ

)i 1

i!
6
ε

2
.

Fix η > 0 small enough that, with α = (1 + η) ν
2λ

, we have

P(Po(α) > t) 6 P(Po(
ν

2λ
) > t) + ε/2.

By (25) and Lemma 4.2 it follows that, for W large enough (recall that n > W/2), for all
i with 1 6 i 6 j we have

P(κ(RF) = i+ 1) 6
α

i
P(κ(Rf ) = i).

In terms of X = κ(RF)− 1, this says that

P(X = i+ 1) 6
α

i+ 1
P(X = i) for i = 0, 1, . . . , j − 1. (29)

Also, by Lemma 4.1, for all i > 1

P(RF ∈ F i+1
n ) 6

( nν
Wλ

)i 1

i!
6
(ν
λ

)i 1

i!

and so it follows by our choice of j that

P(X > j) = P(κ(RF) > j + 1) 6 ε/2.

Hence by (29) and Lemma 3.3,

P(X > t) = P(j − 1 > X > t) + P(X > j)

6 P(Po(α) > t) + ε/2

6 P(Po(
ν

2λ
) > t) + ε.

This completes the proof of (20), and thus of (18) and so of (13). The inequality (14)
follows directly from (13), so it remains only to prove (15). Let ε > 0. By Theorem 2.1,
if Y ∼ Po(ν/λ) then

E[κ(Rn)1κ(Rn)>t+1] 6 E[(1 + Y )1Y >t] < ε/2

if t is sufficiently large. Fix such a t.
Since ε and t are fixed, by (18) (applied for each value i = 1, . . . , t and with ε replaced

by ε
2t

) there is an n0 such that for each n > n0 and each bridgeless graph G ∈ An, for
RG ∈τ [G] we have

P(κ(RG) > i+ 1) 6 P(Po(
ν

2λ
) > i) +

ε

2t
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for each i = 1, . . . , t. It follows that these inequalities hold also with RG replaced by Rn,
where Rn ∈τ A (since An is a disjoint union of equivalence classes). Thus for n > n0

E[κ(Rn)1κ(Rn)6t] =
t∑
i=1

P(t > κ(Rn) > i)

6
t−1∑
i=0

P(Po(
ν

2λ
) > i) +

ε

2

6 1 + E[Po(
ν

2λ
)] +

ε

2
= 1 +

ν

2λ
+
ε

2
.

Hence, for n sufficiently large, E[κ(Rn)] 6 1 + ν
2λ

+ ε, and we are done. We have now
completed the proof of Theorem 2.4.

4.1 Proof of Theorem 2.5

Let ε > 0, and let A′n = {G ∈ An : frag(G) 6 εn}. Then A′n is bridge-addable. Also, for
each G ∈ A′n we have cross(G) > (1− ε)n · frag(G). Hence by Lemma 3.6 with β = 1− ε
we have

E[frag(Rn)1frag(Rn)6εn] < (1− ε)−1(ν/λ).

Thus it suffices for us to show that

E[frag(Rn)1frag(Rn)>εn
] = o(1) as n→∞. (30)

We proceed as in the proof of Theorem 2.4. For a graph G on [n] let wfrag(G) denote
W minus the maximum weight w(C) of a component C of G. Then corresponding to (19)
we have

frag(RG0) =s wfrag(RF).

To see this we may argue as in the proof of (19), recalling that for each H ∈ B = [G0],
g(H) is the forest obtained by contracting the components Ci of G0, and noting that we
have frag(H) = wfrag(g(H)). Thus it suffices to consider RF and show that E[X1X>εW ]
is o(1) as W →∞, where X = wfrag(RF).

Define τ̃(F ) to be τ(g−1(F )) for each F ∈ Fn; and for A ⊆ Fn let τ̃(A) =∑
F∈A τ̃(F ) = τ(g−1(A)). Then τ̃(Fn) = τ(B), and τ̃(Tn) = τ(C) where C is the set

of connected graphs in B. Thus by Theorem 2.1 we have τ̃(Tn) > e−ατ̃(Fn), where we let
α denote ν/λ. Recall that we take f(G) ≡ 1 without loss of generality, and so τ(H) = αλn

for each connected graph H in B. Also

|g−1(Tn)| =
n∏
i=1

wi ·W n−2

where W =
∑n

i=1wi. This counting result goes back to Moon [13] in 1967 and Rényi [18]
in 1970 (see also Pitman [16]) and appears in the proof of Lemma 4.2 of [1]. Hence

τ̃(Tn) = αλn
n∏
i=1

wi ·W n−2.
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For each non-empty set A of positive integers, let TA and FA denote respectively the sets
of trees and forests on vertex set A, and let WA denote

∑
i∈Awi. Let 1 6 a 6 n− 1 and

let A ⊆ [n] with |A| = a. Denote [n] \ A by Ā. Then

τ̃(FA)τ̃(FĀ) 6 e2ατ̃(TA)τ̃(TĀ)

= α2λne2α(
n∏
i=1

wi) ·W a−2
A (W −WA)n−a−2

= α2λne2α(
n∏
i=1

wi) · (WA(W −WA))−2W a
A(W −WA)n−a.

But xa(W − x)n−a is maximised at x = a
n
W , so

W a
A(W −WA)n−a 6 (

a

n
W )a(

n− a
n

W )n−a = aa(n− a)n−a
(
W

n

)n
.

Thus

τ̃(FA)τ̃(FĀ) 6 α2λne2α

n∏
i=1

wi · (WA(W −WA))−2aa(n− a)n−a
(
W

n

)n
.

Now by Stirling’s formula, there are positive constants c1 and c2 such that for each positive
integer k

c1k
k+ 1

2 e−k 6 k! 6 c2k
k+ 1

2 e−k.

Thus

n−1∑
a=1

(
n

a

)
aa(n− a)n−a = n!

n−1∑
a=1

aa

a!

(n− a)n−a

(n− a)!

6 c−2
1 n! en

n−1∑
a=1

(a(n− a))−
1
2 .

But the sum in this last expression is O(1), so

n−1∑
a=1

(
n

a

)
aa(n− a)n−a 6 c3n!en 6 c4n

n+ 1
2

for some constants c3 and c4. It follows that∑
A⊆[n]

(WAWĀ)2 τ̃(FA)τ̃(FĀ) 6 c5α
2λne2α(

n∏
i=1

wi)W
nn

1
2 = c6 τ̃(Tn)W 2n

1
2

for some constant c5, and c6 = c6(α) = c5αe
2α. Let us introduce a piece of notation: for

z > 0 let ∑
z6WA6W/2

sA :=
∑
{WA τ̃(FA)τ̃(FĀ) : A ⊆ [n], z 6 WA 6 W/2}.
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Then ∑
z6WA6W/2

sA 6 z−1(
W

2
)−2

∑
A⊆[n]

(WAWĀ)2 τ̃(FA)τ̃(FĀ) 6 4c6τ̃(Tn)z−1n
1
2 . (31)

Now we argue as in the proof of Proposition 5.2 of [8]. Consider a disconnected graph
G on [n], and denote wfrag(G) by z. We claim that there is a union of components with
weight in the interval [z/2,W/2]. To see this let b = W −z, so that b is the biggest weight
of a component. Note that bW+b

2
c− dW−b

2
e+ 1 > b, and so there are at least b integers in

the list dW−b
2
e, . . . , bW+b

2
c. Thus by considering adding components one at a time we see

that there is a union of components, with vertex A say, such that WA is in this set. Then
WA > dW−b

2
e > z/2 and W −WA > W − bW+b

2
c > z/2. Thus A or Ā is as required.

From the above, there is an injection from the set of forests F ∈ Fn with wfrag(F ) > z
to the set of triples A,FA, FĀ where

A ⊆ [n], z/2 6 wfrag(F )/2 6 WA 6 W/2, FA ∈ FA, FĀ ∈ FĀ and τ̃(F ) = τ̃(FA)τ̃(FĀ).

It follows that

τ̃(Fn)E[X1X>z] =
∑

F∈Fn:wfrag(F )>z

τ̃(F ) wfrag(F )

6
∑

A⊆[n], z
2
6WA6

W
2

∑
FA∈FA

∑
FĀ∈FĀ

2WA τ̃(FA) τ̃(FĀ)

= 2
∑

z
2
6WA6

W
2

sA.

Hence

E[X1X>εW ] 6
2

τ̃(Fn)

∑
εW/26WA6W/2

sA = O(W− 1
2 )

by (31), and the proof of Theorem 2.5 is complete.

5 Proofs for rooted graphs

In this section we prove Theorems 2.6 and 2.7 and on rooted graphs. First we prove
Theorem 2.7, following the lines of the proof of Theorem 2.1.

Proof of Theorem 2.7 As before, it suffices to assume that A is An for some n. Let
1 6 k 6 n− 1. Let P be the set of pairs (Go, e) where Go is a rooted graph on [n] with k
components and e is a bridge in Go (which we may think of as being oriented towards the
root of the component). Let Q be the set of pairs (Ho, uv), where Ho is a rooted graph
on [n] with k+ 1 components, and uv is an ordered pair of vertices such that u is the root
of its components and v is in a different component.

There is a natural bijection between P and Q. Given (Go, e) ∈ P , if u is the end of e
further from the root, we delete the edge e and make u a new root: given (Ho, uv) ∈ Q,
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we add an edge between u and v and no longer have u as a root. Further, if the k + 1
components of Ho have n1, . . . , nk+1 vertices respectively, then the number of pairs uv
such that (Ho, uv) ∈ Q is

∑k+1
i=1 (n− ni) = kn.

Now much as in the proof of Theorem 2.1 we have

τ(Ak on ) · (n−k) >
∑

(Go,e)∈P

τ(Go) >
λ

ν

∑
(Ho,uv)∈Q

τ(Ho)

=
λ

ν
τ(Ak+1 o

n ) · kn.

Therefore

τ(Ak+1 o
n ) 6

n−k
n

ν

λk
τ(Ak on ). (32)

Thus for Ro ∈τ Ao

P(κ(Ro) = k + 1) 6
ν

λk
P(κ(Ro) = k) for each k = 1, 2, . . . ,

and we may complete the proof as for Theorem 2.1. 2

Proof of Theorem 2.6 Consider rooted forests and let Ro
n ∈τ Fo. Then the first two

inequalities above hold at equality, so

P(κ(Ro
n) = k + 1) =

n− k
n

ν

λk
P(κ(Ro

n) = k) for each k = 1, 2, . . . .

Hence κ(Ro
n) converges in distribution to 1 + Po( ν

λ
) as n → ∞. Thus to complete the

proof of Theorem 2.6, it remains only to show that E[frag(Ro
n)]→∞ as n→∞. By what

we have just proved and the fact that |T on | = nn−1

τ(Fon) ∼ eν/λ τ(T on ) = νeν/λ(λn)n−1.

We now obtain a lower bound on E[frag(Ro
n)] by considering forests with two components.

With sums over say log n < j < n/2, and using Stirling’s formula, we have

E[frag(Ro
n)] > τ(Fon)−1 ·

∑
j

(
n

j

)
j τ(T oj )τ(T on−j)

∼
(
νeν/λ

)−1
(λn)−(n−1)n!

∑
j

j
(λj)j−1

j!

(λ(n−j))n−j−1

(n−j)!

= Θ(1) · n!

nn−1

∑
j

jj

j!

(n− j)n−j−1

(n− j)!

= Θ(1) · n
3
2 e−n

∑
j

j−
1
2 ej(n− j)−

3
2 en−j

= Θ(1) ·
∑
j

j−
1
2 = Θ(n

1
2 ),
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and we are done. 2

Aside on the unrooted case
From the inequality (32) above we may quickly deduce the result in Theorem 2.1

that, for R ∈τ A (where A is finite and bridge-addable and not rooted) we have
P(R is connected) > e−ν/λ. To see this note that we may assume as usual that A is
An, and note also that each graph G ∈ An with κ(G) = k+ 1 yields at least n− k rooted
graphs in Aon. Now let Cn be the set of connected graphs in An, and use (32) once and
then k − 1 further times: we find

τ(Ak+1
n ) 6

1

n− k
τ(Ak+1 o

n ) 6
1

n

ν

λk
τ(Ak on )

6
1

n

(ν
λ

)k 1

k!
τ(Con) =

(ν
λ

)k 1

k!
τ(Cn).

Thus

τ(An) 6
∑
k>0

(ν
λ

)k 1

k!
τ(Cn) = eν/λτ(Cn),

and the proof is complete.

6 Concluding remarks

Consider Rn ∈u A where A is bridge-addable. Starting from the lower bound e−1 on the
probability that Rn is connected and the stronger stochastic bound κ(Rn) 6s 1 + Po(1)
on the number of components, it was natural to enquire to what extent the bounds could
be improved to match known results for forests. Our results suggest that we should think
of these bounds as being out asymptotically by a factor 2 in the ‘parameter’, in that the
ratio λ/ν should be doubled (though the corresponding bounds are tight in the rooted
case).

The central conjecture on connectivity for a bridge-addable set of graphs is from [12],
and was re-stated here as Conjecture 1.1. As we noted earlier, some asymptotic improve-
ment has been made on the bound e−1 [2, 3, 15]; and the full improvement to e−

1
2 has been

achieved, but only when we make the stronger assumption that A is bridge-alterable [1, 7].
In the present paper we considered corresponding improvements concerning the dis-

tribution of κ(Rn), and introduced new bounds on frag(Rn) (the number of vertices left
when we remove a largest component) which also match results for forests asymptotically.
Further, we set these results in a general framework emphasising the role of bridges, rather
than just considering uniform distributions.

For random rooted graphs our non-asymptotic results already match those for forests.
In each other case, to achieve results asymptotically matching those for forests we have
had to assume that the set A of graphs is bridge-alterable. It is natural to ask whether
these results actually hold under the weaker assumption that A is bridge-addable. Con-
jecture 1.1 is still open. We propose two further conjectures (for uniform distributions).
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The first concerns a possible extension of inequalities (8) and (9) from bridge-alterable to
bridge-addable.

Conjecture 6.1. If A is bridge-addable and Rn ∈u A then

(a) κ(Rn) �s 1 + Po(
1

2
) asymptotically,

and
(b) lim sup

n→∞
E[frag(Rn)] 6 1.

The work of Balister, Bollobás and Gerke [2, 3] mentioned earlier gives some progress
on part (a) of this conjecture: the proofs there together with Lemma 3.3 here show that,
with α = 0.7983,

κ(Rn) �s 1 + Po(α) asymptotically;

and this bound gives
lim sup
n→∞

E[κ(Rn)] 6 1 + α ≈ 1.7983

as may be seen by arguing as at the end of the proof of Theorem 2.4. Note also that
to establish part (b) of the conjecture, it suffices to show that (30) holds whenever A is
bridge-addable.

Finally, we propose a strengthened non-asymptotic version of the last conjecture, along
the lines of Conjecture 5.1 in [1] or Conjecture 1.2 of [3].

Conjecture 6.2. If A is bridge-alterable, n is a positive integer, Rn ∈u A and RFn ∈u F
then

κ(Rn) 6s κ(RFn ) and E[frag(Rn)] 6 E[frag(RFn )].

Establishing the stronger version of this conjecture, in which we assume only that A
is bridge-addable, would of course be even better!
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