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Abstract

Expressions involving the product of the permanent with the (n − 1)st power
of the determinant of a matrix of indeterminates, and of (0,1)-matrices, are shown
to be related to an extension to odd dimensions of the Alon-Tarsi Latin Square
Conjecture, first stated by Zappa. These yield an alternative proof of a theorem of
Drisko, stating that the extended conjecture holds for Latin squares of odd prime
order. An identity involving an alternating sum of permanents of (0,1)-matrices is
obtained.
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1 Introduction

A Latin square of order n is an n× n array of numbers in [n] := {1, . . . , n} so that each
number appears exactly once in each row and each column. Let Ln be the number of
Latin squares of order n. Let Sym(n) be the symmetric group of permutations of [n]. For
a permutation π ∈ Sym(n) we denote its sign by ε(π). Viewing the rows and columns of
a Latin square L as elements of Sym(n), the row-sign (column-sign) of L is defined to be
the product of the signs of the rows (columns) of L. The sign of L, denoted ε(L), is the
product of the row-sign and the column-sign of L. The parity of a Latin square is even
(resp. odd) if its sign is 1 (resp. -1). The row parity and column parity of a Latin square
are defined analogously. We denote by LEVEN

n (LODD
n ) the number of even (odd) Latin
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squares of order n. The Alon-Tarsi Latin Square Conjecture [1] asserts that for even n,
LEVEN
n − LODD

n 6= 0. Values of LEVEN
n − LODD

n for small n can be found in [10]. Drisko
[3] proved the conjecture for n = p + 1, where p is an odd prime, and Glynn [5] proved
it for n = p − 1. Since for odd n it holds that LEVEN

n = LODD
n , some extensions of this

conjecture that are applicable to odd n were proposed, as will be described shortly.
A Latin square is called normalized if its first row is the identity permutation. A

Latin square is called unipotent if all the elements of its main diagonal are equal. Let UE
n

(resp. UO
n ) be the numbers of even (resp. odd) Latin squares of order n which are both

normalized and unipotent. Zappa [12] defined the Alon-Tarsi constant AT (n) := UE
n −UO

n

and proposed the following extension of the Alon-Tarsi conjecture:

Conjecture 1. For all n, AT (n) 6= 0.

A Latin square is called reduced if its first row and first column are both equal to the
identity permutation. Let RE

n and RO
n denote the numbers of even and odd reduced Latin

squares of order n, respectively. Another possible extension of the Alon-Tarsi conjecture
was recently stated in [10]:

Conjecture 2. For all n, RE
n −RO

n 6= 0.

If n is even these two conjectures are equivalent to the Alon-Tarsi conjecture. How-
ever, despite the existence of a bijection between reduced Latin squares and normalized
unipotent Latin squares of order n (see [12]), it is not clear whether for odd n the two
conjectures are equivalent. Drisko [4] proved Conjecture 1 in the case that n is an odd
prime. Conjecture 2 is only known to be true for small values of n (see [10]).

A Latin square L of order n determines n permutation matrices Ps, s ∈ [n], defined by
(Ps)ij = 1 if and only if Lij = s. Let Sn be the collection of all n×n permutation matrices.
For P ∈ Sn let αP be the corresponding permutation in Sym(n). The symbol-sign of L,
denoted by εsym(L), is the product of all the ε(αPs), s = 1, . . . , n. A Latin square L is
symbol-even if εsym(L) = 1 and symbol-odd if εsym(L) = −1.

Let X = (Xij) be the n × n matrix of indeterminates. The following theorem is due
to MacMahon [7]:

Theorem 1. Ln is the coefficient of
∏n

i=1

∏n
j=1Xij in per(X)n.

Here per(A) denotes the permanent of A. Stones [9] showed that if we replace per-
manent by determinant in the expression in Theorem 1, an expression for the Alon-Tarsi
conjecture is obtained:

Theorem 2. LEVEN
n − LODD

n is the coefficient of (−1)n(n−1)/2
∏n

i=1

∏n
j=1Xij in det(X)n.

The idea of taking the nth power of the determinant was used by Stones [9] to obtain
another expression for LEVEN

n − LODD
n :

Theorem 3. Let Bn be the set of all n× n (0, 1)-matrices. For A ∈ Bn let σ0(A) be the
number of zero elements in A. Then

LEVEN
n − LODD

n = (−1)
n(n−1)

2

∑
A∈Bn

(−1)σ0(A) det(A)n. (1.1)
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It will be shown in Section 2 that when n is odd “hybrid” expressions involving one
permanent and n− 1 determinants yield analogous results for AT (n). Section 3 contains
an alternative proof of Drisko’s result [4], that AT (p) 6= 0 for all odd primes p. In Section 4
a formula linking Conjectures 1 and 2 is obtained. Section 5 introduces a formula relating
the permanents of all distinct regular p× p adjacency matrices of bipartite graphs (up to
renaming the vertices of one of the sides).

2 Formulae for AT (n)

For α ∈ Sym(n) let LSE
n (α) (resp. LSO

n (α)) be the number of symbol-even (resp. symbol-
odd) Latin squares with α = αP1 . Let LCE

n (α) (resp. LCO
n (α)) be the number of column-

even (resp. column-odd) Latin squares with α as the first column. Let LCE
n (α, β) (resp.

LCO
n (α, β)) be the number of column-even (resp. column-odd) Latin squares with α as

the first row and β as the first column. We have

Lemma 1. If n is odd then∑
π∈Sym(n)

ε(π)(LSE
n (π)− LSO

n (π)) = (−1)
n(n−1)

2 n!(n− 1)!AT (n).

Proof. Viewing a Latin squares as a set of n2 triples (i, j, k), such that Lij = k, and
applying the mapping τ : (i, j, k) → (i, k, j), the kth column of τ(L) is the permutation
αPk

corresponding to the permutation matrix Pk in L. Thus LSE
n (α) = LCE

n (α) and
LSO
n (α) = LCO

n (α). We have∑
π∈Sym(n)

ε(π)(LSE
n (π)− LSO

n (π)) =
∑

π∈Sym(n)

ε(π)(LCE
n (π)− LCO

n (π)).

By applying π−1 to the columns of each Latin squares with π as its first column we see
that if n is odd then ε(π)(LCE

n (π)− LCO
n (π)) = LCE

n (id)− LCO
n (id). Thus,∑

π∈Sym(n)

ε(π)(LSE
n (π)− LSO

n (π)) = n!(LCE
n (id)− LCO

n (id)).

Since exchanging columns of a Latin square does not alter the column parity we have
that for each β ∈ Sym(n) such that β(1) = 1, LCE

n (β, id) − LCO
n (β, id) = LCE

n (id, id) −
LCO
n (id, id). Thus,∑

π∈Sym(n)

ε(π)(LSE
n (π)− LSO

n (π)) = n!(LCE
n (id)− LCO

n (id))

= n!
∑

β∈Sym(n)
β(1)=1

LCE
n (β, id)− LCO

n (β, id)

= n!(n− 1)!(LCE
n (id, id)− LCO

n (id, id)).
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We use the notation R
(+,−)
n for the number of reduced Latin squares with even row

parity and odd column parity (R
(+,+)
n , R

(−,+)
n and R

(−,−)
n are defined accordingly). Since

LCE
n (id, id) is the number of column-even reduced Latin squares, we have:

LCE
n (id, id)− LCO

n (id, id) = R(+,+)
n +R(−,+)

n −R(+,−)
n −R(−,−)

n

= R(+,+)
n −R(−,−)

n .

Since

AT (n) =

{
R

(+,+)
n −R(−,−)

n , if n ≡ 0, 1 (mod 4)

R
(−,−)
n −R(+,+)

n , if n ≡ 2, 3 (mod 4),

by Section 5 in [12], the result follows.

We now have a result, analogous to Theorem 2, for AT (n):

Theorem 4. Let n be odd and let X = (Xij) be the n×n matrix of indeterminates. Then

AT (n) is the coefficient of (−1)
n(n−1)

2

∏n
i=1

∏n
j=1Xij in 1

n!(n−1)!per(X) det(X)n−1.

Proof. For P ∈ (Sn)n let P = (P1, P2, . . . , Pn) and for s = 1, . . . , n let αs = αPs . Expand-
ing per(X) and det(X) we obtain

per(X) det(X)n−1 =
∑

π∈Sym(n)

∏
Xiπ(i)

∑
P∈(Sn)n
π=α1

n∏
s=2

ε(αs)
n∏
k=1

Xkαs(k). (2.1)

Now, for each π ∈ Sym(n) the coefficient of
∏n

i=1

∏n
j=1Xij in

∏
Xiπ(i)

∑
P∈(Sn)n
π=α1

n∏
j=2

ε(αj)
n∏
i=1

Xiαj(i)

is equal to ε(π)(LSE
n (π) − LSO

n (π)). Hence, by (2.1), the coefficient of
∏n

i=1

∏n
j=1Xij in

per(X) det(X)n−1 is ∑
π∈Sym(n)

ε(π)(LSE
n (π)− LSO

n (π)),

and the result follows from Lemma 1.

We also have an analogue of Theorem 3 for AT (n):

Theorem 5. Let Bn be the set of all n× n (0, 1)-matrices. For A ∈ Bn let σ0(A) be the
number of zero elements in A. If n is odd then

AT (n) =
(−1)

n(n−1)
2

n!(n− 1)!

∑
A∈Bn

(−1)σ0(A)per(A) det(A)n−1 (2.2)
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Proof. Most of the proof follows Stones’ proof of Theorem 3. By (2.1),∑
A∈Bn

(−1)σ0(A)per(A) det(A)n−1 =
∑

(A,P)∈Bn×(Sn)n

Z(A,P), (2.3)

where

Z(A,P) = (−1)σ0(A)
n∏
i=1

Aiα1(i)

n∏
s=2

ε(αs)
n∏
k=1

Akαs(k).

If for (A,P) there exists i, j ∈ [n] such that (Ps)ij = 0 for all s = 1, . . . , n, then let Ac be
the matrix formed by toggling Aij in the lexicographically first such coordinate ij. Thus
Z(A,P) = −Z(Ac,P) and these two terms cancel in the sum in (2.3). So, on the right
hand side of (2.3) we are left only with

∑
P∈S∗

∏n
s=2 ε(Ps), where S∗ = {(P1, . . . , Pn) :∑n

s=1 sPs is a Latin square} and A is the all-1 matrix. Now,

∑
P∈S∗

n∏
s=2

ε(αs) =
∑

π∈Sym(n)

ε(π)
∑
P∈S∗
αP1

=π

n∏
s=1

ε(αs)

=
∑

π∈Sym(n)

ε(π)
∑
P∈S∗
αP1

=π

εsym

(
n∑
s=1

sPs

)

=
∑

π∈Sym(n)

ε(π)(LSE
n (π)− LSO

n (π)),

and the result follows from Lemma 1.

3 An alternative proof of Drisko’s theorem

The main result of this section (Corollary 1) was first proved by Drisko [4]. An alternative
proof, based on the results of Section 2, is presented here. I am indebted to an anonymous
reviewer for suggesting this proof.

In this section the rows and columns of an n×n matrix will be indexed by the numbers
0, 1, . . . , n− 1.

Definition 1. Let A be an n × n matrix and Let B be a subset of cells of A. Let k be
an integer. The k-left shift of B is the set of cells {bi,(j−k) mod n : bi,j ∈ B}. The k-down
shift of B is the set of cells {b(i+k) mod n,j : bi,j ∈ B}.

Definition 2. An n × n matrix A will be said to be k-left row shifted, for some k,
0 < k < n, if for all i = 1, . . . , n − 1, the ith row of A is equal to the k-left shift of the
(i− 1)st row, and the 0th row is equal to the k-left shift of the (n− 1)st row.

Remark 6. If p is an odd prime and A is a p× p k-left row shifted matrix, then the set of
cells of A is the disjoint union of p diagonals, where the elements of each diagonal are all
equal. These diagonals will be referred to as the k-broken diagonals of A.
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Lemma 2. Let A be a p× p k-left row shifted (0,1)-matrix, where p is an odd prime. Let
b be the first row of A and let |b| be the number of 1’s in b. Then

(i) per(A) ≡ |b| (mod p)

(ii) det(A) ≡ ±|b| (mod p)

Proof. Part (i) can be easily obtained from Ryser’s permanent formula ([8], see also
http://mathworld.wolfram.com/RyserFormula.html). However, a different approach,
that will also apply to Part (ii), is used here. We define a mapping sk on the set of
diagonals of A as follows: For a diagonal d in A, sk(d) is obtained by taking the k-left
shift of d and then taking the 1-down shift of the result. Note that the fixed points of sk
are exactly the k-broken diagonals defined in Remark 6. The mapping sk is a bijection
and, since A is k-left row shifted, sk(d) contain the same set of values as d. In particular,
if d consists only of 1’s, so does sk(d). Also note that spk(d) = d for all d and thus, since
p is prime, each orbit under sk is of size 1 or p. As mentioned above, the orbits of size 1
are those containing the k-broken diagonals. Thus, per(A) mod p is equal to the number
of k-broken diagonals consisting only of 1’s, and since there are |b| such diagonal Part (i)
follows.

For Part (ii), we need to show that sk preserves the parity of the permutation cor-
responding to the diagonal acted upon, and that all k-broken diagonals correspond to
permutations of the same parity. Let d1 and d2 be two diagonals. Suppose that d1 is the
l-left shift of d2 for some l. This means that if π1 and π2 are the corresponding permu-
tations, then π2 = νl ◦ π1 (application from right to left), where ν = (12 . . . p). Since p
is odd, ν is an even permutation, and thus d1 and d2 correspond to permutations of the
same parity. If d1 is the l-down shift of d2, then the corresponding permutations satisfy
π1 = π2 ◦νl. Since sk consists of a left shift and a down shift, sk preserves the parity. Now
suppose d1 and d2 are k-broken diagonals. Then d1 is the l-left shift of d2 for some l. As
shown above, d1 and d2 correspond to permutations of the same parity. It follows that all
fixed diagonals correspond to permutations of the same parity. This proves (ii).

Theorem 7. Let Bp be the set of all p×p (0,1)-matrices, where p is an odd prime. Then

1

p

∑
A∈Bp

(−1)σ0(A)per(A) det(A)p−1 ≡ 1 (mod p). (3.1)

Proof. Define the group G = 〈ν〉 × 〈ν〉, where ν = (12 · · · p). The group G acts on Bp

by permuting the rows and columns, so that for each element of G, its first component
permutes the order of the rows and the second component permutes the order of the
columns. By The Orbit-Stabilizer Theorem, an orbit has size |G| = p2 unless each of its
elements has a non-trivial stabilizer in G. If g = (νi, νj) is a stabilizer of A ∈ Bp, so is
any of its powers, including (ν, νk) for some k, since p is prime. Thus, an orbit has size
smaller than p2 if and only if for each matrix A in that orbit there exists some 0 < k < p
for which (ν, νk)A = A. Let

D = {A ∈ Bp|(ν, νk)A = A for some 0 < k < p}.
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The action of G preserves σ0 and, since ν is an even permutation, it also preserves the
permanent and the determinant. We have

1

p

∑
A∈Bp

(−1)σ0(A)per(A) det(A)p−1 ≡ 1

p

∑
A∈D

(−1)σ0(A)per(A) det(A)p−1 (mod p).

Hence, it suffices to prove (3.1) with “Bp” replaced by “D”.
Suppose (ν, νk)A = A. Then, after applying νk to the ith row the (i+ 1)st is obtained,

for i = 0, . . . , p− 2 and applying νk to the (p− 1)st row yields the 0th row. This implies
that A is a (p − k)-left row shifted matrix. Thus, A is uniquely determined by its first
row b and the number k. We denote this by A = A(b, k).

Now, suppose A = A(b, k) is not the all-1 matrix and let a = |b|. Since p
is odd, σ0(A) ≡ a + 1 (mod 2). Then, by Lemma 2 and Fermat’s Little Theorem,
(−1)σ0(A)per(A) det(A)p−1 ≡ −((−1)aa) (mod p). For a fixed a ∈ {1, . . . , p − 1}, the
number of distinct matrices A(b, k) with |b| = a is

(
p
a

)
(p− 1). Therefore,

1

p

∑
A∈D

(−1)σ0(A)per(A) det(A)p−1 ≡ −1

p

p−1∑
a=1

(
p

a

)
(p− 1)(−1)aa (mod p),

where the cases that a ∈ {0, p} have been discarded since they correspond to the all-0 and
all-1 matrices, which have zero determinant. The result now follows from the binomial
identity

p∑
a=0

(
p

a

)
(−1)aa = 0

(see http://en.wikipedia.org/wiki/Binomial_coefficient).

The following result was first proved by Drisko [4]:

Corollary 1. If p is an odd prime, then

AT (p) ≡ (−1)
p−1
2 (mod p).

Proof. When n = p is an odd prime we can rearrange (2.2) to obtain

AT (p) = (−1)
p−1
2 × 1

(p− 1)!2
× 1

p

∑
A∈Bp

(−1)σ0(A)per(A) det(A)p−1

≡ (−1)
p−1
2 (mod p),

by Wilson’s theorem and Theorem 7. The result follows.
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4 Linking Conjectures 1 and 2

The following statement is obtained as part of a proof in [6]:

Proposition 1. Let n be odd and let A1, A2, . . . , An be n× n matrices over a field. Then∑
ρ,σ∈Sym(n)n

ρ1=id

ε(σ1)ε(σ)ε(ρ)
n∏

i,j=1

(Aj)σi(j),ρj(i) = (n−1)! · (RE
n −RO

n )per(A1)
n∏
j=2

det(Aj). (4.1)

Here ρ1 and σ1 are the first components in ρ and σ respectively. Combining Proposi-
tion 1 with Theorem 4 yields the following identity, linking AT (n) and RE

n −RO
n :

Theorem 8. Let X = (Xij) be an n×n matrix of indeterminates. Then AT (n)·(RE
n−RO

n )

is the coefficient of (−1)
n(n−1)

2

∏n
i=1

∏n
j=1Xij in

1

n!(n− 1)!2

∑
ρ,σ∈Sym(n)n

ρ1=id

ε(σ1)ε(σ)ε(ρ)
n∏

i,j=1

Xσi(j),ρj(i).

Proof. This follows by taking A1 = A2 = · · · = An = X in (4.1) and applying Theorem 4.

Thus, showing that the above coefficient is nonzero would prove Conjectures 1 and 2.

5 On the permanent of adjacency matrices

The evaluation of the permanent of a (0,1)-matrix is of special significance, since it was
the first proven #P -complete problem. This was shown by Valiant in a landmark paper
([11], see also [2]). Theorem 5 leads to an interesting identity involving the permanents
of certain (0,1)-matrices:

Theorem 9. Let p be an odd prime, let Bp be the set of p × p (0, 1)-matrices, and let
B∗p = {A ∈ Bp : det(A) 6≡ 0 (mod p)}. Let B†p be a set of representatives in Bp of the row
permutation classes. Then∑

A∈B†p∩B∗p

(−1)σ0(A)per(A) ≡ −1 (mod p).

Proof. Let Br
p be the subset of Bp containing the regular matrices. From (2.2) we have:

AT (p) =
(−1)

p−1
2

p!(p− 1)!

∑
A∈Br

p

(−1)σ0(A)per(A) det(A)p−1

If A′ can be obtained from A by permuting the rows, then per(A′) = per(A) and
det(A′)p−1 = det(A)p−1 (since p − 1 is even). Since the rows of each A ∈ Br

p are all
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distinct, each row permutation class in Br
p contains exactly p! matrices. Let B†p be a set

of representatives of the row permutation classes in Bp. Then

AT (p) =
(−1)

p−1
2

(p− 1)!

∑
A∈B†p∩Br

p

(−1)σ0(A)per(A) det(A)p−1.

By Fermat’s little theorem and Wilson’s theorem we have

AT (p) ≡ (−1)(−1)
p−1
2

∑
A∈B†p∩B∗p

(−1)σ0(A)per(A) (mod p).

The result follows from Corollary 1.

Remark 10. If we view an n × n (0,1)-matrix A as the adjacency matrix of a bipartite
graph GA, having two parts of identical size n, then per(A) is the number of perfect
matchings in GA. A set B†p, as in Theorem 9, represents all possible such graphs, up to
renaming the vertices of one of the parts.
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