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Abstract

A graph G is uniquely Kr-saturated if it contains no clique with r vertices and
if for all edges e in the complement, G + e has a unique clique with r vertices.
Previously, few examples of uniquely Kr-saturated graphs were known, and little
was known about their properties. We search for these graphs by adapting orbital
branching, a technique originally developed for symmetric integer linear programs.
We find several new uniquely Kr-saturated graphs with 4 6 r 6 7, as well as
two new infinite families based on Cayley graphs for Zn with a small number of
generators.

1 Introduction

A graph G is uniquely H-saturated if there is no subgraph of G isomorphic to H, and for
all edges e in the complement of G there is a unique subgraph in G+ e isomorphic to H2.
Uniquely H-saturated graphs were introduced by Cooper, Lenz, LeSaulnier, Wenger, and
West [9] where they classified uniquely Ck-saturated graphs for k ∈ {3, 4}; in each case
there is a finite number of graphs. Wenger [26, 27] classified the uniquely C5-saturated
graphs and proved that there do not exist any uniquely Ck-saturated graphs for k ∈
{6, 7, 8}.

In this paper, we focus on the case where H = Kr, the complete graph of order r.
Usually Kr is the first graph considered for extremal and saturation problems. However,
we find that classifying all uniquely Kr-saturated graphs is far from trivial, even in the
case that r = 4.

1Supported in part by National Science Foundation Grant DMS-0914815.
2A technicality: for all t < n(H), the complete graph Kt is trivially uniquely H-saturated. We adopt

the convention that always n(G) > n(H).
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Previously, few examples of uniquely Kr-saturated graphs were known, and little was
known about their properties. We adapt the computational technique of orbital branching
into the graph theory setting to search for uniquely Kr-saturated graphs. Orbital branch-
ing was originally introduced by Ostrowski, Linderoth, Rossi, and Smriglio [20] to solve
symmetric integer programs. We further extend the technique to use augmentations that
are customized to this problem. By executing this search, we found several new uniquely
Kr-saturated graphs for r ∈ {4, 5, 6, 7} and we provide constructions of these graphs to
understand their structure. One of the graphs we discovered is a Cayley graph, which
led us to design a search for Cayley graphs that are uniquely Kr-saturated. Motivated
by these search results, we construct two new infinite families of uniquely Kr-saturated
Cayley graphs.

Erdős, Hajnal, and Moon [10] studied the minimum number of edges in a Kr-saturated
graph. They proved that the only extremal examples are the graphs formed by adding
r − 2 dominating vertices to an independent set; these graphs are also uniquely Kr-
saturated. However, if G is uniquely Kr-saturated and has a dominating vertex, then
deleting that vertex results in a uniquely Kr−1-saturated graph. To avoid the issue of
dominating vertices, we define a graph to be r-primitive if it is uniquely Kr-saturated and
has no dominating vertex. Understanding which r-primitive graphs exist is fundamental
to characterizing uniquely Kr-saturated graphs.

Since K3
∼= C3, the uniquely K3-saturated graphs were proven by Cooper et al. [9]

to be stars and Moore graphs of diameter two. While stars are uniquely K3-saturated,
they are not 3-primitive. The Moore graphs of diameter two are exactly the 3-primitive
graphs; Hoffman and Singleton [14] proved there are a finite number of these graphs.

David Collins and Bill Kay discovered the only previously known infinite family of
r-primitive graphs, that of complements of odd cycles: C2r−1 is r-primitive. Collins and
Cooper discovered two more 4-primitive graphs of orders 10 and 12 [8]. These two graphs
are described in detail in Section 5.

One feature of all previously known r-primitive graphs is that they are all regular.
Since proving regularity has been instrumental in previous characterization proofs (such
as [9, 14]), there was a hope that r-primitive graphs are regular. However, we present a
counterexample: a 5-primitive graph on 16 vertices with minimum degree 8 and maximum
degree 9.

The major open question in this area concerns the number of r-primitive graphs for a
fixed r.

Conjecture 1 (Cooper [8]). For each r > 3, there are a finite number of r-primitive
graphs.

This conjecture is true for r = 3 [14] and otherwise completely open. Before this work,
it was not even known if there was more than one r-primitive graph for any r > 5. After
we discovered the graphs in this work (which lack any common structure and sometimes
appear very strange), we are unsure the conjecture holds even for r = 4.

In Section 2, we briefly summarize our results, including our computational method,
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the new sporadic3 r-primitive graphs, and our new algebraic constructions.

2 Summary of results

Our results have three main components. First, we develop a computational method for
generating uniquely Kr-saturated graphs. Then, based on one of the generated examples,
we construct two new infinite families of uniquely Kr-saturated graphs. Finally, we de-
scribe all known uniquely Kr-saturated graphs, including the nine new sporadic graphs
found using the computational method.

2.1 Computational method

In Section 3, we develop a new technique for exhaustively searching for uniquely Kr-
saturated graphs on n vertices. The search is based on the technique of orbital branching
originally developed for use in symmetric integer programs by Ostrowski, Linderoth, Rossi,
and Smriglio [20, 21]. We focus on the case of constraint systems with variables taking
value in {0, 1}. Orbital branching is based on the standard branch-and-bound technique
where an unassigned variable is selected and the search branches into cases for each
possible value for that variable. In a symmetric constraint system, the automorphisms of
the variables that preserve the constraints and variable values generate orbits of variables.
Orbital branching selects an orbit of variables and branches in two cases. The first branch
selects an arbitrary representative variable is selected from the orbit and set to zero. The
second branch sets all variables in the orbit to one.

We extend this technique to be effective to search for uniquely Kr-saturated graphs.
We add an additional constraint to partial graphs: if a pair vi, vj is a non-edge in G, then
there is a unique set Si,j containing r − 2 vertices so that Si,j is a clique and every edge
between {vi, vj} and Si,j is included in G. This guarantees that there is at least one copy
of Kr in G+ vivj for all assignments of edges and non-edges to the remaining unassigned
pairs. The orbital branching method is customized to enforce this constraint, which leads
to multiple edges being added to the graph in every augmentation step. By executing
this algorithm, we found 10 new r-primitive graphs.

2.2 New r-primitive graphs

For r ∈ {4, 5, 6, 7, 8}, we used this method to exhaustively search for uniquely Kr-
saturated graphs of order at most Nr, where N4 = 20, N5 = N6 = 16, and N7 = N8 = 17.
Table 1 lists the r-primitive graphs that were discovered in this search. Most graphs do
not fit a short description and are labeled G

(i)
N , where N is the number of vertices and

i ∈ {A,B,C} distinguishes between graphs of the same order.

3We call a graph sporadic if it has not yet been extended to an infinite family. Therefore, even though
our search found 10 new graphs, one extended to an infinite family and so is not sporadic.
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n 13 15 16 16 17 18

r 4 6 5 6 7 4

Graphs G13, Paley(13) G
(A)
15 , G

(B)
15 G

(A)
16 , G

(B)
16 G

(C)
16 C(Z17, {1, 4}) G

(A)
18 , G

(B)
18

Table 1: Newly discovered r-primitive graphs.

In all, ten new graphs were discovered to be uniquely Kr-saturated by this search.
Explicit constructions of these graphs are given in Section 5. Two graphs found by
computer search are vertex-transitive and have a prime number of vertices. Observe
that vertex-transitive graphs with a prime number of vertices are Cayley graphs. One
vertex-transitive 4-primitive graph is the Paley graph of order 13 (see [22]). The other
vertex-transitive graph is 7-primitive on 17 vertices and is 14 regular. However, it is easier
to understand its complement, which is the Cayley graph for Z17 generated by 1 and 4.
This graph is listed as C(Z17, {1, 4}) in Table 1 and is the first example of our new infinite
families, described below.

2.3 Algebraic Constructions

For a finite group Γ and a generating set S ⊆ Γ, let C(Γ, S) be the undirected Cayley
graph for Γ generated by S: the vertex set is Γ and two elements x, y ∈ Γ are adjacent if
and only if there is a z ∈ S where x = yz or x = yz−1. When Γ ∼= Zn, the resulting graph
is also called a circulant graph. The cycle Cn can be described as the Cayley graph of Zn
generated by 1. Since C2r−1 is r-primitive and we discovered a graph on 17 vertices whose
complement is a Cayley graph with two generators, we searched for r-primitive graphs
when restricted to complements of Cayley graphs with a small number of generators.

For a finite group Γ and a set S ⊆ Γ, the Cayley complement C(Γ, S) is the complement
of the Cayley graph C(Γ, S). We restrict to the case when Γ = Zn for some n, and the
use of the complement allows us to use a small number of generators while generating
dense graphs.

We search for r-primitive Cayley complements by enumerating all small generator
sets S, then iterate over n where n > 2 maxS + 1 and build C(Zn, S). If C(Zn, S) is
r-primitive for any r, it must be for r = ω(C(Zn, S)) + 1, so we compute this r using
Niskanen and Österg̊ard’s cliquer library [19]. Also using cliquer, we count the number
of r-cliques in C(Zn, S) + {0, i} for all i ∈ S. Since C(Zn, S) is vertex-transitive, this
provides sufficient information to determine if C(Zn, S) is r-primitive. The successful
parameters for r-primitive Cayley complements with g generators are given in Tables 1(a)
(g = 2), 1(b) (g = 3), and 1(c) (g > 4).

For two and three generators, a pattern emerged in the generating sets, and interpo-
lating the values of n and r resulted in two infinite families of r-primitive graphs:

Theorem 2. Let t > 2 and set n = 4t2 + 1, r = 2t2 − t + 1. Then, C(Zn, {1, 2t}) is
r-primitive.
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(a) Two Generators

t S r n

2 {1, 4} 7 17

3 {1, 6} 16 37

4 {1, 8} 29 65

5 {1, 10} 46 101

6 {1, 12} 67 145

(b) Three Generators

t S r n

2 {1, 5, 6} 9 31

3 {1, 8, 9} 22 73

4 {1, 11, 12} 41 133

5 {1, 14, 15} 66 211

6 {1, 17, 18} 97 307

(c) Sporadic Cayley Complements

g S r n

3 {1, 3, 4} 4 13

4
{1, 5, 8, 34}

28 89{1, 11, 18, 34}
5 {1, 5, 14, 17, 25} 19 71

5 {1, 6, 14, 17, 36} 27 101

6 {1, 6, 16, 22, 35, 36} 21 97

6 {1, 8, 23, 26, 43, 64} 54 185

7 {1, 20, 23, 26, 30, 32, 34} 15 71

8 {1, 8, 12, 18, 22, 27, 33, 47} 20 97

9 {1, 4, 10, 16, 25, 27, 33, 40, 64} 28 133

Table 2: Cayley complement parameters for r-primitive graphs over Zn.

Theorem 3. Let t > 2 and set n = 9t2−3t+1, r = 3t2−2t+1. Then, C(Zn, {1, 3t−1, 3t})
is r-primitive.

An important step to proving these Cayley complements are r-primitive is to compute
the clique number. Computing the clique number or independence number of a Cayley
graph is very difficult, as many papers study this question [12, 16], including in the special
cases of circulant graphs [2, 5, 15, 28] and Paley graphs [1, 3, 4, 7]. Our enumerative
approach to Theorem 2 and discharging approach to Theorem 3 provide a new perspective
on computing these values.

It remains an open question if an infinite family of Cayley complements C(Zn, S) exist
for a fixed number of generators g = |S| where g > 4. For all known constructions with
g 6= 4, observe that the generators are roots of unity in Zn with x2g ≡ 1 (mod n) for each
generator x. Being roots of unity is not a sufficient condition for the Cayley complement
to be r-primitive, but this observation may lead to algebraic techniques to build more
infinite families of Cayley complements.

Determining the maximum density of a clique and independent set for infinite Cayley
graphs (i.e., C(Z, S), where S is finite) would be useful for providing bounds on the finite
graphs. Further, such bounds could be used by algorithms to find and count large cliques
and independent sets in finite Cayley graphs.

the electronic journal of combinatorics 19(4) (2012), #P6 5



3 Orbital branching using custom augmentations

In this section, we describe a computational method to search for uniquely Kr-saturated
graphs. We shall build graphs piece-by-piece by selecting pairs of vertices to be edges or
non-edges.

To store partial graphs, we use the notion of a trigraph, defined by Chudnovsky [6] and
used by Martin and Smith [17]. A trigraph T is a set of n vertices v1, . . . , vn where every
pair vivj is colored black, white, or gray. The black pairs represent edges, the white edges
represent non-edges, and the gray edges are unassigned pairs. A graph G is a realization
of a trigraph T if all black pairs of T are edges of G and all white pairs of T are non-
edges of G. Essentially, a realization is formed by assigning the gray pairs to be edges or
non-edges. In this way, we consider a graph to be a trigraph with no gray pairs.

Non-edges play a crucial role in the structure of uniquely Kr-saturated graphs. Given
a trigraph T and a pair vivj, a set S of r − 2 vertices is a Kr-completion for vivj if every
pair in S ∪ {vi, vj} is a black edge, except for possibly vivj. Observe that a Kr-free graph
is uniquely Kr-saturated if and only if every non-edge has a unique Kr-completion.

We begin with a completely gray trigraph and build uniquely Kr-saturated graphs by
adding black and white pairs. If we can detect that no realization of the current trigraph
can be uniquely Kr-saturated, then we backtrack and attempt a different augmentation.
The first two constraints we place on a trigraph T are:

(C1) There is no black r-clique in T .
(C2) Every vertex pair has at most one black Kr-completion.

It is clear that a trigraph failing either of these conditions will fail to have a uniquely
Kr-saturated realization.

We use the symmetry of trigraphs to reduce the number of isomorphic duplicates.
The automorphism group of a trigraph T is the set of permutations of the vertices that
preserve the colors of the pairs. These automorphisms are computed with McKay’s nauty
library [13, 18] through the standard method of using a layered graph.

3.1 Orbital Branching

Ostrowski, Linderoth, Rossi, and Smriglio introduced the technique of orbital branch-
ing for symmetric integer programs with 0-1 variables [20] and for symmetric constraint
systems [21]. Orbital branching extends the standard branch-and-bound strategy of com-
binatorial optimization by exploiting symmetry to reduce the search space. We adapt this
technique to search for graphs by using trigraphs in place of variable assignments.

Given a trigraph T , compute the automorphism group and select an orbit O of gray
pairs. Since every representative pair in O is identical in the current trigraph, assigning
any representative to be a white pair leads to isomorphic trigraphs. Hence, we need
only attempt assigning a single pair in O to be white. The natural complement of this
operation is to assign all pairs in O to be black. Therefore, we branch on the following
two options:
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- Branch 1 : Select any pair in O and assign it the color white.
- Branch 2 : Assign all pairs in O the color black.

A visual representation of this branching process is presented in Figure 1(a).
An important part of this strategy is to select an appropriate orbit. The selection

should attempt to maximize the size of the orbit (in order to exploit the number of pairs
assigned in the second branch) while preserving as much symmetry as possible (in order
to maintain large orbits in deeper stages of the search). It is difficult to determine the
appropriate branching rule a priori, so it is beneficial to implement and compare the
performance of several branching rules.

This use of orbital branching suffices to create a complete search of all uniquely Kr-
saturated graphs, but is not very efficient. One significant drawback to this technique is
the fact that the constraints (C1) and (C2) rely on black pairs forming cliques. In the next
section, we create a custom augmentation step that is aimed at making these constraints
trigger more frequently and thereby reducing the number of generated trigraphs.

3.2 Custom augmentations

We search for uniquely Kr-saturated graphs by enforcing at each step that every white
pair has a unique Kr-completion. We place the following constraints on a trigraph:

(C3) If vivj is a white edge, then there exists a unique Kr-completion S ⊆ {v1, . . . , vn}
for vivj.

To enforce the constraint (C3), whenever we assign a white pair we shall also select a
set of r− 2 vertices to be the Kr-completion and assign the appropriate pairs to be black.
The orbital branching procedure was built to assign only one white pair in a given step,
so we can attempt all possible Kr-completions for that pair. However, if we perform an
automorphism calculation and only augment for one representative set from every orbit
of these sets, we can reduce the number of isomorphic duplicates.

We follow a two-stage orbital branching procedure. In the first stage, we select an
orbit O of gray pairs. Either we select a representative pair vi′vj′ ∈ O to set to white or
assign vivj to be black for all pairs vivj ∈ O. In order to guarantee constraint (C3), the
white pair must have a Kr-completion. We perform a second automorphism computation
to find Stab{vi′ ,vj′}(T ), the set of automorphisms that set-wise stabilize the pair vi′vj′ .
Then, we compute all orbits of (r − 2)-subsets S in {v1, . . . , vn} \ {vi, vj} under the
action of Stab{vi′ ,vj′}(T ). The second stage branches on each set-orbit A, selects a single
representative S ′ ∈ A and adds all necessary black pairs to make S ′ be a Kr-completion
for vi′vj′ . If at any point we attempt to assign a white pair to be black, that branch fails
and we continue with the next set-orbit.

This branching process on a trigraph T is:
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- Branch 1 : Select any pair vi1vj1 ∈ O to be white.

- Sub-Branch: For every orbit A of (r− 2)-subsets of V (T ) \ {vi1 , vi2} under the
action of Stab{vi1 ,vj1}(T ), select any set S ∈ A, assign vi1va, vj1va, and vavb to
be black for all va, vb ∈ S.

- Branch 2 : Set vivj to be black for all pairs vivj ∈ O.

T is given
Orbit O is selected

in orbit

vivj black
for all vivj ∈ O

vi1vj1
white

vi2vj2
white

vi3vj3
white

vikvjk
white

(a) Standard orbital branching.

T is given
Orbit O is selected

in orbit

vivj black
for all vivj ∈ O

vi1vj1
white

vi2vj2
white

vi3vj3
white

vikvjk
white

vi1va
vj1va
vavb
black
va, vb in

S1

vi1va
vj1va
vavb
black
va, vb in

S2

vi1va
vj1va
vavb
black
va, vb in

S3

vi1va
vj1va
vavb
black
va, vb in

S4

vi1va
vj1va
vavb
black
va, vb in

S5

vi1va
vj1va
vavb
black
va, vb in

St

(b) Custom augmentations.

Figure 1: Visual description of the branching process.

The full algorithm to output all uniquely Kr-saturated graphs on n vertices is given
as the recursive method SaturatedSearch(n, r, T ) in Algorithm 1, while the branching
procedure is represented in Figure 1(b). The algorithm is initialized using the trigraph
corresponding to a single white pair with a Kr-completion. The first step of every recur-
sive call to SaturatedSearch(n, r, T ) is to verify the constraints (C1) and (C2). If either
constraint fails, no realization of the current trigraph can be uniquely Kr-saturated, so
we return. After verifying the constraints, we perform a simple propagation step: If a
gray pair {i, j} has a Kr-completion we assign that pair to be white. We can assume that
this pair is a white edge in order to avoid violation of (C1), and this assignment satisfies
(C3).

The missing component of this algorithm is the branching rule: the algorithm that
selects the orbit of unassigned pairs to use in the first stage of the branch. Based on
experimentation, the most efficient branching rule we implemented only considers pairs
where both vertices are contained in assigned pairs (if they exist) or pairs where one
vertex is contained in an assigned pair (which must exist, otherwise), and selects from
these pairs the orbit of largest size. This choice would guarantee the branching orbit
has maximum interaction with currently assigned edges while maximizing the effect of
assigning all representatives to be edges in the second branch.

the electronic journal of combinatorics 19(4) (2012), #P6 8



Algorithm 1 SaturatedSearch(n, r, T )

if T contains a black r-clique then
Constraint (C1) fails.
return

else if there exists a pair vivj with two Kr-completions in T then
Constraint (C2) fails.
return

else if there are no gray pairs then
The trigraph T is uniquely Kr-saturated.
Output T .
return

end if
Propagate under constraint (C1).
for all gray pairs vivj do

if vivj has a Kr-completion in T then
Assign vivj to be white.

end if
end for
Compute pair orbits O1,O2, . . . , of gray pairs {i, j}.
Select an orbit Ok using the branching rule.
Branch 1.
Let vi′vj′ be a representative of Ok.
Compute orbits A1,A2, . . . ,A` of (r − 2)-vertex sets in {v1, . . . , vn} \ {vi′ , vj′}.
for t ∈ {1, . . . , `} do

Let S be a representative of At.
if vi′va, vj′va, vavb not white for all a, b ∈ S then

Sub-Branch: Create T ′ from T by assigning vi′va, vj′va, vavb to be black for all
a, b ∈ S.
call SaturatedSearch(n, r, T ′)

end if
end for
Branch 2: Create T ′′ from T by assigning vivj to be black for all vivj ∈ Ok.
call SaturatedSearch(n, r, T ′′)
return
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n r = 4 r = 5 r = 6 r = 7 r = 8
10 0.10 s 0.37 s 0.13 s 0.01 s 0.01 s
11 0.68 s 5.25 s 1.91 s 0.28 s 0.09 s
12 4.58 s 1.60 m 25.39 s 1.97 s 1.12 s
13 34.66 s 34.54 m 6.53 m 59.94 s 20.03 s
14 4.93 m 10.39 h 5.13 h 20.66 m 2.71 m
15 40.59 m 23.49 d 10.08 d 12.28 h 1.22 h
16 6.34 h 1.58 y 1.74 y 34.53 d 1.88 d
17 3.44 d 8.76 y 115.69 d
18 53.01 d
19 2.01 y
20 45.11 y

Table 3: CPU times to search for uniquely Kr-saturated graphs of order n. Execution
times from the Open Science Grid [23] using the University of Nebraska Campus Grid
[25]. The nodes available on the University of Nebraska Campus Grid consist of Xeon
and Opteron processors with a range of speed between 2.0 and 2.8 GHz.

3.3 Implementation, Timing, and Results

The full implementation is available as the Saturation project in the SearchLib software
library4. More information for the implementation is given in the Saturation User Guide,
available with the software. In particular, the user guide details the methods for verifying
the constraints (C1), (C2), and (C3). When r ∈ {4, 5}, we monitored clique growth
using a custom data structure, but when r > 6 an implementation using Niskanen and
Österg̊ard’s cliquer library [19] was more efficient.

Our computational method is implemented using the TreeSearch library [24], which
abstracts the search structure to allow for parallelization to a cluster or grid. Table 3 lists
the CPU time taken by the search for each r ∈ {4, 5, 6, 7, 8} and 10 6 n 6 Nr (where
N4 = 20, N5 = N6 = 16, and N7 = N8 = 17) until the search became intractable for
n = Nr + 1. Table 1 lists the r-primitive graphs of these sizes. Constructions for the
graphs are given in Section 5.

4 Infinite families of r-primitive Cayley graphs

In this section, we prove Theorems 2 and 3, which provide our two new infinite families
of r-primitive graphs. We begin with some definitions that are common to both proofs.

Fix an integer n, a generator set S ⊆ Zn, and a Cayley complement G = C(Zn, S).
For a set X ⊆ Zn with r = |X|, list the elements of X as 0 6 x0 6 x1 6 . . . 6 xr−1 < n.
We shall assume that X is a clique in G (or in G+ e for some nonedge e ∈ E(G)).

4SearchLib is available online at http://www.math.uiuc.edu/~stolee/SearchLib/

the electronic journal of combinatorics 19(4) (2012), #P6 10

http://www.math.uiuc.edu/~stolee/SearchLib/


Considering X as a subset of Zn, we let the kth block Bk be the elements of Zn
increasing from xk (inclusive) to xk+1 (exclusive): Bk = {xk, xk + 1, . . . , xk+1 − 1}. Note
that |Bk| = xk+1 − xk; we call a block of size s an s-block. For an integer t > 1 and
j ∈ {0, . . . , r − 1}, the jth frame Fj is the collection of t consecutive blocks in increasing
order starting from Bj: Fj = {Bj, Bj+1, . . . , Bj+`−1}. A frame family is a collection F of
frames.

If F is a frame (or any set of blocks), define σ(F ) =
∑

Bj∈F |Bj|, the number of
elements covered by the blocks in F .

Observation 4. If X is a clique in C(Zn, S) and F is a set of consecutive blocks in X,
then σ(F ) /∈ S.

4.1 Two Generators

Theorem 2. Let t > 1, and set n = 4t2 + 1, r = 2t2 − t + 1. Then, C(Zn, {1, 2t}) is
r-primitive.

Proof. Let G = C(Zn, {1, 2t}). Note that G is regular of degree n − 5. If t = 1, then
n = 5, G is an empty graph, and r = 2, and empty graphs are 2-primitive. Therefore, we
consider t > 2.

Claim 5. For a clique X, every frame Fj has at least one block of size at least three, and
σ(Fj) > 2t+ 1.

All blocks Bj have at least two elements, since no pair of elements in X may be
consecutive in Zn, so σ(Fj) > 2t. If for all Bk ∈ Fj the block length |Bk| is exactly two,
then σ(Fj) = 2t ∈ S. Hence, there is some Bk ∈ Fj so that |Bk| > 3 and σ(Fj) > 2t+ 1.

We now prove there is no r-clique in G.

Claim 6. ω(G) < r.

Suppose X ⊆ Zn is a clique of order r in G. Let F be the frame family of all frames
(F = {Fj : j ∈ {0, . . . , r − 1}}) and consider the sum

∑r−1
j=0 σ(Fj). Using the bound

σ(Fj) > 2t + 1, we have that this sum is at least (2t + 1)r. Each block length |Bk| is
counted in t evaluations of σ(Fj) (for j ∈ {k−t+1, k−t+2, . . . , k}). This sum counts each
element of Zn exactly t times, giving value tn. This gives tn =

∑r−1
j=0 σ(Fj) > (2t + 1)r,

but tn = 4t3 + t < 4t3 + t + 1 = (2t + 1)r, a contradiction. Hence, X does not exist,
proving the claim.

To prove unique saturation, we consider only the non-edge {0, 1} since G is vertex-
transitive and the map x 7→ −2tx is an automorphism of G mapping the edge {0, 2t} to
{0,−4t2} ≡ {0, 1} (mod n).

Claim 7. There is a unique r-clique in G+ {0, 1}.

We may assume X = {0, 1, x2, . . . , xr−1} is an r-clique in G+{0, 1}. We use the frame
family F defined as

F = {Fjt+1 : j ∈ {0, . . . , 2t− 2}} .
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Note that F contains 2t− 1 disjoint frames containing disjoint blocks, and the block
B0 = {x0} is not contained in any frame within F . Hence, n − 1 =

∑
F∈F σ(F ). By

Claim 5, we know that every frame F ∈ F has σ(F ) > 2t + 1. This lower bound gives∑
F∈F σ(F ) > (2t + 1)(2t − 1) = n − 2. Thus, considering σ(F ) as an integer variable

for each F ∈ F , all solutions to the integer program with constraints σ(F ) > 2t + 1 and∑
F∈F σ(F ) = n − 1 have σ(F ) = 2t + 1 for all F ∈ F except a unique F ′ ∈ F with

σ(F ′) = 2t+ 2.
The frame F ′ has two possible ways to attain σ(F ′) = 2t + 2: (a) have two blocks of

size three, or (b) have one block of size four. However, if F ′ has a block of size four, then
there is a 2-block Bj ∈ F ′ on one end of F ′ where σ(F ′ \ {Bj}) = 2t ∈ S, a contradiction.
Thus, F ′ has two blocks of size three. In addition, if F ′ has fewer than t− 2 blocks of size
two between the two blocks of size three, then there is a pair x, y ∈ X with y = x + 2t.
Therefore, F ′ has two blocks of size three and they are the first and last blocks of F ′.

This frame family demonstrates the following properties of X. First, there are exactly
2t blocks of size three (2t− 2 frames have exactly one and F ′ has exactly two). Second,
there is no set of t consecutive blocks of size two. Finally, no two blocks of size three have
fewer than t− 2 blocks of size two between them.

Consider the position of a 3-block in the first frame, F1. If there are two 3-blocks in
F1, they appear as the first and last blocks in F1, but then the distance from x0 to xt−1

is 2t, a contradiction. Since there is exactly one 3-block, Bk, in F1, suppose k < t. Then
the distance from x0 to xt−1 is 2t. Hence, Bt is the 3-block in F1. By symmetry, there
must be t− 1 2-blocks between the 3-block in F(2t−2)t+1 and x0.

Let Bk1 , Bk2 , . . . , Bk2t be the 3-blocks in X with k1 < k2 < · · · < k2t. By the position
of the 3-block in F1, we have k1 = t. By the position of the 3-block in F(2t−2)t+1, we
have k2t = (2t − 2)t + 1. Since 3-blocks must be separated by at least t − 1 2-blocks,
kj+1−kj > t−1 but since k2t = (2t−1)(t−1)+k1 we must have equality: kj+1−kj = t−1.
Assuming X is an r-clique, it is uniquely defined by these properties. Indeed, all vertices
of this set are adjacent.

4.2 Three Generators

Theorem 3. Let t > 1 and set n = 9t2−3t+1, r = 3t2−2t+1. Then, C(Zn, {1, 3t−1, 3t})
is r-primitive.

Proof. Let G = C(Zn, {1, 3t − 1, 3t}). Observe that G is vertex-transitive and there are
automorphisms mapping {0, 3t− 1} to {0, 1} or {0, 3t} to {0, 1}. Thus, we only need to
verify that G has no r-clique and G+ {0, 1} has a unique r-clique.

We prove that G is r-primitive in three steps. First, we show that there is no r-clique
in G in Claim 11 using discharging. Second, assuming there are no 2-blocks in an r-clique
of G+ {0, 1}, we prove in Claim 12 that there is a unique such clique. This proof uses a
counting method similar to the proof of Claim 7. Finally, we show that any r-clique in
G+ {0, 1} cannot contain any 2-blocks. This step is broken into Claims 13 and 14, both
of which slightly modify the discharging method from Claim 11 to handle the 1-block.
Claim 14 requires a detailed case analysis.
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We use several figures to aid the proof. Figure 2 shows examples of common features
from these figures.

Frame Element Block Possible Element Forbidden Element

Zn
IncreasingDecreasing

{3t− 1, 3t}

Figure 2: Key to later figures

We begin by showing some basic observations that are used frequently in the rest of
the proof. These observations focus on interactions among blocks that are forced by the
generators 3t − 1 and 3t. In the observations below, we define functions ϕs and ψs that
map s-blocks of X to other blocks of X. Always, ϕs maps blocks forward (ϕs(Bk) has
higher index than Bk) while ψs maps blocks backward (ψs(Bk) has lower index than Bk).

It is intuitive that a maximum size clique uses as many small blocks as possible, to
increase the density of the clique within G. However, Observation 8 shows that every
2-block induces a block of size at least five in both directions.

ϕ2ψ2

xj xj+1

Bjψ2(Bj) ϕ2(Bj)

Figure 3: Observation 8 and a 2-block Bj.

Observation 8 (2-blocks). Let Bj be a 2-block, so xj+1 = xj + 2. The elements xj and
xj+1 along with generators 3t− 1 and 3t guarantee that the sets {xj + 3t− 1, xj + 3t, xj +
3t+ 1, xj + 3t+ 2} and {xj − 3t, xj − 3t+ 1, xj − 3t+ 2, xj − 3t+ 3} do not intersect X.
Since these sets contain consecutive elements, each set is contained within a single block
of X. We will use ϕ2(Bj) to denote the block containing xj + 3t and ψ2(Bj) to denote the
block containing xj − 3t. Both ϕ2(Bj) and ψ2(Bj) have size at least five.

If in fact multiple 2-blocks induce the same big block, Observation 9 implies the big
block has even larger size.

ψ2
ϕ2

xk Bk

ϕ−1
2 (Bk)

ψ−1
2 (Bk)

6 3t− 2(|ϕ−1
2 (Bk)|+ 1)

elements
6 3t− 2(|ψ−1

2 (Bk)|+ 1)
elements

Figure 4: Observation 9 and a block Bk.
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Observation 9 (Big blocks). Let Bk be a block of size at least five. The set ϕ−1
2 (Bk) is

the set of 2-blocks Bj so that ϕ2(Bj) = Bk. Similarly, ψ−1
2 (Bk) is the set of 2-blocks Bj so

that ψ2(Bj) = Bk. Note that when s = |ϕ−1
2 (Bk)|, there are at least s + 1 elements of X

(s from the 2-blocks in ϕ−1
2 (Bk) and one following the last 2-block in ϕ−1

2 (Bk)) that block
2(s+ 1) elements from containment in X using the generators 3t− 1 and 3t. Therefore,

|Bk| > 2|ϕ−1
2 (Bk)|+ 3, and |Bk| > 2|ψ−1

2 (Bk)|+ 3.

Further, there are at most 3t − 2(|ϕ−1
2 (Bk)| + 1) elements between Bk and the last block

of ϕ−1
2 (Bk). Similarly, there are at most 3t− 2(|ψ−1

2 (Bk)| + 1) elements between Bk and
the first block of ψ−1

2 (Bk).

ϕ4ψ4
oror

xj xj+1

Bj

xj − 3t + 2
xj − 3t + 3

xj + 3t + 1
xj + 3t + 2

Figure 5: Observation 10 and a 4-block Bj.

Observation 10 (4-blocks). Let Bj be a 4-block, so xj+1 = xj+4. The elements {xj+3t−
1, xj+3t, xj+3t+3, xj+3t+4} are not contained in X, so X∩{xj+3t−1, . . . , xj+3t+4} ⊆
{xj+3t+1, xj+3t+2}. In G, no two elements of X are consecutive elements of Zn, so there
is at most one element in this range. If there is no element of X in {xj+3t+1, xj+3t+2},
then there is a block of size at least seven that contains xj + 3t + 1. Otherwise, there is
a single element in X ∩ {xj + 3t + 1, xj + 3t + 2} and one of the adjacent blocks has
size at least four. We use ϕ4(Bj) to denote one of these blocks of size at least four. By
symmetry, we use ψ4(Bj) to denote a block of size at least four that contains or is adjacent
to the block containing xj − 3t + 2. In G + {0, 1}, the only elements of X that can be
consecutive are 0 and 1, let B0 = {0} denote the first block of X. Thus, let ϕ4(Bj) = B0

if xj + 3t+ 1 = 0 and ψ4(Bj) = B0 if xj − 3t+ 2 = 0.

We now use a two-stage discharging method to prove that there is no r-clique X in
G. In Stage 1, we assign charge to the blocks of X and discharge so that all blocks have
non-negative charge. In Stage 2, we assign charge to the frames of X using the new
charges on the blocks and then discharge among the frames.

Stage 1: Blocks µ(Bj)
discharge // µ∗(Bj)

defines
��

Stage 2: Frames ν∗(Fj)
discharge // ν ′(Fj)

Figure 6: The two-stage discharging method.

We will use this framework three times, in Claims 11, 13, and 14, but we use a different
set of rules for Stage 1 each time. Stage 2 will always use the same discharging rule.
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Claim 11. ω(G) < r.

Proof of Claim 11. Suppose X is an r-clique in G.
Let µ be a charge function on the blocks of X defined by µ(Bj) = |Bj| − 3. All 2-

blocks have charge −1, 3-blocks have charge 0, and all other blocks have positive charge.
Moreover, the total charge on all blocks is

r−1∑
j=0

µ(Bj) = n− 3r = 3t− 2.

We shall discharge among the blocks to form a new charge function µ∗.

Stage 1α: Discharge by shifting one charge from ϕ2(Bj) to Bj for every 2-block Bj.

After Stage 1α, µ∗(Bj) = 0 when |Bj| ∈ {2, 3}, µ∗(Bj) = 1 when |Bj| = 4, and

µ∗(Bj) = |Bj| − 3− |ϕ−1
2 (Bj)| > |ϕ−1

2 (Bj)|

when |Bj| > 5. Note that if |ϕ−1
2 (Bj)| = 0 for a block Bj of size at least five, then

µ∗(Bj) > 2.
Now, µ∗ is a non-negative function and

∑r−1
j=0 µ

∗(Bj) = 3t− 2.
For every frame Fj, define ν∗(Fj) as ν∗(Fj) =

∑
Bj+i∈Fj

µ∗(Bj+i). Since every block is
contained in exactly t frames, the total charge on all frames is

r−1∑
j=0

ν∗(Fj) = t
r−1∑
j=0

µ∗(Bj) = t(3t− 2) = r − 1.

There must exist a frame with ν∗(Fj) = 0; such a frame contains only 2- and 3-
blocks. If this frame contained only blocks of length three and at most one block of
length two, then σ(Fj) ∈ {3t− 1, 3t}, contradicting that X is a clique. Thus, any frame
with ν∗(Fj) = 0 must contain at least two 2-blocks where all blocks between are 3-blocks.

For each pair Bk, Bk′ of 2-blocks that are separated only by 3-blocks, define Lk,k′ to be
the set of frames containing both Bk and Bk′ , and Rk,k′ to be the set of frames containing
both ϕ2(Bk) and ϕ2(Bk′). If ϕ2(Bk) = ϕ2(Bk′), then |Rk,k′| = t > |Lk,k′|. Otherwise,
there are fewer elements between ϕ2(Bk) and ϕ2(Bk′) than between Bk and Bk′ , and
every block between ϕ2(Bk) and ϕ2(Bk′) has size at least three (a 2-block Bj between
ϕ2(Bk) and ϕ2(Bk′) would induce a large block ψ2(Bj) between Bk and B′k). Hence, there
are at least as many blocks between Bk and B′k as there are between ϕ2(Bk) and ϕ2(Bk′)
and so |Lk,k′ | 6 |Rk,k′|. Let fk,k′ : Lk,k′ → Rk,k′ be any injection where fk,k′(Fj) = Fj for
all Fj ∈ Lk,k′ ∩Rk,k′ .

Using these injections, we discharge among the frames to form a new charge function
ν ′.

Stage 2: For every frame Fj and every pair Bk, Bk′ of 2-blocks in Fj separated by only
3-blocks, Fj pulls one charge from fk,k′(Fj).
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Since every frame Fj with ν∗(Fj) = 0 has at least one such pair Bk, Bk′ and does not
contain ϕ2(Bi) for any 2-block Bi, Fj pulls at least one charge but does not have any
charge removed. Thus, ν ′(Fj) > 1.

We will show that frames Fj with ν∗(Fj) > 1 have strictly less than ν∗(Fj) charge
pulled during the second stage. Let {(Bki , Bk′i

;Fji) : i ∈ {1, . . . , `}} be the set of pairs
Bki , Bk′i

of 2-blocks and a common frame Fji where fki,k′i(Fji) = Fj. Since each map fki,k′i
is an injection, the blocks Bki are distinct for all i ∈ {1, . . . , `}, and exactly ` charge
was pulled from Fj. While Bk′i

and Bki+1
may be the same block, Bk1 , . . . , Bk` , Bk′`

are
` + 1 distinct 2-blocks. Every block Bki has ϕ2(Bki) ∈ Fj and ϕ2(Bk′`

) ∈ Fj. Thus,

ν∗(Fj) >
∑

Bi∈Fj
|ϕ−1

2 (Bi)| > `+ 1, which implies ν ′(Fj) > 1.

Therefore, ν ′(Fj) > 1 for all frames Fj, and r − 1 =
∑r−1

j=0 ν
′(Fj) > r, a contradiction.

Hence, there is no clique of size r in G, proving Claim 11.

For the remaining claims, we assume X is an r-clique in G+ {0, 1} where X contains
both 0 and 1. Then, B0 is the block containing exactly {0}, and all other blocks from
X have size at least two. Since 0 and 1 are in X, the sets {3t − 1, 3t, 3t + 1} and
{−3t− 1,−3t,−3t + 1} of consecutive elements do not intersect X. Thus, there are two
blocks Bk1 and Bk2 so that {3t− 1, 3t, 3t+ 1} ⊂ Bk1 and {−3t− 1,−3t,−3t+ 1} ⊂ Bk2 .
When Bk1 and Bk2 are 4-blocks, then B0 = ψ4(Bk1) = ϕ4(Bk2) as in Observation 10.

With the assumption that there are no 2-blocks in X, uniqueness follows through an
enumerative proof similar to Claim 7, given as Claim 12. After this claim, Claims 13 and
14 show that X has no 2-blocks, completing the proof.

Claim 12. There is a unique r-clique in G+ {0, 1} with no 2-blocks.

Proof of Claim 12. Consider the frame family F = {Fjt+1 : j ∈ {0, . . . , 3t− 2}} of 3t− 1
disjoint frames. Note that the block B0 is not contained in any of these frames. Since
there are no 2-blocks, σ(Fjt+1) > 3t, but σ(Fjt+1) 6= 3t so σ(Fjt+1) > 3t+ 1. Thus,

n− 1 =
∑

Fjt+1∈F

σ(Fjt+1) > (3t− 1)(3t+ 1) = n− 3.

From this inequality we have σ(Fjt+1) = 3t+ 1 for all frames except either one frame
Fk with σ(Fk) = 3t+ 3 or two frames Fk, Fk′ with σ(Fk) = σ(Fk′) = 3t+ 2.

Fk

xk xk+t

6 3t− 7 elements

Figure 7: Claim 12, σ(Fk) = 3t+ 3.

Suppose there is a frame Fk with σ(Fk) = 3t+3. Since xk+t = xk+3t+3, the elements

xk+t − 3t = xk + 3, xk+t − (3t− 1) = xk + 4,
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xk + 3t− 1 = xk+t − 4, and xk + 3t = xk+t − 3,

are not contained in X. Since we have no 2-blocks, the elements xk + 2 and xk+t − 2 are
not in X. Thus, there are two blocks of size at least five in Fk. This means there are t−2
blocks for the remaining 3t − 7 elements, but t − 2 blocks of size at least three cover at
least 3t− 6 elements. Hence, no frame has σ(Fk) = 3t+ 3.

Suppose we have exactly two frames Fk, Fk′ ∈ F with σ(Fk) = σ(Fk′) = 3t + 2. If a
frame Fj contains a block of size at least six, then σ(Fj) > 3t + 3, so Fk and Fk′ each
contain either one 5-block or two 4-blocks. However, if the first or last block (denoted by
Bj) of Fk (or Fk′) has size three, then σ(Fk \ {Bj}) = 3t− 1, a contradiction. Thus, the
first and last blocks of Fk and Fk′ are not 3-blocks and hence are both 4-blocks. Therefore,
there are exactly two frames in F containing exactly two 4-blocks and the rest contain
exactly one 4-block, for a total of 3t 4-blocks in X.

Let `1, `2, . . . , `3t be the indices of the 4-blocks. Since each frame Fi has at least one
4-block, `j 6 `j−1 + t. Also, if a frame Fi has exactly two 4-blocks, then the blocks appear
as the first and last blocks in Fj, giving `j > `j−1 + t− 1.

Consider the position of B`1 . If B`1 is strictly between B0 and Bk1 , then the frame
F1 contains two 4-blocks B`1 and Bk1 , and so B`1 = B1 and Bk1 = Bt. However, there
are 3t − 3 elements between B0 and Bk1 , but at least 3t − 2 elements between B0 and
Bt. Therefore, B`1 = Bk1 and there are t− 1 3-blocks between B0 and B`1 , so `1 = t− 1.
Similarly, B`3t = Bk2 and there are t− 1 3-blocks between B`3t and B0, so `3t = (r− 1)−
(t− 1) = 3t2 − 3t+ 1.

There is exactly one solution to the constraints `j ∈ {`j−1 + t − 1, `j−1 + t} and
`3t− `1 = 3t2− 2t+ 1 = (3t− 1)(t− 1) given by `j = `j−1 + t− 1. This uniquely describes
X as a clique in G+ {0, 1}.

We now aim to show that there are no 2-blocks in an r-clique X of G. This property
can be quickly checked computationally for t 6 4, so we now assume that t > 5.

The problem with applying the discharging method from Claim 11 is that B0 starts
with charge µ(B0) = −2 and there is no clear place from which to pull charge to make
µ∗(B0) positive. We define three values, a, b, and c, which quantify the excess charge
from Stage 1α that can be redirected to B0 while still guaranteeing that all frames end
with positive charge. In Claim 13, we assume a + b + c > 3 and place all of this excess
charge on B0 in Stage 1β, giving µ∗(B0) > 1; an identical Stage 2 discharging leads to
positive charge on all frames. In Claim 14, Stage 1γ pulls charge from Bk1 and Bk2 to
result in µ∗(B0) = 0 and possibly µ∗(Bk1) = 0 or µ∗(Bk2) = 0. After Stage 1γ and Stage
2, there may be some frames with ν ′-charge zero, but they must contain B0, Bk1 , or Bk2 .
By carefully analyzing this situation, we find a contradiction in that either X is not a
clique or a+ b+ c > 3.

We now define the quantities a, b, and c.
If a block Bj has size at least five and ϕ−1

2 (Bj) is empty, then no charge is removed
from Bj in Stage 1α. If charge is pulled from frames containing Bj in Stage 2, there are
other blocks that supply the charge required to stay positive. Therefore, we define a to
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be the excess µ-charge that can be removed and maintain positive µ∗-charge:

a =
∑
Bj∈A

[|Bj| − 4] , where A is the set of blocks Bj with |Bj| > 5 and ϕ−1
2 (Bj) = ∅.

If a block Bj has size at least five and ϕ−1
2 (Bj) is not empty, charge is pulled from Bj in

Stage 1α. However, if |Bj| > 2|ϕ−1
2 (Bj)|+ 3, there is more charge left after Stage 1α than

is required in Stage 2 to maintain a positive charge on frames containing Bj. We define
b to be the excess charge left in this situation:

b =
∑
Bj∈B

[
|Bj| − (2|ϕ−1

2 (Bj)|+ 3)
]
,

where B is the set of blocks Bj with |Bj| > 5 and ϕ−1
2 (Bj) 6= ∅.

If there is a frame Fj with three blocks B`0 , B`1 , B`2 where |B`i | > 4 for all i ∈ {0, 1, 2}
and ϕ−1

2 (B`1) = ∅, then let c = 1; otherwise c = 0. Since every frame containing B`1 also
contains B`0 or B`2 , these frames are guaranteed a positive ν ′-charge from B`0 or B`2 , so
the single charge on B`1 that was not pulled from previous rules is free to pass to B0.

Claim 13. Suppose X is a set in G + {0, 1} with |X| = r. If a + b + c > 3, then X is
not a clique.

Proof of Claim 13. We proceed by contradiction, assuming that a + b + c > 3 and X
is an r-clique. We shall modify the two-stage discharging from Claim 11 with a more
complicated discharging rule to handle B0 so that the result is the same contradiction:
that all r frames have positive charge, but the amount of charge over all the frames is
r − 1.

Let µ be the charge function on the blocks of X defined by µ(Bj) = |Bj| − 3. We
discharge using Stage 1β to form the charge function µ∗.

Stage 1β: There are four discharging rules:

1. If |Bk| = 2, Bk pulls one charge from ϕ2(Bk).
2. B0 pulls |Bk| − 4 charge from every block Bk with |Bk| > 5 and ϕ−1

2 (Bk) = ∅. (The
total charge pulled by B0 in this rule is a.)

3. B0 pulls |Bk| − (2|ϕ−1
2 (Bk)| + 3) charge from every block Bk with |Bk| > 5 and

ϕ−1
2 (Bk) 6= ∅. (The total charge pulled by B0 in this rule is b.)

4. If there is a frame Fj with three blocks B`0 , B`1 , B`2 where |B`i | > 4 for all i ∈
{0, 1, 2} and ϕ−1

2 (B`1) = ∅, then B0 pulls one charge from B`1 . (The amount of
charge pulled by B0 in this rule is c.)

Since a + b + c > 3, B0 pulls at least 3 charge, so µ∗(B0) > 1. Blocks of size two
and three have µ∗-charge zero. If a block Bk has size four or has size at least five and
ϕ−1

2 (Bk) = ∅, then µ∗(Bk) = 1 except B`1 where µ∗(B`1) = 0. Similarly, a block Bk of
size at least five with ϕ−1

2 (Bk) 6= ∅ has charge µ∗(Bk) = |ϕ−1
2 (Bk)|.

For every frame Fj, define ν∗(Fj) =
∑

Bj+i∈Fj
µ∗(Bj+i). Note that if the charge ν∗(Fj)

is zero, every block in Fj has zero charge since µ∗(Bk) > 0 for all blocks.
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Stage 2: For every frame Fj and every pair Bk, Bk′ of 2-blocks in Fj separated by only
3-blocks, Fj pulls one charge from fk,k′(Fj).

If ν∗(Fj) = 0, then Fj contains only blocks Bk with µ∗(Bk) = 0. These blocks are
2-blocks, 3-blocks, and B`1 . However, any frame that contains B`1 also contains B`0 or
B`2 , which have positive charge. Thus, frames Fj with ν∗(Fj) = 0 contain only 2- and
3-blocks. Since σ(Fj) /∈ {3t, 3t− 1}, Fj must contain at least two 2-blocks Bk, Bk′ , so Fj
pulls at least one charge in the second stage and loses no charge, so ν ′(Fj) > 1.

If ν∗(Fj) > 1, the amount of charge pulled from Fj in Stage 2 is the number of
2-block pairs Bk, Bk′ separated by 3-blocks so that ϕ2(Bk), ϕ2(Bk′) ∈ Fj. Observe
µ∗(Bi) = |ϕ−1

2 (Bi)| for all blocks Bi with ϕ−1
2 (Bi) 6= ∅, so ν∗(Fj) =

∑
Bi∈Fj

µ∗(Bi) >∑
Bi∈Fj

|ϕ−1
2 (Bi)|. If there are ` pairs Bk, Bk′ that pull one charge from Fj in Stage 2,

then there are at least `+ 1 2-blocks in ∪Bi∈Fj
ϕ−1

2 (Bi), and ν∗(Fj) > `+ 1.
Therefore, ν ′(Fj) > 1 for all j ∈ {0, . . . , r − 1}, but since

r 6
r−1∑
j=0

ν ′(Fj) =
r−1∑
j=0

ν∗(Fj) = t
r−1∑
j=0

µ∗(Bj) = t
r−1∑
j=0

µ(Bj) = t(n− 3r) = r − 1,

we have a contradiction, and so X is not a clique.

Claim 14. If X is an r-clique in G+ {0, 1} that contains a 2-block, then a+ b+ c > 3.

Proof of Claim 14. We shall repeat the two-stage discharging from Claim 11 with a sim-
pler rule for discharging to B0 than in Claim 13. After this discharging is complete, we
will investigate the configuration of blocks surrounding one of the 2-blocks and show that
the sum a+ b+ c has value at least three.

Let µ be the charge function on the blocks of X defined by µ(Bj) = |Bj| − 3. We use
Stage 1γ to discharge among the blocks and form a charge function µ∗.

Stage 1γ: We have two discharging rules:

1. If |Bj| = 2, Bj pulls one charge from ϕ2(Bj).
2. B0 pulls one charge from Bk1 and one charge from Bk2 .

After the first rule within Stage 1γ there is at least one charge on all blocks of size at
least four. Thus, removing one more charge from each of Bk1 and Bk2 in the second rule
of Stage 1γ maintains that µ∗(Bk1) and µ∗(Bk2) are non-negative. Since B0 receives two
charge and every 2-block receives one charge, µ∗(Bj) is non-negative after Stage 1γ for
all blocks Bj.

Define the charge function ν∗(Fj) =
∑

Bi∈Fj
µ∗(Bi).

Stage 2: For every frame Fj and every pair Bk, Bk′ of 2-blocks in Fj separated by only
3-blocks, Fj pulls one charge from fk,k′(Fj).

Again,
∑r−1

j=0 ν
′(Fj) = r− 1. Also, ν ′(Fj) > 0 whenever Fj contains a block of order at

least four that is not Bk1 or Bk2 , or Fj contains two 2-blocks separated only by 3-blocks.
Since one charge was removed from Bk1 and Bk2 in Stage 1γ, the frames containing Bk1 or
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Bk2 are no longer guaranteed to have positive charge, but still have non-negative charge.
In order to complete the proof of Claim 14, we must more closely analyze the charge
function ν ′.

Definition 15 (Pull sets). A pull set is a set of blocks, P = {Bi1 , . . . , Bip}, where |Bij | > 5
for all j ∈ {1, . . . , p} and all blocks between Bij and Bij+1

are 3-blocks. Let ϕ−1
2 (P) =

∪Bi∈Pϕ
−1
2 (Bi). A pull set P is perfect if all blocks Bi ∈ P have |Bi| = 2|ϕ−1

2 (Bi)| + 3.
Otherwise, a pull set P contains a block Bi ∈ P with |Bi| > 2|ϕ−1

2 (Bi)| + 4 and P is
imperfect. Given a pull set P , the defect of P is δ(P) =

∑
Bi∈P

[
µ∗(Bi)− |ϕ−1

2 (Bi)|
]
− 1.

The defect δ(P) measures the amount of excess charge (more than one charge) the
pull set P contributes to the ν ′-charge of any frame containing P . Note that pull sets
P with Bk1 , Bk2 /∈ P have defect δ(P) > 0, with equality if and only if P is perfect.
Perfect pull sets P containing Bk1 or Bk2 have defect δ(P) = −1. For a block Bi ∈ P , if
d 6 µ∗(Bi)− |ϕ−1

2 (Bi)| then we say Bi contributes d to the defect of P .
Consider a pull set P = {Bi1 , . . . , Bip}. Since there are at most 3t−4 elements between

ϕ−1
2 (Bip) and Bip and all blocks from Bi1 to Bip have order at least three, there exists a

frame that contains all blocks of P . Therefore, every pull set is contained within some
frame.

If Bi is a block with |Bi| > 5, then P = {Bi} is a (not necessarily maximal) pull set,
and {Bi} is a subset of each frame containing Bi. For every frame Fj and block Bi ∈ Fj
with |Bi| > 5 there is a unique maximal pull set P ⊆ Fj containing Bi. Thus, if there are
multiple maximal pull sets within a frame Fj, then they are disjoint.

Observation 16. Let X be an r-clique and ν ′ be the charge function on frames of X
after Stage 1γ and Stage 2. Then, for a frame Fj, ν

′(Fj) is at least the sum of

1. the number of distinct pairs Bk, Bk′ of 2-blocks in Fj separated only by 3-blocks,
2. the number of 4-blocks in Fj not equal to Bk1 , Bk2,
3. 1 + δ(P) for every maximal pull set P ⊆ Fj.

In Claim 14.4, we prove there exists a special block B∗ in a frame Fz with ν ′(Fz) = 0.
The proof of Claim 14.4 reduces to three special cases that are handled in Claims 14.1-14.3.

Recall
∑r−1

j=0 ν
′(Fj) = r − 1. Let Z be the number of frames F with ν ′(F ) = 0. Then,

∑
j:ν′(Fj)>0

[ν ′(Fj)− 1] =
r−1∑
j=0

[ν ′(Fj)− 1] + Z = (r − 1)− r + Z = Z − 1.

Therefore, if there are at most t+ 1 frames with ν ′-charge zero (ν ′(Fj) = 0), then the
sum

∑
j:ν′(Fj)>0[ν ′(Fj) − 1] is bounded above by t. The proof of Claim 14.4 frequently

reduces to a contradiction with this bound. Claims 14.1-14.3 provide some situations that
guarantee this sum has value at least t+ 1.

Claim 14.1. Let P be a pull set containing a block Bj. If |ϕ−1
2 (P)| > 2 and xk1 + 6t2 6

xj 6 xk2, then there is a set H of frames with
∑

Fj∈H(ν ′(Fj)− 1) > t+ 1.
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Proof of Claim 14.1. Starting with P(0) = P , we construct a sequence P(0), P(1), . . . , P(`)

of pull sets with ` 6 d t+1
2
e+ 1. We build P(k) by following the map ψ2 from ϕ−1

2 (P(k−1)).
This process will continue until one of the sets is not a pull set, one of the sets is an
imperfect pull set, or we reach d t+1

2
e pull sets. In either case, we find a set H of frames

that satisfies the claim.
We initialize P(0) to be P , which contains Bj. Note that it is possible that Bj = Bk2 ,

but otherwise Bj precedes Bk2 . There will be at most 6t elements covered by the blocks
starting at P(k) to the blocks preceding P(k−1). Note that since xj − xk1 > 6t2, P(k) will
not contain Bk1 or Bk2 for any k ∈ {1, . . . , d t+2

2
e}.

Let k > 1 be so that P(k−1) is a perfect pull set with |ϕ−1
2 (P(k−1))| > 2. For every

block Bi ∈ P(k−1), let B` be a 2-block in ϕ−1
2 (Bi) and place ψ2(B`) in P(k). Then, place

any block of size at least five that is positioned between to blocks of P(k) into P(k).
If P(k) is always perfect for all k 6 d t+1

2
e, then we have pull sets P(0), . . . , P(k)

and frames Fj0 , Fj′0 , . . . , Fjk−1
, Fj′k−1

, where k = d t+1
2
e. Thus, let H = {Fj` , Fj′` : ` ∈

{1, . . . , k}} and
∑

F∈H[ν ′(F )−1] > t+1, proving the claim. It remains to show that such
a set H exists if some P(k) is imperfect.

If P(k) is a perfect pull set with |ϕ−1
2 (P(k))| > 2, then let Fjk be the frame that starts

at the last block of P(k) and Fj′k be the frame that ends at the first block of P(k). We claim
that Fjk and Fj′k have ν ′-charge at least two. There are at most 3t− 4 elements between

the last block in P(k) and the last 2-block in ψ−1
2 (P(k)). If there is at most one 2-block in

Fjk , then σ(Fjk) > 2 + 3(t− 2) + 5 = 3t+ 3 and Fjk contains all 2-blocks in ψ−1
2 (P(k)), a

contradiction. Therefore, the frame Fjk contains at least two 2-blocks. If those 2-blocks
are separated by three blocks, they pull at least one charge in Stage 2. If those 2-blocks
are not separated by three blocks, then either they are separated by a 4-block (which
contributes at least one charge) or a second maximal pull set (which contributes at least
one charge). Thus, ν ′(Fjk) > 2. By a symmetric argument, Fj′k contains two 2-blocks and
has ν ′(Fj′k) > 2. Figure 8 shows how the frames Fjk and Fj′k are placed among the pull

sets P(k−1) and P(k).

ϕ−1
2 (P(k)) P(k) ϕ−1

2 (P(k−1)) P(k−1)

Fjk+1
Fj′k

Fjk Fj′k−1

ψ2
ϕ2 ψ2

ϕ2

Figure 8: Claim 14.1, building P(k) and frames Fjk , Fj′k .

If P(k) is not a perfect pull set or |ϕ−1
2 (P(k))| < 2, either P(k) is not a pull set or P(k)

is an imperfect pull set.

Case 1: P(k) is not a pull set. In this case, there is a non-3-block Bj not in P(k) that
is between two blocks B`1 , B`2 of P(k). If |Bj| > 5, then Bj would be added to P(k).
Therefore, |Bj| ∈ {2, 4}.
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Case 1.i: |Bj| = 4. Every frame containing Bj also contains either B`1 or B`2 .
Therefore, these t frames contain a 4-block and at least one pull set with non-
negative defect so they have ν ′-charge at least two. The frame starting at B`1 also
contains Bj and B`2 , so this frame has two disjoint maximal pull sets and a 4-block
and has ν ′-charge at least three. Therefore, if H is the family of frames containing
Bj,

∑
F∈H[ν ′(F )− 1] > t+ 1.

ψ2
ϕ2

Bj B`1 B`2 Bg1 Bg2

ϕ2(Bj) 3-blocks

Figure 9: Claim 14.1, Case 1.ii.

Case 1.ii: |Bj| = 2. Let B`1 be the last 2-block preceding ϕ2(Bj) and B`2 be the first
2-block following ϕ2(Bj). Note that Bj is between ψ2(B`1) and ψ2(B`2), which must
be in P(k).

(a) Suppose {ϕ2(Bj)} is an imperfect pull set. Then ϕ2(Bj) contributes one to the
defect of any pull set containing ϕ2(Bj). Place all frames containing ϕ2(Bj) into
H, as they have ν ′-charge at least two. Also place the frame F starting at ψ2(B`1)
into H. If F also contains ψ2(B`2), it contains two disjoint maximal pull sets and
thus has ν ′-charge at least two. Otherwise, F must contain at least two 2-blocks
that either pull a charge in Stage 2 or are separated by a block of size at least four;
ν ′(F ) > 2 in any case. This frame family H satisfies the claim.

(b) Suppose {ϕ2(Bj)} is a perfect pull set. Therefore, |ϕ2(Bj)| = 3 + 2h for some
integer h > 1 and hence is odd. Let Bg1 = ϕ2(B`1) and Bg2 = ϕ2(B`2). Since Bg1

and Bg2 are in P(k−1) and P(k−1) is a pull set, there are only 3-blocks between Bg1

and Bg2 . Therefore, the elements xg1+1, xg1+2, . . . , xg2 have xg1+i+1 = xg1+i+3 for all
i ∈ {1, . . . , g2− g1−1}. The generators 3t−1 and 3t guarantee that the elements of
X strictly between x`1 and x`2 are a subset of {x`1 + 2 + 3i : i ∈ {0, 1, . . . , g2− g1}}.
Therefore, all blocks between B`1 and B`2 (including ϕ2(Bj)) have size divisible
by three. So, |ϕ2(Bj)| is an odd multiple of three, but strictly larger than three;
|ϕ2(Bj)| > 9 and |ϕ−1

2 (ϕ2(Bj))| > 3.

There are t − 2 frames containing the first three 2-blocks in ϕ−1
2 (ϕ2(Bj)). Since

these 2-blocks are consecutive, each frame pulls two charge in Stage 2. Also, let F ′

be the frame whose last two blocks are the first two 2-blocks in ϕ−1
2 (ϕ2(Bj)) and

let F ′′ be the frame whose first two blocks are the last two 2-blocks in ϕ−1
2 (ϕ2(Bj)).

Either F ′ contains ψ2(B`1) or contains another 2-block preceding ϕ−1
2 (ϕ2(Bj)), and

thus ν ′(F ′) > 2; by symmetric argument, ν ′(F ′′) > 2. Let H contain these frames,
and note that

∑
F∈H[ν ′(F ) − 1] > t. Also, add the frame Fi whose last block is

ϕ2(Bj) to H. If this frame is already included in H, then the charge contributed
by ϕ2(Bj) was not counted in the previous bound and

∑
F∈H[ν ′(F ) − 1] > t + 1.

Otherwise, Fi does not contain two 2-blocks from ϕ−1
2 (ϕ2(Bj)) and so Fi spans fewer

the electronic journal of combinatorics 19(4) (2012), #P6 22



than 3t− 8 elements preceding ϕ2(Bj). Thus, Fi contains at least two 2-blocks that
are separated either by only 3-blocks (where Fi pulls a charge in Stage 2) or by a
block of size at least four (which contributes at least an additional charge to Fi),
and so ν ′(Fi) > 2 and

∑
F∈H[ν ′(F )− 1] > t+ 1.

Case 2: P(k) is an imperfect pull set. There is a block B` ∈ P(k) so that |B`| >
2|ϕ−1

2 (B`)| + 4. Since B` contributes at least one to the defect of every pull set that
contains B`, every frame containing B` has ν ′-charge at least two. Let Fjk be the
frame that starts at the last block of P(k), and note that Fjk contains at least two
2-blocks. Therefore, Fjk either contains a pull set and two 2-blocks separated by only
3-blocks, two disjoint maximal pull sets, or a pull set and a 4-block and in any case has
ν ′-charge at least two. If Fjk contains B`, then one of the pull sets in Fjk is imperfect
and ν ′(Fjk) > 3. Therefore, let H contain Fjk and the frames containing B`, and H
satisfies the claim.

Claim 14.2. Let Bi be a 5-block with xk2 − 9t 6 xi 6 xk2. If every pull set P containing
Bi has |ϕ−1

2 (P)| = |ϕ−1
2 (Bi)| = 1, then there is a set H of frames with

∑
Fj∈H(ν ′(Fj)−1) >

t+ 1.

Proof of Claim 14.2. Let Bj = ψ2(ϕ−1
2 (Bi)). If there is a pull set P containing Bj where

|ϕ−1
2 (P)| > 2, then Claim 14.1 applies to P and we can set H to be the t + 1 frames

with ν ′-charge at least two. Therefore, we assume no such pull set exists. This implies
|ϕ−1

2 (Bj)| ∈ {0, 1}.
We shall construct two disjoint sets H1 and H2 so that

∑
F∈H1

[ν ′(Fj) − 1] > t and∑
F∈H2

[ν ′(F )− 1] > 1 so H = H1 ∪H2 satisfies
∑

Fj∈H(ν ′(Fj)− 1) > t+ 1. To guarantee
disjointness, there are blocks that must be contained in frames of H2 that cannot be
contained in frames of H1. For instance, a frame in H2 may contain Bj, but no frames in
H1 may contain Bj.

If ϕ−1
2 (Bj) = ∅ or if |Bj| > 6, then Bj contributes one to the defect of every pull set

containing Bj, and hence every frame containing Bj has charge at least two. Place all of
these frames in H2 and

∑
F∈H2

[ν ′(F )− 1] > t.

Therefore, we may assume that |ϕ−1
2 (Bj)| = 1 and |Bj| = 5. Hence, there are exactly

3t − 4 elements between ϕ−1
2 (Bj) and Bj. Similarly, there are exactly 3t − 4 elements

between Bj and ψ−1
2 (Bj). In either of these regions, not all blocks may be 3-blocks. Let

Bg1 be the last non-3-block preceding Bj and Bg2 be the first non-3-block following Bj.
We shall guarantee that all frames in H2 contain at least one of Bj, Bg1 , or Bg2 .

There are exactly 3t− 4 elements between ϕ−1
2 (Bi) and Bi. Since 3t− 4 ≡ 2 (mod 3),

this range contains at least one 2-block, two 4-blocks, or one block of order at least
five. Let B`1 be the first non-3-block following ϕ−1

2 (Bi) and B`2 be the first non-3-block
preceding Bi.

Figure 10 demonstrates the arrangement of the blocks Bi, Bj, Bg1 , Bg2 , B`1 , and B`2 ,
as well as two blocks Bh1 and Bh2 that will be selected later in a certain case based on
the sizes of Bg1 and Bg2 .
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BiBj B`1 B`2Bg1 Bg2Bh1 Bh2

ϕ−1
2 (Bi)ϕ−1

2 (Bj)

Figure 10: The blocks involved in the proof of Claim 14.2.

We consider cases depending on |B`1| and |B`2| and either find a contradiction or find at
least one frame F to place in H1 so that F does not contain Bj or Bg2 and [ν ′(F )−1] > 1.

Case 1: |B`1| = 2. The block ϕ2(B`1) follows Bi. If all blocks between Bi and ϕ2(B`1) are
3-blocks, then Bi and ϕ2(B`1) are contained in a common pull set P with |ϕ−1

2 (P)| > 2,
which we assumed does not happen. Therefore, there is a block Bk between Bi and
ϕ2(B`1) that is not a 3-block. If Bk is a 2-block, then ψ2(Bk) would be a large block
between ϕ−1

2 (Bi) and B`1 , a contradiction. If Bk is a 4-block, then ψ4(Bk) would be
a large block between ϕ−1

2 (Bi) and B`1 , another contradiction. Therefore, |Bk| > 5,
but ϕ−1

2 (Bk) = ∅, since otherwise a 2-block from ϕ−1
2 (Bk) would be strictly between

ϕ−1
2 (Bi) and B`1 . Then, every frame containing Bk has ν ′-charge at least two. The

frame Fk does not contain Bj, Bg1 , or Bg2 , so place Fk in H1.

Case 2: |B`2| > 5. If ϕ−1
2 (B`2) 6= ∅, B`2 and Bi are in a common pull set P with

|ϕ−1
2 (P)| > 2, but we assumed this did not happen. Therefore, ϕ−1

2 (B`2) = ∅ and every
frame containing B`2 has ν ′-charge at least two. The frame F`2 does not contain Bj,
Bg1 , or Bg2 , so place F`2 in H1.

Case 3: |B`1| > 5. Since B`1 and Bi cannot be in a pull set, there is a non-3-block
between B`1 and Bi, so B`1 6= B`2 .

Case 3.i: |B`2| = 2. The frame F starting at ψ2(B`2) also contains B`1 but does not
contain Bj or Bg2 . Since ϕ−1

2 (Bi) is between ψ2(B`2) and B`1 , these blocks are in
different pull sets and so ν ′(F ) > 2. Place F in H1.

Case 3.ii: |B`2| = 4. The frame F starting at B`1 also contains B`2 but not Bj or
Bg2 . Since F contains two 4-blocks, ν ′(F ) > 2. Place F in H1.

Case 4: |B`1| = 4. Since 3t−4 6≡ 4 (mod 3), B`1 cannot be the only non-3-block between
ϕ−1

2 (Bi) and Bi, so B`1 6= B`2 . Consider F`1 , the frame starting at B`1 .

If F`1 does not contain two 2-blocks, σ(F`1) > 3t − 4 and F`1 contains Bi (and B`2).
If |B`2| = 2, then since 4 + 2 6≡ 3t− 4 (mod 3) there is another block Bk between B`1

and Bi that is not a 3-block. Since F`1 does not contain two 2-blocks, |Bk| > 4 and
therefore ν ′(F`1) > 2. Place F`1 in H1, and note that F`1 does not contain Bj, Bg1 , or
Bg2 .

If F`1 does contain two 2-blocks, then either those two 2-blocks pull an extra charge in
Stage 2, or they are separated by a block of size at least four. In either case, ν ′(F`1) > 2
so place F`1 in H1.
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We now turn our attention to placing frames in H2 based on the sizes of Bg1 and Bg2 .
Note that ϕ−1

2 (Bg1) = ϕ−1
2 (Bg2) = ∅, or else Claim 14.1 applies. If |Bg1| > 5, then every

frame containing Bg1 has ν ′-charge at least two, so add these t frames to H2 to result
in
∑

F∈H[ν ′(F ) − 1] > t + 1. Similarly, if |Bg2| > 5, then every frame containing Bg2

has ν ′-charge at least two, so add these frames to H2. Therefore, we may assume that
|Bg1|, |Bg2 | ∈ {2, 4}, which provides four cases.

Case 1: |Bg1| = |Bg2| = 2. There are at most 3t− 4 elements between Bg1 and ϕ2(Bg1)
or between ψ2(Bg2) and Bg2 . Let Bh1 be the last non-3-block preceding Bg1 and Bh2

be the first non-3-block following Bg2 . If Bh1 is a 2-block, let P1 = {ϕ2(Bh1), ϕ2(Bg1)}.
There cannot be a 4-block Bk or 2-block Bk′ between ϕ2(Bh1) and ϕ2(Bg1) or else
ψ4(Bk) or ψ2(Bk′) would be between Bh1 and Bg1 . Therefore, adding any non-3-block
between ϕ2(Bh1) and ϕ2(Bg1) to P1 makes P1 be a pull set where |ϕ−1

2 (P1)| > 2, and
by Claim 14.1 we are done. Similarly, if B`2 , the first non-3-block following Bg2 , is a
2-block, then let P2 = {ϕ2(B`2), ϕ2(Bg2)} and we can expand P2 to a pull set where
|ϕ−1

2 (P2)| > 2, and by Claim 14.1 we are done. Since we assumed this is not the case,
Bh1 and Bh2 have size at least four. Either ψ2(Bg2) = Bh1 or Bh1 follows ψ2(Bg2).
Either ϕ2(Bg1) = Bh2 or Bh2 precedes ψ2(Bg2). Thus, every frame containing Bj also
contains Bh1 or Bh2 and thus contains at least a pull set and a 4-block or two maximal
pull sets, which implies that the frame has ν ′-charge at least two. Place these frames
in H2.

Case 2: |Bg1| = |Bg2| = 4. There are at most 3t− 3 elements between Bg1 and ϕ4(Bg1)
or between ψ4(Bg2) and Bg2 . Since Bg1 is the last non-3-block preceding Bj, either
ψ4(Bg2) = Bg1 or ψ4(Bg2) precedes Bg1 . Similarly, either ϕ4(Bg1) = Bg2 or ϕ4(Bg1)
follows Bg1 . Therefore, every frame containing Bj also contains Bg1 or Bg2 and thus
contains a pull set and a 4-block, which implies that the frame has ν ′-charge at least
two. Place these frames in H2.

Case 3: |Bg1 | = 2 and |Bg2| = 4. There are at most 3t − 4 elements between Bg1 and
ϕ2(Bg1) and at most 3t−3 elements between ψ4(Bg2) and Bg2 . Let Bh1 be the last non-3-
block preceding Bg1 . If Bh1 is a 2-block, then there is a pull set P1 = {ϕ2(Bh1), ϕ2(Bg1)}
where |ϕ−1

2 (P1)| > 2. We assumed this is not the case, so |Bh1| > 4. Either Bh1 =
ψ4(Bg2) or Bh1 follows ψ4(Bg2). Therefore, every frame containing Bj also contains
Bh1 or Bg2 and thus contains a pull set and a 4-block or two maximal pull sets, which
implies that the frame has ν ′-charge at least two. Place these frames in H2.

Case 4: |Bg1| = 4 and |Bg2| = 2. This case is symmetric to Case 3.

Thus, H = H1 ∪ H2 has been selected from H1 and H2 so that
∑

F∈H[ν ′(F ) − 1] >
t+ 1.

Claim 14.3. If there is a block B` with |B`| = 4, xk2 − 12t 6 x` 6 xk2, and there is a
block Bi between ψ4(B`) and B` with |Bi| 6= 3, then there is a set H of frames so that∑
F∈H

[ν ′(F )− 1] > t+ 1.
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Proof of Claim 14.3. Note that it may be the case that B` = Bk2 . For the remainder of
the proof, B` will not be used to bound the ν ′-charge of frames in H and all other blocks
will contain elements between x`− 12t and x`, so these blocks will not be one of B0, Bk1 ,
or Bk2 .

Let ψ
(d)
4 denote the dth self-composition of the map ψ4. Let D > 1 be the first integer

so that |ψ(D)
4 (B`)| 6= 4, if it exists. We will select blocks B`1 , B`2 , B`3 , and B`4 based on

the value of D. For all d 6 D, let B`d = ψ
(d)
4 (B`).

If D < 4, then we must use different methods to find the remaining blocks B`d . Note
that |B`D | > 5. If |ϕ−1

2 (B`D)| > 2, then by Claim 14.1 we are done. If |ϕ−1
2 (B`D)| = 1

and |B`D | = 5, then either there is a pull set P containing B`D with |ϕ−1
2 (P)| > 2, and

by Claim 14.1 we are done or every pull set P containing B`D has |ϕ−1
2 (P)| = 1, and

by Claim 14.2 we are done. Therefore, there are two remaining cases for B`D : either (a)
ϕ−1

2 (B`D) = ∅, or (b) |ϕ−1
2 (B`D)| = 1 and |B`D | > 6.

We consider cases based on |Bi|.

B`B`1 BiBi1

ψ2

ψ4

Figure 11: Claim 14.3, Case 1: |B`| = 4 and |Bi| = 2, shown with D > 4.

Case 1: |Bi| = 2. Let Bi1 = ψ2(Bi). Bi1 is a block of size at least five preceding B`1 . If
there exists a pull set P containing Bi1 so that |ϕ−1

2 (P)| > 2, then by Claim 14.1 we
are done. Therefore, |ϕ−1

2 (Bi1)| ∈ {0, 1}.

Case 1.i: Suppose |ϕ−1
2 (Bi1)| = 1. If |Bi1| = 5, then by Claim 14.2 we are done.

Therefore, |Bi1| > 6 and Bi1 contributes at least one to the defect of every pull set
containing Bi1 , so every frame containing Bi1 has ν ′-charge at least two. Place these
frames in H.

There are at most 3t − 4 elements between Bi1 and Bi, so if does not contain B`1 ,
then Fi1 contains at least two 2-blocks. If these 2-blocks are separated only by 3-
blocks, then ν ′(Fi1) > 3 because the imperfect pull set containing Bi1 contributes
two charge and these 2-blocks pull one charge in Stage 2. Otherwise, these 2-blocks
are separated by some block of order at least four. Therefore, ν ′(Fi1) > 3 since
the imperfect pull set containing Bi1 contributes two charge and either the 4-blocks
between the 2-blocks contributes one charge or the block of size at least five between
the 2-blocks is contained in a pull set that contributes at least one charge. Thus, if
Fi1 does not contain B`1 , we are done. We now assume that B`1 ∈ Fi1 .
If D > 2, then |B`1| = 4. Then ν ′(Fi1) > 3 because the imperfect pull set containing
Bi1 contributes two charge and B`1 contributes one charge.
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If D = 1, then |B`1| > 5. If ϕ−1
2 (B`1) = ∅, then B`1 contributes two charge to Fi1

and ν ′(Fi1) > 4. Otherwise |ϕ−1
2 (B`1)| = 1 and |B`1| > 6, so B`1 contributes at least

one to the defect of any pull set containing B`1 , and thus ν ′(Fi1) > 3.

Since H contains t frames of ν ′-charge at least two and at least one frame (Fi1) with

ν ′-charge at least three,
∑
F∈H

[ν ′(F )− 1] > t+ 1.

Case 1.ii: Suppose |ϕ−1
2 (Bi1)| = 0. Bi1 contributes at least two to the ν ′-charge for

every frame containing Bi1 . Place these t frames in H. As in Case 1.i, the frame Fi1
must have charge ν ′(Fi1) > 3 and

∑
F∈H

[ν ′(F )− 1] > t+ 1.

B`B`1 Bi

ψ4

Figure 12: Claim 14.3, Case 2: |B`| = 4 and |Bi| = 2, shown with D > 4.

Case 2: |Bi| > 5. Let H be the frames containing Bi. If there exists a pull set P
containing Bi with |ϕ−1

2 (P)| > 2, then by Claim 14.1, we are done. If |Bi| = 5 and
|ϕ−1

2 (Bi)| = 1, then by Claim 14.2, we are done. Therefore, either ϕ−1
2 (Bi) = ∅ and

|Bi| > 5, or |ϕ−1
2 (Bi)| = 1 and |Bi| > 6. In either case, Bi contributes at least two

charge to every frame in H.

Consider the frame Fi−t+1 ∈ H where Bi is the last block of Fi−t+1.

If Fi−t+1 has fewer than two 2-blocks, then σ(Fi−t+1) > 2 + 3(t − 2) + |Bi| > 3t + 1.
Since there are at most 3t − 3 elements between B`1 and B`, then B`1 ∈ Fi−t+1 when
Fi−t+1 has fewer than two 2-blocks. If |B`1| = 4, then B`1 contributes another charge to
Fi−t+1 and ν ′(Fi−t+1) > 3. If |B`1| > 5 and ϕ−1

2 (B`1) = ∅ and B`1 contributes at least
two charge to Fi−t+1 and ν ′(Fi−t+1) > 4. Otherwise, |B`1| > 5 and ϕ−1

2 (B`1) 6= ∅. Since
Bi is not contained within any pull set P with |ϕ−1

2 (P)| > 2, then either ϕ−1
2 (Bi) = ∅

or Bi and B`1 are not contained in a common pull set. In either case, B`1 contributes
at least one more charge to Fi−t+1 and ν ′(Fi−t+1) > 3.

If Fi−t+1 has two or more 2-blocks, then either two 2-blocks are separated only by
3-blocks and contribute an extra charge to Fi−t+1 or they are separated by a block of
size at least four that is not in a pull set with Bi and contributes an extra charge to
Fi−t+1.

Therefore, ν ′(Fi−t+1) > 3 and
∑

F∈H [ν ′(F )− 1] > t+ 1.

Case 3: |Bi| = 4. Let K > 1 be the least positive integer so that |ψ(K)
4 (Bi)| 6= 4. For

d ∈ {1, . . . , K}, define Bid = ψ
(d)
4 (Bi).
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B`B`1B`2B`3 Bi1Bi2Bi3B`4 Bi

ψ4 ψ4 ψ4

ψ4ψ4ψ4ψ4

Figure 13: Claim 14.3, Case 3: |B`| = 4 and |Bi| = 4, shown with D > 4, D′ > 3.

Case 3.i: D > 4 and K > 3. Note that for j ∈ {1, 2, 3}, Bij is between B`j+1
and

B`j . There are at most 3t − 3 elements between B`j+1
and B`j , so every frame F

containing Bij either contains one of B`j+1
or B`j or has σ(F ) 6 3t−4. If F contains

Bij and one of B`j+1
or B`j , then either ν ′(F ) > 2 or Bij is contained in a perfect

pull set P with the other block and |ϕ−1
2 (P)| > 2 so by Claim 14.1 we are done. If

σ(F ) 6 3t − 3, then there are at least three 2-blocks in F . At least two of these
2-blocks are on a common side of Bij , and either they are separated only by 3-blocks
(and pull an extra charge to F ) or they are separated by a block of size at least four
(which contributes an extra charge to F ). Therefore, every frame containing Bij

has ν ′-charge at least two. Build H from the frames containing Bi1 and the frames
containing Bi3 . Then

∑
F∈H [ν ′(F )− 1] > 2t.

Case 3.ii: K < D < 4. By definition, |BiK | > 5. LetH be the set of frames containing
BiK .

If there exists a pull set P containing BiK so that |ϕ−1
2 (P)| > 2 then by Claim 14.1

we are done. If |ϕ−1
2 (BiK )| = 1 and |BiK | = 5, then by Claim 14.2 we are done.

Therefore, BiK contributes at least one to the defect of every pull set containing
BiK , and hence every frame containing BiK has ν ′-charge at least two.

The block BiK is between B`K+1
and B`K and there are at most 3t − 3 elements

between B`K+1
and B`K . Consider the frame FiK , which has BiK as the first block.

If FiK contains B`K , then ν ′(FiK ) > 3 since B`K is a 4-block and BiK contributed two
charge to FiK . Otherwise, σ(FiK ) 6 3t − 3 and FiK contains at least two 2-blocks.
Either these 2-blocks are separated by 3-blocks and pull a charge in Stage 2, or there
is a block of size at least four between these blocks and contributes at least one more
charge to FiK . Therefore, ν ′(FiK ) > 3 and

∑
F∈H [ν ′(F )− 1] > t+ 1.

Case 3.iii: D 6 K < 4. By definition, |B`D | > 5. Let H be the set of frames
containing B`D .

If there exists a pull set P containing B`D so that |ϕ−1
2 (P)| > 2 then by Claim 14.1

we are done. If |ϕ−1
2 (B`D)| = 1 and |B`D | = 5, then by Claim 14.2 we are done.

Therefore, B`D contributes at least one to the defect of every pull set containing
B`D , and hence every frame containing B`D has ν ′-charge at least two.

The block B`D is between BiD and BiD−1
and there are at most 3t − 3 elements

between BiD and BiD−1
. Consider the frame F`D , which has B`D as the first block.

If F`D contains BiD−1
, then ν ′(F`D) > 3 since BiD−1

is a 4-block and B`D contributed
two charge. Otherwise, σ(F`D) 6 3t − 3 and F`D contains at least two 2-blocks.
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Either these 2-blocks are separated by 3-blocks and pull a charge in Stage 2, or
there is a block of size at least four between these blocks and contributes at least
one more charge to F`D . Therefore, ν ′(F`D) > 3 and

∑
F∈H [ν ′(F )− 1] > t+ 1.

Since
∑r

j=1 ν
′(Fj) = r − 1, there is some frame Fz with ν ′(Fz) = 0. Also, the only

frames where ν ′(Fj) may be zero are those containing B0, Bk1 , or Bk2 .

Claim 14.4. There exists a block B∗ and a frame Fz so that B∗ ∈ Fz, ν ′(Fz) = 0, and
for all 2-blocks Bj, B∗ does not appear between ψ2(Bj) and ϕ2(Bj), inclusive.

Proof of Claim 14.4. Using any frame Fz with ν ′(Fz) = 0, we will show that there is a
block B∗ ∈ {B0, Bk1 , Bk2} ∩ Fz so that for all 2-blocks Bj, B∗ does not appear between
ψ2(Bj) and ϕ2(Bj).

Consider five cases based on which blocks (B0, Bk1 , or Bk2) are within Fz and if there
are other frames with zero charge.

Case 1: For some i ∈ {1, 2}, Bki ∈ Fz and |Bki | = 4. Since ν ′(Fz) = 0, we must have
that either ν∗(Fz) = 0 or ν∗(Fz) > 0 and charge was pulled from Fz in Stage 2.

If ν∗(Fz) = 0, then Fz contains no block of size at least four other than Bki . If there
are no 2-blocks, then every block of Fz \ {Bki} is a 3-block and σ(Fz) = 3t + 1. All
2-blocks Bj have at most 3t − 4 elements between Bj and ϕ2(Bj) or between ψ2(Bj)
and Bj, so there are not enough elements to fit Fz in these ranges and hence B∗ = Bki

suffices.

If there is exactly one 2-block in Fz, then σ(Fz) = 3t, a contradiction. Similarly, if
there are exactly two 2-blocks in Fz, then σ(Fz) = 3t−1, a contradiction. Hence, there
are at least three 2-blocks in Fz and some pair of 2-blocks is separated by only 3-blocks,
so Stage 2 pulled at least one charge from another frame, contradicting ν ′(Fz) = 0.

If ν∗(Fz) > 0, then there must be at least one block of order four or more other than
Bki . If any of these blocks are 4-blocks, then the positive charge contributed cannot
be removed by Stage 2. If any of these blocks have size at least five, the associated
maximal pull set in Fz does not contain Bk1 or Bk2 so the defect is non-negative and
Stage 2 leaves at least one charge, so ν ′(Fz) > 0.

Case 2: Bk1 ∈ Fz and |Bk1| > 5. Since x0 + 3t ∈ Bk1 and B0 is not included in ϕ−1
2 (Bk1),

we have |Bk1| > 2|ϕ−1
2 (Bk1)| + 4. Thus the maximal pull set in Fz containing Bk1 is

imperfect and ν ′(Fz) > 0, a contradiction.

Case 3: B0 ∈ Fz, there are no 2-blocks in Fz, and Fz does not contain Bk1 or Bk2. Since
ν ′(Fz) = 0, there is no block in Fz with size at least four, hence Fz contains t − 1
3-blocks and B0, so σ(Fz) = 3t−2. For a 2-block Bj, there are at most 3t−4 elements
contained in the blocks strictly between Bj and ϕ2(Bj) or the blocks strictly between
Bj and ψ2(Bj). Then, if B0 appears between ψ2(Bj) and ϕ2(Bj), then one of ψ2(Bj),
Bj, or ϕ2(Bj) must be within Fz, a contradiction. Thus, B∗ = Bj suffices.
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Case 4: B0 ∈ Fz, Fz contains at least one 2-block, Fz does not contain Bk1 or Bk2. Since
Fz does not contain Bk1 or Bk2 , any block of size at least four implies ν ′(Fz) > 1, a
contradiction. Further, if there are at least three 2-blocks in Fz, then two 2-blocks are
separated by only 3-blocks and Fz pulls a charge in Stage 2, a contradiction. Therefore,
Fz contains either one or two 2-blocks. If there are two 2-blocks, there must be one
2-block (call it Bi1) preceding B0 and another (call it Bi2) following B0. In either case,
σ(Fz) ∈ {3t− 4, 3t− 3}.
Let B`1 be the block immediately following Fz and B`2 be the block immediately
preceding Fz. If σ(Fz) = 3t−3 and B`j has size two or three (for some j ∈ {1, 2}), then
σ(Fz ∪ {B`j}) ∈ {3t− 1, 3t}, a contradiction. If σ(Fz) = 3t− 4 and |B`j | ∈ {3, 4} (for
some j ∈ {1, 2}), then σ(Fz∪{B`i}) ∈ {3t−1, 3t}, a contradiction. Hence, |B`1 |, |B`2| >
4 when exactly one 2-block exists, or |B`j | = 2 and the 2-block Bij is between B0 and
B`j (and every frame containing both Bij and B`j pulls a charge in Stage 2). Since
all other frames containing B0 contain either B`1 or B`2 , they have positive ν ′-charge.

Therefore, Fz is the only frame with zero charge and
∑

j:ν′(Fj)>0

[ν ′(Fj)− 1] = 0. Hence,

if there exists any frame with ν ′-charge at least two, we have a contradiction.

We consider if Bi1 and Bi2 both exist and whether or not ψ2(Bij) is equal to Bk2 for
some j.

Case 4.i: ψ2(Bij) = Bk2 for some j ∈ {1, 2}. Since |Bk2| > 2|ψ−1
2 (Bk2)|+4, |Bk2| > 6.

If ϕ−1
2 (Bk2) = ∅, then µ∗(Bk2) > 2 and every frame containing Bk2 has ν ′-charge at

least two, a contradiction. If |ϕ−1
2 (Bk2)| > 2, Claim 14.1 implies

∑
j:ν′(Fj)>0

[ν ′(Fj)−1] >

t + 1, a contradiction. Thus, |ϕ−1
2 (Bk2)| = 1. Let Bg be the unique 2-block in

ϕ−1
2 (Bk2). Note that |ψ2(Bg)| > 5. If |ψ2(Bg)| > 2|ϕ−1

2 (ψ2(Bg))| + 4, then ψ2(Bg)
contributes one to the defect of every pull set containing ψ2(Bg) and every frame
containing ψ2(Bg) has ν ′-charge at least two, a contradiction. Thus, |ψ2(Bg)| =
2|ϕ−1

2 (ψ2(Bg))|+3 > 5, and every pull set P that contains ψ2(Bg) has |ϕ−1
2 (P)| > 1.

If any such pull set has |ϕ−1
2 (P)| > 2, then Claim 14.1 implies

∑
j:ν′(Fj)>0[ν ′(Fj) −

1] > t+1. Otherwise, every pull set containing ψ2(Bg) has |ϕ−1
2 (P)| = 1, and Claim

14.2 implies
∑

j:ν′(Fj)>0[ν ′(Fj)− 1] > t+ 1.

Case 4.ii: ψ2(Bij) 6= Bk2 for both j ∈ {1, 2}. Consider some j ∈ {1, 2} so that
Bij exists. If |ϕ−1

2 (ψ2(Bij))| > 2, then Claim 14.1 provides a contradiction. If
|ψ2(Bij)| > 2|ϕ−1

2 (ψ2(Bij))|+4, then ψ2(Bij) contributes at least one to the defect of
any pull set containing ψ2(Bij), and every frame containing ψ2(Bij) has ν ′-charge at
least two, a contradiction. Therefore, the size of ϕ−1

2 (ψ2(Bij)) is 1 and |ψ2(Bij)| = 5.

Every pull set P that contains ψ2(Bij) has |ϕ−1
2 (P)| > 1. If any such pull set has

|ϕ−1
2 (P)| > 2, then Claim 14.1 provides a contradiction. Otherwise, every pull set

containing ψ2(Bij) has |ϕ−1
2 (P)| = 1 and Claim 14.2 provides a contradiction.

Case 5: Bk2 ∈ Fz and |Bk2| > 5. If |Bk2| > 2|ϕ−1
2 (Bk2)|+4, then every pull set containing
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Bk2 is imperfect and contributes at least one charge to every frame containing Bk2 ,
including Fz, a contradiction. Hence, |Bk2| = 2|ϕ−1

2 (Bk2)|+3. Since we are not in Case
1 or Case 2, every frame with ν ′-charge zero must contain Bk2 or B0.

Suppose there is a frame Fz′ containing B0 and not containing Bk2 with ν ′(Fz′) = 0.
Since we are not in Case 3, Fz′ contains at least one 2-block and the proof of Case 4
shows that Fz′ is the only frame with ν ′-charge zero containing B0 and not containing
Bk2 .

Therefore, there are at most t+ 1 frames with ν ′-charge zero, whether or not there is a
frame Fz′ with ν ′(Fz′) = 0 containing B0 and not Bk2 and hence

∑
j:ν′(Fj)>0[ν ′(Fj)−1] 6

t.

If |ϕ−1
2 (Bk2)| > 2, then Claim 14.1 implies

∑
j:ν′(Fj)>0[ν ′(Fj)−1] > t+1. If |ϕ−1

2 (Bk2)| =
1, then Claim 14.2 implies

∑
j:ν′(Fj)>0[ν ′(Fj) − 1] > t + 1. In either case we have a

contradiction.

This completes the proof of Claim 14.4.

Thus, we have a block B∗ and a frame Fz so that B∗ ∈ Fz, ν
′(Fz) = 0, and every

2-block Bj has B∗, ψ2(Bj), Bj, and ϕ2(Bj) appearing in the cyclic order of blocks of X.
Fix Bj to be the first 2-block that appears after B∗ in the cyclic order. We will now prove
that a+ b+ c > 3.

Consider ψ2(Bj). Observe that ϕ−1
2 (ψ2(Bj)) = ∅, by the choice of B∗ and Bj. Hence,

a > |ψ2(Bj)|− 4. If |ψ2(Bj)| > 7, then a > 3. Thus, |ψ2(Bj)| ∈ {5, 6} and ψ−1
2 (ψ2(Bj)) =

{Bj}.
Consider the frame Fj−t+1, whose last block is Bj. By the choice of Bj, all blocks in

Fj−t+1\{Bj} have size at least three, so σ(Fj−t+1) > 3t−1. This implies ψ2(Bj) ∈ Fj−t+1.
Since ψ2(Bj) 3 xj−3t and |ψ2(Bj)| 6 6, there are at least 3t−4 elements strictly between
ψ2(Bj) and Bj; these elements must be covered by at most t− 2 blocks. Therefore, there
exists some block Bk strictly between ψ2(Bj) and Bj with |Bk| > 4. Select Bk to be the
first such block appearing after ψ2(Bj).

Case 1: |ψ2(Bj)| = 6. This implies a > 2. If |Bk| > 5, by the choice of Bj we have
ϕ−1

2 (Bk) = ∅ and a > 3. Therefore, |Bk| = 4 and ψ4(Bk) is a block of order at least
four. If |ψ4(Bk)| > 5, then ϕ−1

2 (ψ4(Bk)) = ∅ and a > 3. Otherwise, |ψ4(Bk)| = 4, and
the frame Fi starting at Bi = ψ4(Bk) also contains ψ2(Bj) and Bk. Thus, c = 1 and
a+ c > 3.

Case 2: |ψ2(Bj)| = 5 and |Bk| > 5. Note that ϕ−1
2 (Bk) = ∅ by the choice of Bj, which

implies that a > 2. If |Bk| > 6, then a > 3; hence |Bk| = 5. Let Bi = ψ2(Bj) and
consider the set Nk = {xk−3t, xk−3t+1, xk−3t+5, xk−3t+6}. The elements in Nk

are non-neighbors with at least one of xk and xk+1. Since X is a clique, X is disjoint
from Nk. We must consider which elements in Ak = {xk−3t+2, xk−3t+3, xk−3t+4}
are contained in X. If B∗ appears before Ak, then since Bj is the first 2-block after B∗,
there is at most one element of X in Ak. If B∗ appears after Ak and two elements of
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Ak are in X, then they form a 2-block Bj′ with ϕ2(Bj′) = Bk, contradicting the choice
of B∗. Hence, |X ∩ Ak| 6 1 and the elements from X in Ak form either blocks of size
at least five or two consecutive blocks of order at least four.

Ak Bi = ψ2(Bj) Bk Bj

Figure 14: Claim 14, Case 2.

Case 2.i: Ak ∩X = ∅. Let B` be the block containing xk − 3t. Note that |B`| > 8. If
ϕ−1

2 (B`) = ∅, then a > 4. Otherwise ϕ−1
2 (B`) 6= ∅, and B∗ appears between B` and

Bi. Then, there are at most 3t − 7 elements between B` and Bk. Since |B∗| > 1,
|Bi| > 5, and all other blocks have size at least three, the t− 2 blocks after B` cover
at least 3t− 6 elements. Thus, every frame containing B∗ (including Fz) must also
contain B` or Bk. This implies that ν ′(Fz) 6= 0, a contradiction.

B`1

F`1

B`2
Bi = ψ2(Bj) Bk Bj

Figure 15: Claim 14, Case 2.ii.

Case 2.ii: Ak ∩ X = {xk − 3t + 3}. Then, the block starting at xk − 3t + 3 and the
block preceding it have size at least four. These two blocks (call them B`1 and B`2)
and ψ2(Bj) are contained in a single frame, F`1 , so c = 1 and a+ c > 3.

Case 2.iii: Ak ∩X 6= {xk − 3t + 3} and B∗ appears before Ak. Thus, the element in
Ak∩X is either the first element in a block of size at least five or is the first element
following a block of size at least five. In either case, this block, B`, has ϕ−1

2 (B`) = ∅,
by the choice of B∗ and Bj. This implies a > 3.

Case 2.iv: Ak ∩X 6= {xk − 3t+ 3} and B∗ appears between Ak and Bi. Let B` be the
block of size at least five that is guaranteed by the element in Ak ∩ X. There are
at most 3t− 3 elements between B` and Bk. Since |B∗| > 1, |Bi| = 5, and all other
blocks between B` and Bk have size at least three, the t−1 blocks following B` cover
at least 3t − 3 elements. Thus, any frame containing B∗ also contains either B` or
Bk and thus has positive charge. This includes Fz, but ν ′(Fz) = 0, a contradiction.

Case 3: |ψ2(Bj)| = 5 and all blocks between ψ2(Bj) and Bj have size at most four. Since
there are 3t − 4 elements strictly between ψ2(Bj) and Bj that must be covered by at
most t− 2 blocks of size at least three, there are at least two 4-blocks Bk, Bk′ between
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ψ2(Bj) and Bj. Thus, the blocks B`0 = ψ2(Bj), B`1 = Bk, and B`2 = Bk′ are contained
in a single frame and c = 1 giving a+ c > 3.

This completes the proof of Claim 14.

Claims 13 and 14 imply that an r-clique X in G + {0, 1} has no 2-blocks. By Claim
12, G+ {0, 1} has a unique r-clique, and hence G is r-primitive.

5 Constructions of Sporadic Graphs

In this section, we give explicit constructions for all known r-primitive graphs, including
those found in previous work. It is a simple computation to verify that every graph
presented is uniquely Kr-saturated, so proofs are omitted. In addition to the descriptions
given here, all graphs are available online5.

5.1 Uniquely K4-Saturated Graphs

Construction 17 (Cooper [8], Figure 16(a)). G10 is the graph built from two 5-cycles
a0, a1, a2, a3, a4 and b0, b1, b2, b3, b4 where ai is adjacent to b2i−1, b2i, and b2i+1.

a0 a1 a2

a3 a4

b0

b1

b2

b3

b4

(a) Construction 17, G10. (b) Construction 18, G12.

(c) Construction 19, G13. (d) Construction 20, Paley(13).

Figure 16: Uniquely K4-saturated graphs on 10–13 vertices.

5Graphs available in graph6 format and as adjacency matrices at http://www.math.unl.edu/

~shartke2/math/data/data.php.
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Construction 18 (Collins [8], Figure 16(b)). The graph G12 is the vertex graph of
the icosahedron with a perfect matching added between antipodal vertices. Another
description takes vertices v0, v1 and two 5-cycles uj,0, . . . , uj,4 (j ∈ {0, 1}) with vj adjacent
to vj+1 and uj,i for all i ∈ [5] and u0,i adjacent to u1,i, u1,i+1, and u1,i+3 for all i ∈ Z5.

Construction 19 (Figure 16(c)). G13 is given by vertices x, y1, . . . , y6, z1, . . . , z6, where
x is adjacent to every yi, yi and yi+1 are adjacent for all i ∈ {1, . . . , 6}, and zi and zi+1

are adjacent for all i ∈ {1, . . . , 6}. Further, zi is adjacent to zi+3, yi, yi−1, and yi+2.

Construction 20 (Figure 16(d)). The Paley graph [22] of order 13, Paley(13), is isomor-
phic to the Cayley complement C(Z13, {1, 3, 4}).

Construction 21 (Figure 17). LetH be the graph on vertices x, v1, . . . , v5 with x adjacent
to every vi and the vertices v1, . . . , v5 form a 5-cycle. Note that H is uniquely K4-
saturated, as v1, . . . , v5 induce C5, which is 3-primitive. G

(A)
18 has vertex set V = Z3 ×

{x, v1, v2, v3, v4, v5} where subscripts are taken modulo 5. The vertices (a, x) with a ∈
{1, 2, 3} form a triangle. For each a, (a, x) is adjacent to (a, vi) for each i but is not
adjacent to (a+1, vi) or (a+2, vi) for any i. For each a and i, the vertex (a, vi) is adjacent
to (a, vi−1) and (a, vi+1) (within the copy of H) and also (a + 1, vi+2), (a + 1, vi−2), (a −
1, vi+2), (a− 1, vi−2) (outside the copy of H).

(1, x)

(2, x)

(3, x)

(1, v1) (2, v1) (3, v1)(1, v5) (2, v5) (3, v5)

(1, v4) (2, v4) (3, v4)(1, v3) (2, v3) (3, v3)

(1, v2) (2, v2) (3, v2)

— {(2, v1)} ∪ (N((2, v1)) ∩ {(j, vi) : j ∈ {1, 3}, i ∈ {1, . . . , 5}}).

Figure 17: Construction 21, G
(A)
18 , is 4-primitive, 7-regular, on 18 vertices.

Construction 22 (Figure 18). Let G
(B)
18 have vertex set Z2 × Z9 where each coordinate

is taken modulo two and nine, respectively. For fixed a, the vertices (a, i) and (a, j) are
adjacent if and only if |i−j| 6 2. For fixed i, the vertex (0, i) is adjacent to (1, 2i), (1, 2i+4)
and (1, 2i + 5). Conversely, for fixed j the vertex (1, j) is adjacent to (0, 5j), (0, 5j + 7)
and (0, 5j + 2).
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(0, 6)

(0, 7)

(0, 8)

(0, 5) (0, 4)

(0, 3)

(0, 2)

(0, 1)

(0, 0)

(1, 6)

(1, 7)

(1, 8)

(1, 5) (1, 4)

(1, 3)

(1, 2)

(1, 1)

(1, 0)

— {(0, 1)} ∪ (N((0, 1)) ∩ {(1, i) : i ∈ Z9}).
— {(1, 0)} ∪ (N((1, 0)) ∩ {(0, i) : i ∈ Z9}).

Figure 18: Construction 22, G
(B)
18 , is 4-primitive, 7-regular, on 18 vertices.

5.2 Uniquely K5-Saturated Graphs

Construction 23 (Figure 19). Let G
(A)
16 have vertex set {v1, v2}

⋃
({1, 2} × Z7). The

vertices v1 and v2 are adjacent. For each j ∈ {1, 2} and i ∈ Z7, vj is adjacent to (j, i)
and (j, i) is adjacent to (j, i+ 1), (j, i+ 2), (j, i− 1) and (j, i− 2). (Hence, the subgraph
induced by (j, i) for fixed j and i ∈ Z7 is isomorphic to C2

7 .) For i ∈ Z7, the vertex (1, i)
is adjacent to (2, 2i), (2, 2i + 1), (2, 2i − 1), and (2, 2i − 3). Conversely, for i ∈ Z7, the
vertex (2, i) is adjacent to (1, 4i), (1, 4i− 2), (1, 4i+ 3), and (1, 4i− 3).

An interesting feature of G
(A)
16 is that it is not regular: v1, and v2 have degree 8 while the

other vertices have degree 9. This dispels any temptation to conjecture that all uniquely
Kr-saturated graphs with no dominating vertex were regular.

(1, 6)

(1, 5)

(1, 4) (1, 3)

(1, 2)

(1, 1)

(1, 0)

v1

(2, 6)

(2, 5)

(2, 4) (2, 3)

(2, 2)

(2, 1)

(2, 0)

v2

— {(1, 1)} ∪ (N((1, 1)) ∩ {(2, i) : i ∈ {0, 1, . . . , 6}}).
— {(2, 0)} ∪ (N((2, 0)) ∩ {(1, i) : i ∈ {0, 1, . . . , 6}}).

Figure 19: Construction 23, G
(A)
16 , is 5-primitive and irregular, on 16 vertices.
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Construction 24 (Figure 20). The graph G
(B)
16 has vertex set {x} ∪ {ui : i ∈ Z3} ∪ {vj :

j ∈ Z6}∪{zk,i : k ∈ {0, 1}, i ∈ Z3}. The vertex x is adjacent to ui for all i ∈ Z3 and vj for
all j ∈ Z6. There are no edges among the vertices ui. The vertices vj form a cycle, with
an edge vjvj+1 for all j ∈ Z6. The vertices zk,i form a complete bipartite graph, with an
edge z0,iz1,j for all i, j ∈ Z3. For i ∈ {0, 1, 2}, the vertex ui is adjacent to v2i−1, v2i, v2i+1,
and v2i+2, and adjacent to zk,i+1 and zk,i−1 for k ∈ {0, 1}. For i ∈ {0, 1, 2}, the vertex
z0,j is adjacent to v2i, v2i+1, v2i+2, and v2i+4, while the vertex z1,i is adjacent to v2i−1, v2i,
v2i+1, and v2i+3.

x

u0

u1u2

v0

v1

v2v3

v4

v5

z0,0

z0,1

z0,2

z1,0

z1,1

z1,2

— {u0} ∪ (N(u0) ∩ {zj,i : j ∈ {0, 1}, i ∈ Z3}).
— {z0,0} ∪ (N(z0,0) ∩ {vi : i ∈ Z6}).
— {z1,0} ∪ (N(z1,0) ∩ {vi : i ∈ Z6}).

Figure 20: Construction 24, G
(B)
16 , is 5-primitive, 9 regular, on 16 vertices.

5.3 Uniquely K6-Saturated Graphs

Construction 25 (Figure 21). The graph G
(A)
15 has vertices x, v0, v1, u1, . . . , u4, c1, . . . ,

c4, q1, . . . , q4. The vertex x dominates all but the qi’s. The vertices v0, v1 are adjacent
and dominate the ui’s. Also, vi dominates c2i, c2i+1, q2i, q2i+1 for each i ∈ Z2. The vertices
u0 and u2 are adjacent as well as u1 and u3. The vertices ui dominate the vertices cj.
Also, the vertex ui is adjacent to qj if and only if i 6= j. The vertices c1, . . . , c4 form a
cycle with edges cici+1. The vertices q1, . . . , q4 form a clique. The vertices ci and qj are
adjacent if and only if i 6= j.

Construction 26 (Figure 22). The graph G
(B)
15 has vertices qi, c1,i, and c2,i for each

i ∈ Z5. The subgraph induced by the vertices qi is a 5-clique. For each j ∈ {1, 2},
the subgraph induced by vertices cj,i for i ∈ Z5 is isomorphic to C5 with edges cj,icj,i+1

between consecutive elements. For each i, i′ ∈ Z5, there is an edge between c1,i and c2,i′ .
For each i ∈ Z5, the vertex qi is adjacent to c1,i, c1,i−1, and c1,i+1 as well as c2,2i, c2,2i−1,
and c2,2i+2.
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x

v1

v0

u0

u1

u2

u3

c0 c1

c2c3

q0

q3 q2

q1

— {u3} ∪ (N(u3) ∩ {qi : i ∈ [4]}).
— {c1} ∪ (N(c1) ∩ {qi : i ∈ [4]}).

— {v1} ∪ (N(v1) ∩ {ci, qi : i ∈ [4]}).

Figure 21: Construction 25, G
(A)
15 , is 6-primitive, 10 regular, on 15 vertices.

q0

q1

q2q3

q4

c1,0

c1,1

c1,2c1,3

c1,4

c2,0

c2,1

c2,2c2,3

c2,4

— {q0} ∪ (N(q0) ∩ {cj,i : j ∈ {1, 2}, i ∈ Z5}).

Figure 22: Construction 26, G
(B)
15 , is 6-primitive, 10 regular, on 15 vertices.

Construction 27 (Figure 23). The graph G
(C)
16 is composed of three disjoint induced

subgraphs isomorphic to K4, K4, and C8. Let the vertices q0,0, . . . , q0,3, and q1,0, . . . , q1,3

be the two copies of K4 and vertices c0, . . . , c7 be the C8, where the non-edges go between
consecutive elements ci and ci+1. For i ∈ {0, 1, 2, 3}, the vertex q1,i is adjacent to c2i+d

for all d ∈ {0, 1, 2, 3, 4, 5}. For i ∈ {0, 1, 2, 3}, the vertex q2,i is adjacent to c2i+d for all
d ∈ {0, 1, 3, 4, 5, 6}. For i ∈ Z4, the vertex q1,i is adjacent to q2,i+1 and q2,i−1.
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c0

c1

c2

c3

c4

c5

c6

c7

q1,0 q1,1

q1,2q1,3

q2,0 q2,1

q2,2q2,3

— {q1,0} ∪ (N(q1,0) ∩ {ci : i ∈ Z8}).
— {q1,1} ∪ (N(q1,1) ∩ {q2,i : i ∈ Z4}).
— {q2,1} ∪ (N(q2,1) ∩ {ci : i ∈ Z8}).

Figure 23: Construction 27, G
(C)
16 , is 6-primitive, 10 regular, on 16 vertices.
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