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Abstract

Let G be a connected graph and H be an arbitrary graph. In this paper, we
study the identifying codes of the lexicographic product G[H] of G and H. We first
introduce two parameters of H, which are closely related to identifying codes of H.
Then we provide the sufficient and necessary condition for G[H] to be identifiable.
Finally, if G[H] is identifiable, we determine the minimum cardinality of identifying
codes of G[H] in terms of the order of G and these two parameters of H.
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1 Introduction

In this paper, we only consider finite undirected simple graphs with at least two vertices.
For a given graph G, we often write V (G) for the vertex set of G and E(G) for the edge
set of G. For any two vertices u and v of G, let dG(u, v) denote the distance between u
and v in G. Given a vertex v ∈ V (G), define BG(v) = {u|u ∈ V (G), dG(u, v) 6 1}. A
code C is a nonempty set of vertices. We say that a code C covers v if BG(v) ∩ C 6= ∅;
we say that C separates two distinct vertices x and y if BG(x) ∩ C 6= BG(y) ∩ C. An
identifying code of G is a code which covers all the vertices of G and separates any pair of
distinct vertices of G. If G admits at least one identifying code, we say G is identifiable
and denote the minimum cardinality of all identifying codes of G by I(G).

The concept of identifying codes was introduced by Karpovsky et al. [12] to model a
fault-detection problem in multiprocessor systems. It was noted in [4, 5] that determining
the identifying code with the minimum cardinality in a graph is an NP-complete problem.
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Many researchers have focused on the study of identifying codes in some restricted classes
of graphs, for example, paths [2], cycles [2, 7, 16], hypercubes [3, 11, 13, 14] and infinite
grids [1, 6, 10].

Gravier et al. [8] investigated the identifying codes of Cartesian product of two cliques.
Rall and Wash [15] studied the identifying codes of the direct product of two cliques. In
this paper, we study the identifying codes of the lexicographic product G[H] of a connected
graph G and an arbitrary graph H. In Section 2, we introduce two parameters of a graph
which are closely related to identifying codes, and compute these two parameters of the
path Pn and the cycle Cn, respectively. In Section 3, we first provide the sufficient and
necessary condition for G[H] to be identifiable, then determine I(G[H]) in terms of the
order of G and the two parameters of H when G[H] is identifiable. In particular, the
values of I(G[Pn]) and I(G[Cn]) are determined.

2 Two parameters

For a graph H, let C ′ ⊆ V (H) be a code which separates any pair of distinct vertices
of H, we use I ′(H) to denote the minimum cardinality of all possible C ′. This code was
studied in [3]. Let C ′′ ⊆ V (H) be a code which separates any pair of distinct vertices of
H and satisfies C ′′ 6⊆ BH(v) for every v ∈ V (H), we use I ′′(H) to denote the minimum
cardinality of all possible C ′′.

The two parameters I ′(H) and I ′′(H) are used to compute the minimum cardinality
of identifying codes of G[H] of graphs G and H (see Theorem 3.4). In this section we
shall compute the two parameters for paths and cycles, respectively.

Given an integer n > 3, suppose

V (Pn) = {0, 1, . . . , n− 1}, E(Pn) = {ij|j = i + 1, i = 0, . . . , n− 2};
V (Cn) = Zn = {0, 1, . . . , n− 1}, E(Cn) = {ij|j = i + 1, i ∈ Zn}.

Example 2.1 I ′(P3) = 2 and I ′′(P3) is not well defined; I ′(P4) = 3 and I ′′(P4) = 4;
I ′(P5) = I ′′(P5) = 3; I ′(P6) = 3 and I ′′(P6) = 4.

For P4, {0, 1, 2} is an identifying code, but {0, 1, 2} ⊆ BP4(1) and {0, 1, 3} can not
separate 0 and 1. For P5, {0, 2, 4} separates any pair of distinct vertices. For P6, {1, 2, 3}
separates any pair of distinct vertices, but {1, 2, 3} ⊆ BP6(2).

Example 2.2 I ′(C4) = 3 and I ′′(C4) = 4; I ′(C5) = 3 and I ′′(C5) = 4; I ′(C6) = I ′′(C6) =
3; I ′(C7) = I ′′(C7) = 4; I ′(C9) = I ′′(C9) = 6; I ′(C11) = I ′′(C11) = 6.

For C4, {0, 1, 2} is an identifying code, but {0, 1, 2} ⊆ BC4(1). For C5, {0, 1, 2} is
an identifying code, but {0, 1, 2} ⊆ BC5(1) and {0, 1, 3} can not separate 0 and 1. For
C6, both {3, 4, 5} and {0, 2, 4} separate any pair of distinct vertices. For C7, {3, 4, 5, 6}
separates any pair of distinct vertices. For C9, both {3, 4, 5, 6, 7, 8} and {0, 2, 4, 6, 7, 8}
separate any pair of distinct vertices. For C11, {3, 4, 5, 8, 9, 10} separates any pair of
distinct vertices.
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The minimum cardinality of identifying codes of a path or a cycle was computed in
[2, 7].

Proposition 2.1 ([2, 7]) (i) For n > 3, I(Pn) = bn
2
c+ 1;

(ii) For n > 6, I(Cn) =

{
n
2
, n is even,

n+3
2
, n is odd.

In order to compute the two parameters for paths and cycle, we need the following
useful lemma.

Lemma 2.2 Let H be an identifiable graph.
(i) I(H)− 1 6 I ′(H) 6 I(H);
(ii) If ∆(H) 6 |V (H)| − 2, then I(H)− 1 6 I ′(H) 6 I ′′(H) 6 I(H) + 1, where ∆(H)

is the maximum degree of H.

Proof. Let C ′ be a code which separates any pair of distinct vertices of H.
(i) Since there exists at most one vertex v not covered by C ′, C ′∪{v} is an identifying

code of H. Then I(H) 6 I ′(H) + 1, as desired.
(ii) Note that there exists at most one vertex v such that C ′ ⊆ BH(v). Since ∆(H) 6

|V (H)| − 2, there exists v0 ∈ V (H)\BH(v) such that C ′′ = C ′ ∪ {v0} is a code which
separates any pair of distinct vertices of H and satisfies C ′′ 6⊆ BH(w) for every w ∈ V (H).
It follows that I ′(H) 6 I ′′(H) 6 I ′(H) + 1. By (i), (ii) holds. �

Proposition 2.3 For n > 7, I ′(Pn) = I ′′(Pn) = bn
2
c+ 1.

Proof. Combining Proposition 2.1 and Lemma 2.2, we have I ′(Pn) = bn
2
c+ 1 or bn

2
c.

Suppose I ′(Pn) = bn
2
c. Then there exists a code W ′ of size bn

2
c such that W ′ separates

any pair of distinct vertices of Pn and BPn(i) ∩W ′ = ∅ for a unique vertex i.
Case 1. i 6= 0 and i 6= n−1. Then i−1, i, i+1 6∈ W ′, and i−2, i−3, i−4, i+2, i+3, i+4 ∈

W ′, so 4 6 i 6 n − 5. If we delete the six vertices i − 1, i, i + 1, i + 2, i + 3, i + 4, and
connect i − 2 by an edge to i + 5, then we get an identifying code of Pn−6. Hence
|W ′| > 3 + I(Pn−6) = bn

2
c+ 1, a contradiction.

Case 2. i = 0 or n − 1. Without loss of generality, assume that i = n − 1. Then
n−1, n−2 6∈ W ′, and n−3, n−4, n−5 ∈ W ′. If {0, 1, . . . , n−6} ⊆ W ′, then |W ′| = n−2 >
bn

2
c + 1, a contradiction. Now suppose {0, 1, . . . , n − 6} * W ′. Take the smallest k > 6

such that n−k 6∈ W ′. If k = n−1 or k = n, then |W ′| > n−3 > bn
2
c+1, a contradiction.

It is clear that k 6= n−2. For k 6 n−3, by deleting the vertices n−k, n−k+1, . . . , n−1,
we get an identifying code of Pn−k. It follows that |W ′| > k − 3 + I(Pn−k) > bn

2
c + 1, a

contradiction.
Therefore, I ′(Pn) = bn

2
c + 1. Since I ′′(Pn) = I ′(Pn) for I ′(Pn) > 4, the desired result

follows. �

Proposition 2.4 I ′(Cn) = I ′′(Cn) =

{
n
2
, n is even and n > 8,

n+3
2
, n is odd and n > 13.
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Proof. Note that I ′′(Cn) = I ′(Cn) for I ′(Cn) > 4. Combining Proposition 2.1 and
Lemma 2.2, we only need to prove I ′(Cn) > I(Cn). It is routine to show that I ′(Cn) >
I(Cn) for n = 8 or n = 10. Next, we consider n > 12. Let W ′ be a code of size
I ′(Cn) such that W ′ separates any pair of distinct vertices of Cn. If W ′ is an identifying
code, then I ′(Cn) = |W ′| > I(Cn). Now suppose that W ′ is not an identifying code.
Then there exists a unique vertex i ∈ V (Cn) such that {i − 1, i, i + 1} ∩W ′ = ∅, which
implies that {i − 2, i − 3, i − 4, i + 2, i + 3, i + 4} ⊆ W ′. If we delete the six vertices
i − 1, i, i + 1, i + 2, i + 3, i + 4, and connect i − 2 by an edge to i + 5, then we get an
identifying code of Cn−6. Therefore I ′(Cn) = |W ′| > 3 + I(Cn−6) = I(Cn), as desired. �

3 Main results

We always assume that G is a connected graph and H is an arbitrary graph. In this
section, we first provide the sufficient and necessary condition for G[H] to be identifiable.
Moreover, if G[H] is identifiable, we determine the minimum cardinality of identifying
codes of G[H] in terms of the order of G and the two parameters of H given in Section 2.

The lexicographic product G[H] of graphs G and H is the graph with the vertex set
{(u, v)|u ∈ V (G), v ∈ V (H)}, and the edge set {{(u1, v1), (u2, v2)}|dG(u1, u2) = 1, or u1 =
u2 and dH(v1, v2) = 1}. For any two distinct vertices (u1, v1), (u2, v2) of G[H], we observe
that

dG[H]((u1, v1), (u2, v2)) =


1, if u1 = u2, dH(v1, v2) = 1,
2, if u1 = u2, dH(v1, v2) > 2,
dG(u1, u2), if u1 6= u2.

(1)

For u ∈ V (G), let NG(u) = BG(u)\{u}. For any u1, u2 ∈ V (G), define u1 ≡ u2 if and
only if BG(u1) = BG(u2) or NG(u1) = NG(u2). Hernando et al. [9] proved that “ ≡ ” is
an equivalent relation and the equivalence class of a vertex is of three types: a class of size
1, a clique of size at least 2, an independent set of size at least 2. Denote all equivalence
classes by

W1, . . . ,Wp, U1, . . . , Uk, V1, . . . , Vl, (2)

where
(i) |Wq| = 1, q = 1, . . . , p;
(ii) for any u1, u2 ∈ Ui, i = 1, . . . , k, BG(u1) = BG(u2);
(iii) for any u1, u2 ∈ Vj, j = 1, . . . , l, NG(u1) = NG(u2).

Denote s(G) = |U1|+ · · ·+ |Uk| − k, t(G) = |V1|+ · · ·+ |Vl| − l.
For u ∈ V (G) and C ⊆ V (H), let Cu = {(u, v)|(u, v) ∈ V (G[H]), v ∈ C}. For

S ⊆ V (G[H]), let Su = {v|v ∈ V (H), (u, v) ∈ S}. Note that (Su)u = Hu ∩ S, where
Hu = (V (H))u. By (1), we have

BG[H]((u, v)) = (BH(v))u ∪
⋃

w∈NG(u)

Hw, (3)

BG[H]((u, v)) ∩ S = ((BH(v)) ∩ Su)u ∪
⋃

w∈NG(u)

(Sw)w. (4)
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Theorem 3.1 Let G be a connected graph and H be an arbitrary graph. Then the lexi-
cographic product G[H] of G and H is identifiable if and only if

(i) H is identifiable and ∆(H) 6 |V (H)| − 2; or
(ii) both G and H are identifiable.

Proof. Suppose G[H] is identifiable. If H is not identifiable, then there exist two
distinct vertices v1, v2 of H with BH(v1) = BH(v2). By (3), BG[H]((u, v1)) = BG[H]((u, v2))
for u ∈ V (G). This contradicts the condition that G[H] is identifiable.

If ∆(H) = |V (H)| − 1 and G is not identifiable, then there exist v ∈ V (H) and two
distinct vertices u1, u2 of G such that

BH(v) = V (H) and BG(u1) = BG(u2).

By (3), we have

BG[H]((u1, v)) = Hu1 ∪
⋃

u∈NG(u1)

Hu =
⋃

u∈BG(u1)

Hu =
⋃

u∈BG(u2)

Hu = BG[H]((u2, v)),

which contradicts the condition that G[H] is identifiable.
Therefore, (i) or (ii) holds.
Conversely, suppose (i) or (ii) holds. Assume that G[H] is not identifiable. There-

fore, there exist two distinct vertices (u1, v1) and (u2, v2) such that BG[H]((u1, v1)) =
BG[H]((u2, v2)). If u1 6= u2, then dG(u1, u2) = 1. It follows that BG(u1) = BG(u2)
and BH(v1) = BH(v2) = V (H), contrary to (i) and (ii). If u1 = u2, by (3), one gets
BH(v1) = BH(v2), contrary to the condition that H is identifiable. �

Remark 3.1 Let r be a positive integer and Γ be a graph. Given a vertex v ∈ V (Γ),

define B
(r)
Γ (v) = {u|u ∈ V (Γ), dΓ(u, v) 6 r}. An r-identifying code of Γ is a code which

r-covers all the vertices of Γ and r-separates any pair of distinct vertices of Γ (see [12]
for details). Identifying codes in this paper are 1-identifying codes. If r > 2, then G[H]

does not admit any r-identifying code. Indeed, by (1), B
(r)
G[H]((u, v1)) = B

(r)
G[H]((u, v2)) for

r > 2.

Lemma 3.2 Let G be a connected graph and H be an arbitrary graph. If S is an identi-
fying code of G[H], then for any vertex u of G, Su separates any pair of distinct vertices
of H. Moreover, with reference to (2), the following hold.

(i) If k 6= 0, then there exists at most one vertex u ∈ Ui satisfying Su ⊆ BH(v) for a
vertex v of H, where i = 1, . . . , k;

(ii) If l 6= 0, then there exists at most one vertex u ∈ Vj satisfying Su ∩BH(v) = ∅ for
a vertex v of H, where j = 1, . . . , l.

Proof. Assume that there exist u0 ∈ V (G) and two distinct vertices v1, v2 of H such
that Su0 ∩ BH(v1) = Su0 ∩ BH(v2). By (4), BG[H]((u0, v1)) ∩ S = BG[H]((u0, v2)) ∩ S,
contrary to the condition that S is an identifying code of G[H].
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(i) Assume that there exist two distinct vertices u1, u2 ∈ Ui such that Su1 ⊆ BH(v1)
and Su2 ⊆ BH(v2). Since BG(u1) = BG(u2), by (4) we have

BG[H]((u1, v1)) ∩ S = (Su1)
u1 ∪

⋃
u∈NG(u1)

(Su)u =
⋃

u∈BG(u2)

(Su)u = BG[H]((u2, v2)) ∩ S.

Since S is an identifying code of G[H], we have (u1, v1) = (u2, v2), a contradiction.
(ii) Assume that there exist two different vertices u1, u2 ∈ Vj such that Su1 ∩BH(v1) =

Su2 ∩BH(v2) = ∅. Since NG(u1) = NG(u2), by (4) we have

BG[H]((u1, v1)) ∩ S =
⋃

u∈NG(u1)

(Su)u =
⋃

u∈NG(u2)

(Su)u = BG[H]((u2, v2)) ∩ S.

Since S is an identifying code of G[H], we obtain (u1, v1) = (u2, v2), a contradiction. �

In equivalence classes (2) of V (G), choose ui ∈ Ui, i = 1, . . . , k, and vj ∈ Vj, j =
1, . . . , l. Let W 0 = ∪pq=1Wq ∪ {u1, . . . , uk, v1, . . . , vl} and U i = Ui\{ui}, i = 1, . . . , k,

V j = Vj\{vj}, j = 1, . . . , l. Therefore, we have a partition of V (G):

W 0, U1, . . . , Uk, V 1, . . . , V l. (5)

Lemma 3.3 Let C be an identifying code of graph H, and let C ′, C ′′ be two codes which
separate any pair of distinct vertices of H and C ′′ 6⊆ BH(v) for every vertex v of H. With
reference to (5),

S =
⋃

u∈W 0

(C ′)u ∪
k⋃

i=1

⋃
u∈U i

(C ′′)u ∪
l⋃

i=1

⋃
u∈V i

Cu

is an identifying code of G[H].

Proof. For any u ∈ V (G), we have

Su =


C ′, if u ∈ W 0,
C ′′, if u ∈ ∪ki=1U i,
C, if u ∈ ∪lj=1V j.

Since G is connected, there exists a vertex w adjacent to u. By (1), S covers all vertices of
G[H]. Hence, we only need to show that, for any two distinct vertices (u1, v1) and (u2, v2)
of G[H],

BG[H]((u1, v1)) ∩ S 6= BG[H]((u2, v2)) ∩ S. (6)

If u1 = u2, the fact that Su1 separates v1 and v2 implies BH(v1) ∩ Su1 6= BH(v2) ∩ Su1 =
BH(v2) ∩ Su2 , so (6) holds by (4). Now suppose that u1 6= u2. In order to prove (6), it is
sufficient to show that there exists (u0, v0) ∈ S such that

dG[H]((u0, v0), (u1, v1)) 6 1, dG[H]((u0, v0), (u2, v2)) > 2 (7)
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or
dG[H]((u0, v0), (u2, v2)) 6 1, dG[H]((u0, v0), (u1, v1)) > 2. (8)

Case 1. u1 6≡ u2. Then there exists u0 ∈ V (G)\{u1, u2} such that dG(u1, u0) = 1 and
dG(u2, u0) > 2, or dG(u1, u0) > 2 and dG(u2, u0) = 1. Take v0 ∈ Su0 . Then (u0, v0) ∈ S.
By (1), (7) or (8) holds.

Case 2. BG(u1) = BG(u2). Then u1 and u2 are adjacent and fall into some Ui. It
follows that u1 ∈ U i or u2 ∈ U i. Without loss of generality, suppose u1 ∈ U i. Pick u0 = u1.
Since C ′′ 6⊆ BH(v1), there exists v0 ∈ C ′′ such that (u0, v0) ∈ S and dH(v0, v1) > 2. Then
(8) holds by (1).

Case 3. NG(u1) = NG(u2). Then u1 and u2 are at distance 2 and fall into some Vj.
It follows that u1 ∈ V j or u2 ∈ V j. Without loss of generality, suppose u1 ∈ V j. Pick
u0 = u1. Since C covers v1, there exists v0 ∈ C such that (u0, v0) ∈ S and dH(v0, v1) 6 1.
By (1), (7) holds. �

Theorem 3.4 Let G be a connected graph and H be an arbitrary graph. Suppose (i) or
(ii) holds in Theorem 3.1.

(i) If ∆(H) 6 |V (H)| − 2, then

I(G[H]) = (|V (G)| − s(G)− t(G))I ′(H) + s(G)I ′′(H) + t(G)I(H); (9)

(ii) If ∆(H) = |V (H)| − 1, then

I(G[H]) = (|V (G)| − t(G))I ′(H) + t(G)I(H). (10)

Proof. (i) By Theorem 3.1, I(H) and I ′(H) are well defined. Since V (H) separates
any pair of distinct vertices of H and V (H) 6⊆ BH(v) for every v ∈ V (H), I ′′(H) is well
defined. Let S be an identifying code of G[H] with the minimum cardinality, by Lemma
3.2,

I(G[H]) = |S| =
p∑

i=1

∑
u∈Wi

|Su|+
k∑

i=1

∑
u∈Ui

|Su|+
l∑

i=1

∑
u∈Vi

|Su|

> (p + k + l)I ′(H) + (
k∑

i=1

|Ui| − k)I ′′(H) + (
l∑

i=1

|Vi| − l)I(H)

= (|V (G)| − s(G)− t(G))I ′(H) + s(G)I ′′(H) + t(G)I(H).

By Lemma 3.3 we can construct an identifying code of G[H] with cardinality (|V (G)| −
s(G)− t(G))I ′(H) + s(G)I ′′(H) + t(G)I(H). Therefore, (9) holds.

(ii) By Theorem 3.1, both G and H are identifiable. So I(H) and I ′(H) are well
defined. Owing to BG(u1) 6= BG(u2) for any two distinct vertices u1, u2 of G, we get k = 0
in (2) and (5). Similar to the proof of (i), (10) holds. �

Combining Propositions 2.1, 2.3, 2.4 and Theorem 3.4, we have the following results.

Corollary 3.5 Let G be a connected graph of order m (m > 2).
(i) For n > 7, I(G[Pn]) = m(bn

2
c+ 1);

(ii) For n > 12, I(G[Cn]) =

{
mn
2
, n is even,

m(n+3)
2

, n is odd.
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