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Abstract

It is known that the Pak-Stanley labeling of the Shi hyperplane arrangement
provides a bijection between the regions of the arrangement and parking functions.
For any graph G, we define the G-semiorder arrangement and show that the Pak-
Stanley labeling of its regions produces all G-parking functions.

In his study of Kazhdan-Lusztig cells of the affine Weyl group of type An−1, [15], J.-Y.
Shi introduced the arrangement of hyperplanes in Rn now known as the Shi arrangement:

xi − xj = 0, 1 1 6 i < j 6 n.

Among other things, he proved that the number of regions in the complement of this
set of hyperplanes is (n + 1)(n−1), Cayley’s formula for the number of trees on n + 1
labeled vertices. The first bijective proof of this fact is due to Pak and Stanley, [16],
who provide a method for labeling the regions with parking functions of size n. Given
a graph G, Postnikov and Shapiro, [14], introduced the notion of a G-parking function.
In the case where there exists a vertex q connected by edges to every other vertex of G,
Duval, Klivans, and Martin, [7], have defined the G-Shi arrangement, and conjecture that
when its regions are labeled by the method of Pak and Stanley, the resulting labels are
exactly the G-parking functions with respect to q. In this case, however, there may be
duplicates among the labels. Letting G be the complete graph on n+1 vertices recaptures
the original result of Pak and Stanley. Our work was motivated by this conjecture.

Figure 1 serves as a guide to our paper. The four corners of the square in Figure 1
are labeled by structures we associate to a graph G, which we now describe.

Parking functions and superstable configurations. Chip-firing is a key tool for
us. In the abelian sandpile model for G, one first chooses a vertex of G to serve as the
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S: quasi-superstables

[Def. 10]

I: G-semiorders

[Sect. 2.2]

R: regions

[Def. 3]

O: G-semiorientations

[Def. 1]

chip-firing

[Sect. 3.3]

Pak-Stanley

[Sect. 3.4]

Farkas’ lemma

[Thm.14]

ν-compatibility

[Sect. 3.1]

indeg − 1

[Thm. 19]

Figure 1: Schematic diagram of results.

“sink.” Then placing grains of sand (or chips) on each of the nonsink vertices defines a
configuration, c, on G. A vertex v is unstable in c if it has at least as many grains of sand
as its degree. In that case, one may fire (or topple) v by sending one grain of sand from v
to each of its neighbors. In this process neighbors of v may become unstable, themselves.
Sand is not necessarily conserved under firing: grains of sand that are sent to the sink
vertex disappear. For undirected, connected graphs—to which we limit ourselves here—
by repeatedly firing vertices, c is eventually transformed into a stable configuration, i.e.,
one with no unstable vertices.

Instead of firing one vertex at a time, one may consider a firing rule that allows sets
of vertices to be fired simultaneously. This gives rise to a stronger type of stability and
a corresponding set of superstable configurations (see Section 2.4). These superstable
configurations serve to define G-parking functions. A G-parking function with respect to
the chosen sink is a function from the vertices of G to the integers whose value at the
sink is −1 and whose values at the nonsink vertices are the numbers of grains of sand
for some superstable configuration on G. Thus, there is only a slight difference between
superstable configurations and G-parking functions, and at any rate, they are in one-
to-one correspondence. Parking functions are more widely-known, and they originally
arose independently (for instance in [11, p. 545]). This accounts for why they, and not
superstable configurations, are mentioned in the title of this paper. However, given the
importance of chip-firing to our work, we will mainly refer to superstable configurations
outside of this introduction.

Although G-parking functions and superstable configurations are defined with respect
to a chosen sink vertex, we have found it natural and convenient to first prove our results
in a sinkless context, akin to working in projective space rather than affine space. To this
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end, we define generalized G-parking functions, which we call quasi-superstable divisors
on G. These appear in the bottom left corner of Figure 1, denoted by S. As indicated by
the figure, quasi-superstables are formally defined in Definition 10.
Semiorders and the semiorder arrangement. The semiorder arrangement, [17], is
the set of n(n− 1) hyperplanes in Rn given by

xi − xj = 1, i, j ∈ {1, . . . , n}, i 6= j.

Its regions are in bijection with certain n-element posets called semiorders.
A G-semiorder is a semiorder whose elements are the vertices of G. The collection of

G-semiorders, denoted by I, appears in the bottom right corner of Figure 1. In the same
way that a Shi arrangement is modified by Duval, Klivans, and Martin in [7] to take into
account the structure of a graph, we modify a semiorder arrangement to produce the G-
semiorder arrangement associated with G. The regions of the G-semiorder arrangement
are denoted by R in the top left corner of Figure 1.

Fixing a sink vertex, v, we then refine the definition of a G-semiorder arrangement to
get the (G, v)-semiorder arrangement (Definition 28).

Orientations. A partial orientation of G consists of orienting some, not necessarily all, of
the edges of G. The G-semiorientations, denoted by O in the top right of Figure 1, are the
partial orientations satisfying an extra condition relative to the cycles of the underlying
graph, G.

Relations among the structures. Using the method of Pak and Stanley, we label each
region of the (G, v)-semiorder arrangement with what amounts to a function from the
vertices of G to the integers taking the value −1 at v. The main goal of this paper
is Theorem 32, which, along with Theorem 34, shows that the set of Pak-Stanley labels
that are negative only at the sink are exactly the set of G-parking functions. The set of
Pak-Stanley labels consists of only G-parking functions exactly when the sink is adjacent
to every nonsink vertex.

Our main goal, just described, is a consequence of the analogous result in the nonsink
context, represented by the left-most vertical arrow in Figure 1. This arrow represents
the fact that the Pak-Stanley labels for the regions of the G-semiorder arrangement form
the set of quasi-superstables, which is proved in Theorem 23. This theorem is proved by
establishing the relations represented by the other arrows in Figure 1.

In working on the G-Shi conjecture of Duval, Klivans, and Martin, we were led to
labeling the regions of the G-Shi arrangement with partial orientations of G. We used
Farkas’ lemma to develop a rule determining which partial orientations would appear as
labels. However, it seemed that the criterion we developed was awkward, and that it
would become much simpler and symmetric if we altered the hyperplane arrangement
somewhat. This is how we were led to consider G-semiorder arrangements. The resulting
correspondence between the regions of the G-semiorder arrangement and their labels with
partial orientations (the G-semiorientations) is represented by the top horizontal arrow
in Figure 1 and is established in Theorem 14.

The correspondence between maximal superstable configurations—those containing
the most amount of sand—and acyclic orientations of the edges ofG has been noted several
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times, in different forms ([3], [4], [8], [9]). In [3], the correspondence is a consequence of an
extended version of Dhar’s burning algorithm, a tool from the chip-firing literature, [6].
The input to their extended algorithm is a maximal superstable configuration, c. The
configuration is transformed into an unstable configuration c̃. The sequence of vertex
firings that stabilizes c̃ is then used to orient the edges of G. We modify this algorithm
in Section 3.3 to apply to all superstable configurations, not just the maximal ones. This
algorithm is encoded (in its nonsink version) as the bottom horizontal and right vertical
arrows in Figure 1.

Ultimately, we label each region of the G-semiorder arrangement with (i) a G-semior-
ientation, (ii) semiorders on the vertices of G, and (iii) a quasi-superstable divisor on G.
Our aim—to show that all quasi-superstables appear as labels—is achieved by showing
that the upper-left and the lower-right triangles in Figure 1 commute and that the map-
ping referred to as “indeg − 1” along the diagonal in Figure 1 is surjective, (cf. Theorem 23,
Corollary 20, and Theorem 19, respectively).

Organization. Following this introduction, the paper is organized into four main sections
and a conclusion. Section 1 is an extended example that illustrates our main results
and may serve as a foundation for understanding them. The rest of the paper may
be considered a justification of the claims made there. Section 2 defines our four main
graphical structures. Section 3 contains the central results describing the correspondences
between these structures, as discussed above. Section 4 explains how to transfer the results
of Section 3 to the context in which a sink vertex is chosen. The concluding section
presents a conjecture and suggests further lines of inquiry. Imagine starting with the
G-semiorder arrangement but then perpendicularly displacing the hyperplanes (replacing
the original hyperplanes with parallel ones) before applying the labeling method of Pak
and Stanley. As one slides the hyperplanes, some regions disappear and new regions form.
We conjecture that as long as a “central region” is preserved, the resulting set of labels
does not change. A special case implies the G-Shi conjecture of Duval, Klivans, and
Martin.

Acknowledgments. We thank Art Duval, Caroline Klivans, and Jeremy Martin for
encouraging us to work on the G-Shi conjecture and for helpful comments. We thank
Collin Perkinson for help with proofreading. We also especially thank the anonymous
referee, who helped to improve the quality of our exposition.

1 Introductory example

We introduce our main results with an example, beginning with an explanation of the
construction of Figure 2. Consider the arrangement of six planes in R3,

xi − xj = 1, i, j ∈ {1, 2, 3}, i 6= j.

The complement of these planes in R3 consists of 19 connected components. The planes are
all parallel to the vector (1, 1, 1), so for our purposes it suffices to intersect the arrangement

the electronic journal of combinatorics 19(4) (2012), #P8 4



Figure 2: Labeled (G, q)-semiorder arrangement.

with the perpendicular plane, x1 + x2 + x3 = 0, as pictured in Figure 2. Our goal here is
to explain the labeling of the 19 regions by vertex-labeled, partially oriented graphs.

To start, each region contains a copy of the graph, G, pictured in Figure 3 after removal
of the sink vertex, q. The vertices of the remaining triangle are labeled by integers, and
some of the edges of the triangle are oriented. We refer to the vertex labels as vectors,
(c1, c2, c3), where ci is the label for vi, and designate oriented edges as ordered pairs of
vertices, (u, v), where u is the tail and v is the head. If there were more room, each region
would be labeled by the full graph, G. In each region, the label on q would be −1, and
each edge incident on q would be oriented with tail at q.

The labeling of the regions is done inductively, starting at the center. In our example,
the central region of the arrangement is a hexagon, and its triangle has vertex labels
(0, 0,−1) and no oriented edges (besides the assumed ones from the sink). The rule for
the central region is that a vertex vi has a label of 0 if {q, vi} is an edge; otherwise the
label is −1. More generally, the rule for any region is that the vertex vi is labeled by one
less then the number of oriented edges pointing into vi.
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v3

v1 v2

q

Figure 3: Graph G.

The central region shares an edge with six bordering regions. Let r denote one of
these regions, and say that xj − xi = 1 is the border between it and the central region.
Moving from the central region to r, one may think of the value of xj as increasing at the
expense of xi. We record this fact by orienting the edge {vi, vj} as (vi, vj) and increasing
the vertex label for vj by one. Label the five remaining bordering regions similarly. For
example, moving into the compact region directly above the central region, we cross into
the region where x3 > x2 + 1. Thus, the label for this compact region adds an oriented
edge (v2, v3), and the label for v3 increases from −1 to 0.

At this point in the labeling process, there would be six unlabeled regions bordering
the six that were just labeled. Let r be one of these unlabeled regions, and let x`−xk = 1
be the edge it shares with a region r′ that was just labeled. In our case, there are two
choices for r′, but this choice does not affect the eventual label for r. To label r, start
with the label for r′, add the oriented edge (xk, x`), and increase the vertex label for v`
by 1. After labeling these six regions, there are six remaining unlabel regions, and these
are labeled by continuing the procedure just described.

In the end, each region is labeled with a copy of G having labeled vertices and a partial
orientation of its edges. The resulting partial orientations have a special property. Call an
unoriented edge “blank.” Consider a collection of edges, C, forming a cycle in G. Under
any partial orientation, some of the edges in C will have an orientation. If it is possible
to orient the remaining blank edges in C to get a directed cycle, then the special property
is that there must be a greater number of blank edges in C than oriented edges: “more
blanks than arrows for potential directed cycles.” For example, consider the label for the
region just above the central region. It has one oriented edge, (v2, v3). By orienting the
two blank edges as (v1, v2) and (v3, v1), we would get a directed cycle, but this potential
cycle has two blanks and only one arrow. Theorem 14 guarantees that the 19 regions are
in bijection with partial orientations of G having this special property.

As mentioned above, the vertex labels are given as one less than the indegree at each
vertex. In our example, there are eight distinct vertex labels with nonnegative entries:

(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (2, 0, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1).

The surjectivity of the map ψ in Theorem 19 ultimately implies, through Theorem 32, that
appending −1 for the sink, q, to each of these labels yields the set of G-parking functions
(with respect to q). As they are, these labels are exactly the superstable configurations for
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the abelian sandpile model on G. Subtracting each from the maximal stable configuration,
(2, 2, 1), gives the recurrent configurations, i.e., the elements of the sandpile group:

(2, 2, 1), (1, 2, 1), (2, 1, 1), (2, 2, 0), (0, 2, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0).

Now pick any region r and a point t = (t1, t2, t3) ∈ r. The point determines a collection
of closed intervals, Ii = [ti, ti + 1]. Turn the set of intervals into a poset, P , by saying
Ii < Ij if Ii lies completely to the left of Ij with no overlap, i.e., if ti+1 < tj. Overlapping
intervals are not comparable in P . Posets arising from finite sets of intervals, ordered in
this way, are called semiorders. Identifying interval Ii with vertex vi gives a poset on the
nonsink vertices, and we then set q to be the unique minimal element to get a poset on
all of the vertices.

For instance, the point p = (1, 3, 2.5) is in the unbounded region directly to the right
of the central region in Figure 2, giving the collection of intervals:

The Hasse diagram for the resulting semiorder on the vertices of G is shown in Figure 4.

v2 v3

v1

q

Figure 4: Semiorder determined by (1, 3, 2.5) ∈ R3.

The partial orientation of the label for region r can then be read from the semiorder:
(vi, vj) appears as an oriented edge if and only if {vi, vj} is an edge of G and vi < vj in P .
In general, varying the point p selected in r may result in different semiorders: they may
disagree for pairs of vertices that do not determine an edge of G. (In our example, each
pair of the vi form an edge, so only one poset on the vertices arises from each region.)

How does this example generalize to an arbitrary graph, G? Suppose G has designated
sink q and has nonsink vertices v1, . . . , vn. Form the arrangement of hyperplanes, xi−xj =
1 for all i 6= j such that {vi, vj} is an edge of G. Thus, for each edge, {vi, vj}, there is a
“stripe” consisting of the two hyperplanes xi − xj = ±1. The partial orientations in our
labeling record on which side of each stripe a given region lies.

Label the central region, for which |xi− xj| < 1 for all edges {vi, vj}, by the graph G,
orienting the edges incident with q so that they point away from q. Label the vi by the
number of oriented edges pointing into vi minus 1 (hence, by 0 or −1), and label q with −1.
Then proceed inductively to label all of the regions, as in the example. In the end, the
regions will be in bijection with those partial orientations satisfying the property that for
each potential directed cycle, there are more blanks than arrows. The collection of vertex
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Figure 5: The central region and two bordering regions for G.

labels with nonnegative values at each vi are the G-parking functions, which correspond to
the elements of the sandpile group. Picking a point in any region determines a semiorder
on the vertices of G, from which one may reconstruct the labeling of G for the region.

We now describe a version of the above construction that avoids an initial choice of a
sink. Let G be a graph with vertices {v0, . . . , vn}. Form the hyperplane arrangement as
described above: xi−xj = 1 for each i 6= j such that {vi, vj} is an edge of G. Thus, there
are two hyperplanes for each edge. Label the central region—given by |xi − xj| < 1 for
all i, j such that {i, j} is an edge of G—with a copy of G having no oriented edges and
with a −1 at each vertex. Proceed as before, labeling each region. By Theorem 26, those
regions for which vi has label −1, and all other vertices have nonnegative labels, are the
G-parking functions with respect to vi.

For example, again take G to be the graph in Figure 3 but with no vertex chosen as
sink (take q = v0). The corresponding hyperplane arrangement consists of ten hyper-
planes in R4. Each hyperplane is parallel to the vector (1, 1, 1, 1), so we project onto the
hyperplane given by

∑3
i=0 xi = 0, which we identify with R3, to get an arrangement whose

109 regions are in bijection with those of the original arrangement. The central region is a
polytope with ten faces. It is pictured in Figure 5 along with two of its bordering regions.
The bordering region forming a pyramid on top of the central region is labeled by a copy
of G with one directed edge, (v2, v1), and with vertex label (−1, 0,−1,−1). The other
bordering region in the figure is labeled by a copy of G with one directed edge, (v3, v1),
and with the same vertex label, (−1, 0,−1,−1). Figure 6 depicts those (unbounded) re-
gions of the hyperplane arrangement for G that satisfy xi > x0 + 1 for i = 1, 2, 3. They
are in bijection with the regions in Figure 2, and corresponding regions would have the
same labels. (Recall that for convenience the drawing of the sink vertex and its edges is
suppressed in Figure 2.)

2 Four structures associated with G

From now on, we take G to be a finite, connected, undirected graph, with vertices
V = {v0, . . . , vn} and edges E. Loops and multiple edges are disallowed (the former
for convenience of notation).
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Figure 6: Regions for G corresponding to choosing a sink vertex.

2.1 G-semiorientations.

In this section we define O, the collection of G-semiorientations. A partial orientation
of G is a choice of directions for a subset of the edges of G. Formally, a partial orientation
is a subset O ⊂ V × V with the property that if (u, v) ∈ O, then {u, v} ∈ E and
(v, u) /∈ O. Let O be a partial orientation. If e = {u, v} ∈ E and (u, v) ∈ O, then despite
the ambiguity, we write e ∈ O and say e is oriented. In that case, we think of e as an
arrow from u to v and write e− = u and e+ = v. If neither (u, v) nor (v, u) is in O, we
write e /∈ O and say that e is an unoriented or blank edge. The outdegree of the vertex
u ∈ V relative to O, denoted outdegO(u), is the number of edges e ∈ O such that e− = u.
Similiarly, the indegree of u ∈ V relative to O, denoted indegO(u), is the number of edges
e ∈ O such that e+ = u. We use the notation deg(u) to denote the ordinary degree of u,
i.e., the number of e ∈ E containing u. Fixing O, some of the edges of any cycle C ⊆ E
of G will be oriented and others will be blank. If it is possible to assign directions to the
blank edges so that C would become a directed cycle, then we call C a potential cycle
for O.

Definition 1. A G-semiorientation is a partial orientation, O, such that each potential
cycle for O has more blank edges than oriented edges. The set of G-semiorientations of G
is denoted O.

2.2 G-semiorders.

A reference for ordinary semiorders is [17]. Let k be any nonnegative integer, and consider
a collection of unit length closed intervals, P = {I1, . . . , Ik}, of the real line. Order the
elements of P by Ii < Ij if Ii lies strictly to the left of Ij, i.e., if Ii = [ai, ai + 1] and
Ij = [aj, aj + 1], then ai + 1 < aj. Any poset isomorphic to a poset P , constructed as
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above, is called a semiorder. The number of non-isomorphic semiorders with k elements
is the k-th Catalan number, Ck, and there is a corresponding generating function

C(x) =
∑
k>0

Cnx
k =

1−
√

1− 4x

2x
.

If fk denotes the number of labeled semiorders, there is the exponential generating function∑
k>0

fk
xk

k!
= C(1− e−x).

Definition 2. A G-semiorder is a semiorder on the vertices of G. The set of G-semiorders
is denoted I.

2.3 The G-semiorder arrangement.

Definition 3. The G-semiorder arrangement, denoted I , is the set of 2|E| hyperplanes
in Rn+1 given by

xi − xj = 1,

for all i 6= j such that {vi, vj} ∈ E. The regions of I , denoted R, are the connected
components of Rn+1 \I .

If G were the complete graph on n + 1 vertices, the G-semiorder arrangement would
be the ordinary semiorder arrangement discussed in [17], whose regions are in bijection
with labeled semiorders on n+ 1 elements. For general G, each region of the G-semiorder
arrangement is a union of regions from the ordinary semiorder arrangement.

2.4 Quasi-superstables on G.

Now designate q := v0 as the sink vertex. We recall the basic facts about the abelian
sandpile model on G, including G-parking functions. A reference for the sandpile results
stated here is [10]. (More references for the abelian sandpile model: [2] and [5] are semi-
nal; [6] and [13] are general references; and [12] is a quick overview.) We then proceed to
define S, the set of quasi-superstable divisors of G.

Let D = diag(deg v0, . . . , deg vn), and let A be the adjacency matrix for G, defined by

Aij =

{
1 if {vi, vj} ∈ E,
0 otherwise.

The Laplacian matrix for G is
∆ = D − A.

The reduced Laplacian is the matrix ∆̃ obtained by removing the first row and column
of ∆, i.e., the row and column corresponding to the sink vertex.

the electronic journal of combinatorics 19(4) (2012), #P8 10



A configuration on G is an element of the free abelian group on the nonsink vertices.
Having ordered the nonsink vertices, as above, we identify the set of configurations with Zn
in the natural way: c =

∑n
i=1 ci vi ↔ (c1, . . . , cn). A divisor on G is an element of the

free abelian group on all of the vertices of G, which we similarly identify with Zn+1. Once
a sink is chosen, we may consider configurations as those divisors whose sink coefficient
is 0.

Given two configurations or two divisors c and c′, we write c > c′ if ci > c′i for all i.
We say c is nonnegative if c > 0, i.e., if each component of c is nonnegative.

If X is a subset of the nonsink vertices, write 1X for the configuration whose i-th
component is 1 if vi ∈ X and 0 otherwise. Firing X from a configuration c results in the
configuration c − ∆̃ 1X . If X = {vi}, we call this operation firing vi. One may speak of
firing the sink vertex, which adds 1 to each vertex connected to the sink. Since the sum
of the columns of the Laplacian matrix is zero, firing the set of all nonsink vertices is the
same as reverse-firing the sink, subtracting 1 from each vertex attached to the sink.

Definition 4. Let c be a nonnegative configuration on G. We say c is stable if there is
no i such that firing vi from c results in a nonnegative configuration. We say that c is
superstable if there is no nonempty subset X of the nonsink vertices such that firing X
from c results in a nonnegative configuration.

The notion of a superstable configuration is essentially the same as that of a parking
function.

Definition 5. A function f : V → Z is a G-parking function (with respect to q) if f(q) =
−1 and (f(v1), . . . , f(vn)) is a superstable configuration on G. We identify a G-parking
function f with the divisor

∑
v∈V f(v) v.

Suppose c is a nonnegative configuration. Then c is stable exactly when ci < deg vi
for all i. A vertex vi such that ci < deg vi is said to be stable in c; otherwise it is unstable.
Firing a set of vertices is legal from c if the resulting configuration is nonnegative. In
particular, firing a single unstable vertex of c is legal. A sequence of vertices is called
a legal firing sequence for c if each vertex in the sequence is unstable after firing the
previous vertices in the sequence. Since there is a path from each nonsink vertex to the
sink in G, there is a legal firing sequence leading to a stable configuration c◦ called the
stabilization of c. This process is called stabilizing c. It turns out that c◦ is independent
of the order in which unstable vertices are fired, as is the number of times each vertex is
fired in reaching c◦.

Definition 6. A stable configuration c > 0 is recurrent if given any nonnegative configu-
ration a, there exists a nonnegative configuration b such that c = (a+ b)◦. The recurrent
elements with the operation of (vertex-wise) addition followed by stabilization is called
the sandpile group of G (with respect to q), denoted Sand(G).

It is well-known that the sandpile group actually is a group and the mapping

Sand(G)→ Zn/image(∆̃)

c 7→ c
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is an isomorphism. Each equivalence class of Zn modulo the image of the reduced Lapla-
cian contains a unique recurrent element. It is also known that each equivalence class
contains a unique superstable element. Define the maximal stable configuration to be

cmax =
n∑
i=1

(deg vi − 1) vi.

The next two propositions are well-known.

Proposition 7 ([10, Theorem 4.4]). The configuration c is recurrent if and only if cmax−c
is superstable.

Proposition 8 (Dhar’s burning algorithm, [6], [10, Lemma 4.1]). Let b > 0 be a stable
configuration on G, and let b̃ be the configuration obtained from b by firing the sink. The
following are equivalent:

1. b is recurrent,

2. (b̃)◦ = b, i.e., the stabilization of b̃ is b,

3. in stabilizing b̃, each nonsink vertex fires exactly once.

Remark. We refer to Proposition 8 as Dhar’s burning algorithm, although it would more
properly be called the theoretical underpinning of the algorithm.

Definition 9. Let K(G) be the graph G with the addition of a new vertex q̃ and edges
{q̃, vi} for all vertices vi, including q = v0. Set q̃ as the sink vertex of K(G).

Thus, the set of nonsink vertices of K(G) is V , and each of these is connected to the
sink, q̃, by an edge. The divisors on G are exactly the configurations on K(G).

Definition 10. A divisor c ∈ Zn+1 on G is called quasi-superstable if c = c̃− 1V for some
superstable c̃ on K(G). The collection of quasi-superstable divisors is denoted S.

For the relation between the superstables and quasi-superstables of G, see Theo-
rem 26 (2).

3 Correspondences between the structures

So far, we have defined the following structures on G:

O : G-semiorientations,

I : G-semiorders,

I : the G-semiorder arrangement,

S : quasi-superstable divisors on G.

In this section, we describe relations among these structures, culminating in Theorems 19
and 23.
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3.1 Semiorders and semiorientations

Definition 11. A G-semiorder P and a G-semiorientation O are compatible if for each
edge e = {u, v} of G, we have that u < v if and only if (u, v) ∈ O. Thus, if e /∈ O, then u
and v are not comparable in P .

Given a G-semiorder, P , define

OP = {(u, v) : {u, v} ∈ E and u < v in P}.

Theorem 12. Let P be a G-semiorder. Then OP ∈ O and OP is the unique element
of O compatible with P .

Proof. The only part of this theorem that is not immediate from the definitions is the fact
that every potential cycle for OP has more blanks edges than oriented edges, which we
now prove. Let α = {e1, . . . , ek} be a potential cycle. We may assume that ei = {ui, ui+1}
where uk+1 = u1, and that for each i, either (i) (ui, ui+1) ∈ OP , in which case ui < ui+1,
or (ii) ei is a blank edge, in which case ui and ui+1 are not comparable. Since P is a
semiorder, it is isomorphic to a semiorder of intervals, allowing us to identify each ui with
an interval Ii = [ai, ai + 1]. If ei ∈ OP , we have Ii < Ii+1, in which case ai < ai+1− 1; and
if ei /∈ OP , then Ii and Ii+1 overlap, so in particular, ai 6 ai+1 + 1. Thus, if there are δ
oriented edges and β blank edges in α, since uk+1 = u1,

a1 + δ − β 6 a1,

with equality if and only if β = δ = 0. However, since α has at least one edge, the
inequality must be strict, and β > δ as required.

Thus, we can refer to the semiorientation determined by a G-semiorder and define the
mapping

ν : I→ O
P 7→ OP .

v1 v2

v3

v4

v5

Figure 7: The house graph.

Example 13. Let G be the house graph of Figure 7. Figure 8 depicts a G-semiorder and
its corresponding compatible G-semiorientation.
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Figure 8: A G-semiorder P on the vertices of the house graph, G; a collection of inter-
vals realizing the semiorder; and the unique G-semiorientation, ν(P ) = OP , compatible
with P .

3.2 A bijection between semiorientations and hyperplane re-
gions

We now define a mapping
ρ : O→ R.

If O ∈ O, let ρ(O) be the region defined by the following inequalities: for each edge e
of G:

• if e = (vi, vj) ∈ O, then xj > xi + 1,

• if e /∈ O, then |xi − xj| < 1.

The reader may find it helpful to skim the example below the proof of the following
theorem before reading the proof itself.

Theorem 14. The mapping ρ is a well-defined bijection.

Proof. Let O ∈ O, and let r = ρ(O). The system of inequalities defining r indicates on
which side of each hyperplane of I the region sits. To show r is a region of I , it suffices
to show that r is nonempty.

We define a directed, weighted graph G′ with the same vertices as G in the following
manner: for each edge e between vertices of G,

• if e = (vi, vj) ∈ O, then (vi, vj) ∈ G′ and the weight of (vi, vj) in G′ is −1,

• if e = {vi, vj} /∈ O, then (vi, vj), (vj, vi) ∈ G′ and the weight of both (vi, vj) and
(vj, vi) in G′ is 1.

Choose an ordering of the edges of G′: e′1, e
′
2, . . . , e

′
k. Define a k × (n+ 1) edge-vertex

adjacency matrix with rows r1, . . . , rk as follows: if e′` = (vi, vj), let r` be the vector
having 1 in the ith entry, −1 in the jth entry, and 0s elsewhere. Let b be a column vector
in Rk where b` is the weight of e′`.
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Thus, the inequalities of ρ(O) are encoded as Ax < b. By Farkas’ lemma the insolv-
ability of Ax < b is equivalent to the existence of a row vector y = (y1, . . . , yk) satisfying:

yi > 0 ∀i, y 6= 0, yA = 0, y · b 6 0. (1)

For sake of contradiction, suppose such a y exists. The support of y is

supp(y) = {i : yi 6= 0}.

Among all row vectors satisfying condition (1), suppose y has been chosen so that the
cardinality of its support is minimal. Say `1 ∈ supp(y) and e′`1 = (vi, vj). Hence, r`1
has a −1 in its vj-th entry. Since

yA = y1 r1 · · ·+ yk rk = 0,

and the components of y are nonnegative, there must be some `2 ∈ supp(y) such that r`2
has a 1 in its vj-th entry. This row will have a −1 in some other entry, forcing the
existence of some `3 ∈ supp(y) such that r`3 has a 1 in that entry, and so on. Since the
support of y is finite, the sequence `1, `2, . . . , eventually has a repeat. Thus, there is a
sequence of elements j1 := `m+1, j2 := `m+2, . . . , jt := `m+t in the support of y for some t
corresponding to a directed cycle of edges e′j1 , . . . , e

′
jt in G′.

Let z = (z1, . . . , zk) be the row vector with z` = 1 if ` ∈ {j1, . . . , jt} and z` = 0,
otherwise. Since the support of z corresponds to a directed cycle of edges in G′, we
have zA = 0. Furthermore, since any potential cycle in ρ(O) has more blank edges than
oriented edges, we have z · b > 0. Let a = min{yj1 , . . . , yjt} and define y′ = y − az.
Then y′ satisfies condition (1) but its support is strictly contained in the support of y,
yielding a contradiction. So there must be some solution to Ax < b, which means that
r = ρ(O) ∈ R.

We now define a mapping
τ : R → O.

If r ∈ R let τ(r) be the partial orientation ofG obtained by (i) (vi, vj) ∈ τ(r) if {vi, vj} ∈ E
and xj > xi+1 in r, and (ii) all other edges of G are blank. Once we show τ is well-defined,
it is immediate that it is the inverse of ρ.

Let r ∈ R. To see that τ(r) ∈ O, suppose τ(r) has a potential cycle α having at least
as many oriented edges as blank edges. Define A and b as above to encode the system of
inequalities that defines the region r as Ax < b. Let y be the row vector with 1s in the
entries corresponding to the (oriented and blank) edges of α and 0s elsewhere. We have
y > 0, y 6= 0, yA = 0, and y · b 6 0. But by Farkas’ lemma this means Ax < b has no
solutions, contradicting the fact that r ∈ R. Thus, τ(r) ∈ O.

Example 15. This example is intended to be read in conjunction with the proof of The-
orem 14 and illustrates Farkas’ lemma at work. Consider the partial orientation, O, of a
triangle, pictured in Figure 9. Naively attemtping to apply the region-labeling function, ρ,
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v1 v2

v3

Figure 9: Partial orientation, O.

to O results in the system of inequalities Ax < b where

A =


1 −1 0
0 1 −1
1 0 −1
−1 0 1

 , x =

 x1
x2
x3

 , b =


−1
−1

1
1

 .
The rows of A correspond to directed edges, (v1, v2), (v2, v3), (v1, v3), and (v3, v1), respec-
tively, of the underlying triangle, G. The last two inequalities combine to describe the
“sandwich” |x1 − x3| < 1, corresponding to the undirected edge, {v1, v3}.

The partial orientation, O, has a potential cycle with more oriented edges than blanks,
and hence is not a G-semiorientation. By the way in which A is defined in the proof of
Theorem 14, we know that adding the rows of A corresponding to the directed cycle
(v1, v2), (v2, v3), (v3, v1) gives the zero vector. Our system of inequalities is inconsistent
since adding the corresponding entries of b gives −1 (since there are more oriented edges
than blanks in O for this cycle).

Let r be a region in the image of ρ. If t = (t0, . . . , tn) ∈ r, define the unit intervals
Ii = [ti, ti + 1] for i = 0, . . . , n. Define Pt to be the G-semiorder determined by these
intervals, labeled by the vertices of G by identifying Ii with vi.

Theorem 16. Let O ∈ O, and let r = ρ(O). The semiorders Pt as t ranges over points
in r are exactly the G-semiorders compatible with O.

Proof. Choose any t ∈ r. Say (vi, vj) ∈ O. Then xj > xi + 1 in r; so tj > ti + 1, and
hence, vi < vj in Pt. Now suppose e = {vi, vj} ∈ E but e /∈ O. Then |ti − tj| < 1, which
means that Ii and Ij overlap, and hence, vi and vj are not comparable in Pt. This shows
that Pt is compatible with O.

Now let P be a G-semiorder compatible with O. The semiorder P is isomorphic to the
semiorder on a set of unit intervals, {Ii}ni=0, where Ii corresponds to vi. Say Ii = [ti, ti+1]
for each i, and let t = (t0, . . . , ti). So P = Pt, but we must show that t ∈ r. Suppose
e = {vi, vj} ∈ E. If xj > xi + 1 in r, then since O = τ(r), we have (vi, vj) ∈ O, and
thus tj > ti + 1. If |xi − xj| < 1, then e /∈ O and the intervals Ii and Ij overlap, i.e.,
|ti − tj| < 1. Hence, t ∈ r.

Example 17. Let G be the house graph pictured in Figure 7, and let O be the G-
semiorientation pictured on the right in Figure 8. The region ρ(O) corresponding to O is
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v1

Pt

t = (0, 1.5, 2.75, 3.5, 2)

v3

v1

v2

v5

v4

Pt′

t′ = (0, 2, 4.75, 5.5, 4)

Figure 10: Two semiorders.

determined by the system of inequalities:

x2 > x1 + 1, x3 > x2 + 1,

x4 > x5 + 1, x5 > x1 + 1,

|x3 − x4| < 1, |x3 − x5| < 1.

Figure 10 displays points t, t′ ∈ ρ(O) whose corresponding semiorders, Pt and Pt′ , are the
two G-semiorders compatible with O.

3.3 Superstables algorithm

So far, we have described relations among three of our four structures: G-semiorders,
G-semiorientations, and the regions of the G-semiorder arrangement. We would now like
to forge a connection between these and the quasi-superstables on G (ultimately relating
all of this, in Section 4, to ordinary superstables).

Dhar’s burning algorithm says that starting from a recurrent configuration, then firing
the sink, each non-sink vertex will fire exactly once in the stabilization process. We use
these vertex firings to build a partial orientation starting from the unoriented graph. To
sketch the idea, suppose that at some point in the stabilization process there are nonsink
vertices v and w such that e = {v, w} is an edge and v is unstable. Suppose e has not
already been oriented or marked as a blank edge. When v fires, if w is stable, orient e as
(v, w); otherwise mark e blank. Since all vertices fire, each edge is visited.

Starting with a quasi-superstable, c, on G, Proposition 7 provides a corresponding
recurrent configuration on K(G). We use Dhar’s algorithm as above to create a G-
semiorientation, O, of G. Using the construction of O as a guide, one may further refine
the procedure to simultaneously create a G-semiorder compatible with O. This is the
idea behind the intervals labeled by J in the algorithm, below. Theorem 19 then provides
the important connection: subtract one from each entry of the indegree sequence relative
to O to recapture c.
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A careful description of our algorithm follows. The input is a quasi-superstable
divisor on G and a vertex ordering, and the output is a G-semiorder P and the G-
semiorientation OP compatible with P . Letting S be the symmetric group on {0, . . . , n},
identify σ ∈ S with the vertex ordering (vσ(0), . . . , vσ(n)). Then our algorithm defines two
mappings φ : S × S → I and η : S × S → O. Theorem 19, to follow, validates the
algorithm and shows that it produces a commutative diagram

S ×S
φ //

η
##G

GG
GG

GG
GG

I
ν
��

O,

(2)

where ν is the mapping defined in Section 3.1.
Given a c ∈ S and a vertex ordering σ ∈ S, the algorithm proceeds as follows:

initialization

Let cmax be the maximal stable configuration of K(G), and let

b = cmax − c.

Since c ∈ S, we can write c = c̃ − 1V for some superstable c̃ on K(G). Therefore,
b = (cmax − c̃) + 1V , i.e., b is the configuration on K(G) obtained from cmax − c̃ by firing
the sink q̃ of K(G). By Proposition 7, cmax − c̃ is a recurrent configuration on K(G); so
by Proposition 8, every element of V will fire exactly once while stabilizing b.

Let u1, . . . , uk be the vertices that are unstable in b. Take this list of vertices to be
ordered according to σ, that is, if ui = vσ(`) and uj = vσ(m) with ` < m, then i < j. For
each ui, associate an interval,

J(ui) = [i/(k + 1), 1 + i/(k + 1)].

Thus, all the J(ui) overlap. Form a queue,

Q = (u1, . . . , uk).

Initialize the partial orientation of G as O = ∅.
loop

Repeat the following until the queue is empty:

Say the queue is Q = (w0, . . . , w`), and

J(w0) = [α, α + 1].

If ` > 0, define ε using the interval for w1:

J(w1) = [α + ε, α + ε+ 1].
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Otherwise, take ε = 1.
Fire w0 and replace b by the resulting configuration. Remove w0 from the queue and

mark it so that it will never again appear in the queue.
Let z1, . . . , zt be the vertices that just became unstable with the firing of w0 and that

have not yet been fired by the algorithm, listed in order according to σ. Define

J(zi) = [α + 1 + iε/(t+ 1), α + 2 + iε/(t+ 1)].

Add the zi to Q, in order:
Q = (w1, . . . , w`, z1, . . . , zt).

For each edge e = {w0, v} that is not oriented or marked as blank,

1. if v was already unstable before the firing of w0, mark e as blank, so e will not
subsequently be added to O;

2. otherwise orient the edge out from v, i.e., add (w0, v) to O.

output

The intervals {J(v) : v ∈ V } determine a semiorder. Identifying v with J(v) gives a
semiorder, P , on V . Define φ(c) = P and η(c) = O. �

Example 18. Let G be the house graph of Figure 7, and fix the vertex ordering, v1, . . . , v5.
Then c = (−1, 0, 0, 0, 0) is a quasi-superstable divisor on G. Figure 11 illustrates the
application of the superstables algorithm to c and the given vertex ordering, producing
a G-semiorientation, O. The dotted lines emanating from each vertex to the exterior of
the house graph represent the edges to the sink of K(G).

We have cmax = (2, 2, 3, 2, 3) for K(G). The algorithm starts with the configuration
b = cmax − c in the top left corner of Figure 11. The vertex v1 is unstable in b, and
firing produces two oriented edges and two unstable vertices, v2 and v5. Since v2 comes
first in the vertex ordering, it is fired next. The subscripts keep track of vertex-firing
precedence. Note that when v5 is fired, the edge {v3, v5} is marked blank since, by that
time, v3 is unstable. Proceeding clockwise around the diagram, the algorithm terminates
at the bottom left corner.

Let c̃ := c+1V , a superstable configuration on K(G). When the algorithm terminates,
the resulting configuration is cmax − c̃, which is recurrent by Proposition 7. Adding 1V
reproduces the starting configuration c. However, adding 1V is equivalent to firing the sink
of K(G), which explains (via Dhar’s burning algorithm) why every vertex was guaranteed
to fire.

Theorem 19. Given P ∈ I, for each vertex v let nP (v) denote the cardinality of the set

{u ∈ V : u < v and {u, v} ∈ E}.
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Figure 11: Superstables algorithm (cf. Example 18). Start in the upper-left corner. Bold
numbers connote unstable vertices. Subscripts indicate firing precedence.

There are mappings

θ : I→ S

P 7→
∑
v∈V

(nP (v)− 1) v,

and

ψ : O→ S

O 7→
∑
v∈V

(indegO(v)− 1) v.

Let π : S × S → S be the first projection mapping, and let φ and η be the mappings
defined by the superstables algorithm.

The following diagram commutes:

S ×S

φ

		

η

��

π
����
S

I
θ

<< <<yyyyyyyyyy
ν

// // O.
ψ

ccccGGGGGGGGGG

(3)

All mappings in the diagram are surjective except possibly for φ and η.
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Proof. The image of φ is in I. In stabilizing b, each vertex eventually becomes unstable
and is assigned an interval. Thus, the semiorder produced by the algorithm is a semiorder
on all the vertices of G.

The image of θ is in S. Let P ∈ I. Then P is isomorphic to the semiorder on a
collection of intervals, {J(v) : v ∈ V }. Letting c = θ(P ), we must show that c + 1V
is a superstable configuration of K(G). Let cmax be the maximal stable configuration
on K(G), and define b = cmax − (c+ 1V ). Note that b > 0. Starting with b and firing the
sink of K(G) gives b̃ = cmax − c. By Propositions 7 and 8, we must show that there is an
ordering of V forming a legal firing sequence for b̃.

Choose any σ ∈ S so that σ(i) < σ(j) if min Ji < min Jj. In particular, this means
that if vi < vj in P , then σ(i) < σ(j). The v-th component of b̃ is

b̃v = degK(G)(v)− nP (v).

We can legally fire the vertices in the order given by σ since when it becomes v’s turn
to fire, it will have received nP (v) grains of sand from the firings of those vertices u
neighboring v such that u < v and will thus be unstable.

We have θ ◦ φ = π. Let P = φ(c, σ) and b = cmax − c where cmax is the maximal stable
configuration on K(G). Let v ∈ V . If v is unstable in b, then cv = −1 and there are no
vertices smaller than v in P . Hence, nP (v) − 1 = cv = −1, as required. Otherwise, in
the course of the algorithm, say u is the vertex whose firing causes v to become unstable.
Then the vertices that are less than v in P are exactly the vertices w such that w 6 u.
Among these w, only those that are attached to v by an edge contribute to making v
unstable. Thus, exactly nP (v) grains of sand are added to v in b to make v unstable.
Since bv = degK(G) v − 1− cv, we have that nP (v) = 1 + cv, as required.

The mapping ν is surjective. The surjectivity of ν follows from Theorem 16.

We have ψ ◦ ν = θ and the image of ψ is in S. Let P ∈ I and O = ν(P ).
Since O is compatible with P , we have that nP (v) = indegO(v) for each v ∈ V . Hence,
ψ(ν(P )) = θ(P ) as mappings of configurations. Since ν is surjective, the image of ψ is
contained in the image of θ, hence in S.

We have ν ◦ φ = η. Given (c, σ) ∈ S × S, let O = η(c, σ) and P = φ(c, σ). We must
show that O is compatible with P . Let b be as in the algorithm. Run the algorithm up
until it is a vertex u’s turn to fire. Suppose {u, v} ∈ E. Then v being stable at this point
is equivalent to u < v in P and equivalent to (u, v) ∈ O.

Corollary 20. Let σ ∈ S. Then the mappings

φσ : S → I, ησ : S → O,

defined by φσ(c) = φ(c, σ) and ησ(c) = η(c, σ), are injective with left inverses θ and ψ,
respectively.

Let Smax denote the maximal quasi-superstables under the relation “<” defined in
Section 2.4, and let Omax denote the acyclic orientations of G (elements of O in which
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each edge is oriented). For each c ∈ S, define the degree of c to be deg(c) :=
∑

v∈V cv.
Then,

1. the restriction of ησ to Smax gives a bijection

ησ : Smax → Omax,

2. for c ∈ S, we have deg(c) 6 g − 1, where g := |E| − |V |+ 1 is the genus of G, with
equality if and only if c ∈ Smax.

Proof. Both φσ and ησ are injective on S with the claimed left inverses since the restriction
of π in diagram 3 of Theorem 19 to S × {σ} is bijective.

To show ησ(Smax) ⊆ Omax, let c ∈ S and suppose that O := ησ(c) /∈ Omax. Ac-
cording to Theorem 16 there is a point t = (t0, . . . , tn) ∈ Rn+1 and a corresponding
G-semiorder, Pt, such that ν(Pt) = O. For ease of notation, we may assume that
t0 6 . . . 6 tn. Choose t′ ∈ Rn+1 such that t′i > ti for all i and t′i+1 > t′i + 1 for
0 6 i 6 n − 1. Let O′ := ν(Pt′) and c′ := ψ(O′). Then the set of oriented edges O is a
proper subset of O′. Hence, c < c′, showing c /∈ Smax, as desired.

Now let c ∈ S, and choose any O ∈ O such that c = ψ(O). From the definition of ψ,
we have deg(c) = |O|− |V | 6 |E| − |V | = g− 1, with equality exactly when O ∈ Omax. If
c < c′ for some quasi-superstable c′, then since deg(c) < deg(c′), it follows that O /∈ Omax.
This shows, for instance, that ψ(Omax) ⊆ Smax.

It remains to be shown that ψ restricted to Omax is injective. Let c ∈ Smax and choose
any O such that c = ψ(O). We have seen that O ∈ Omax. From the definition of ψ, we see
that indegO(v) is determined by c for each v ∈ V . Then outdegO(v) = degG(v)− indegO
since O orients every edge of G, and as noted in [3], these outdegrees determine O. To
see this, consider the graph G oriented by O. Since O is acyclic, this oriented graph
must have sinks, i.e., vertices with outdegree 0. Thus, c determines the orientation of all
edges incident on these sinks. Now remove these sinks and their incoming edges. The
orientation of the resulting graph is still acyclic, and its sinks may also be determined
from c. Iterate to see that O is determined by c, and hence, ψ is injective when restricted
to Omax.

Theorem 21. The mapping ν is bijective if and only if G is a complete graph.

Proof. The surjectivity of ν is part of Theorem 19. Suppose that G is a complete graph
and that ν(P1) = ν(P2) for some P1, P2 ∈ I. Then vi < vj in P1 implies (vi, vj) ∈ ν(P1),
which in turn implies vi < vj in P2. Similarly, vi < vj in P2 implies vi < vj in P1. Thus,
P1 = P2, so ν is injective.

Now suppose G is not complete, i.e., there exist vi, vj ∈ V such that {vi, vj} /∈ E.
Let P1 be theG-semiorder where no vertices are comparable, and let P2 be theG-semiorder
where vi < vj and all other pairs of vertices are incomparable. We have ν(P1) = ∅ = ν(P2).
So ν is not injective.
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Figure 12: Figure for Example 22.

Example 22. The mappings φ and η are not necessarily surjective. Consider the case
where G is a cycle graph on five vertices. Figure 12 displays the Hasse diagram of a
G-semiorder, P , and its compatible G-semiorientation ν(P ) = OP . For any ordering σ of
the vertices, η(ψ(OP ), σ) = O′ where O′ is as pictured in Figure 12.

3.4 Labeling regions with superstables

We can inductively label the regions of the G-semiorder arrangement, I , with quasi-
superstables. We call this labeling the (generalized) Pak-Stanley labeling after [16]. Start
with the central region of I , the region defined by |xi − xj| < 1 for all i, j such that
{vi, vj} is an edge of G. Label this region with the divisor −1V . Put the central region
in a queue, Q. Then, for as long as Q is not empty:

1. Remove the first region r from Q.

2. For each unlabeled region r′ bordering r:

(a) Determine the unique indices i 6= j such that |xi− xj| < 1 in r but xj > xi + 1
in r′.

(b) If r is labeled by c =
∑n

k=0 ckvk, then label r′ by c′ = c+ vj.

(c) Add r′ to the end of Q. �

For each r ∈ R, define λ(r) to be the label assigned to r by the above algorithm. The-
orem 23 guarantees that when the algorithm terminates, the regions are labeled with
quasi-superstables and the labels are, in fact, independent of the order in which regions
are removed from the queue.

Recall the bijection ρ : O → R, and let τ = ρ−1. Also recall the mapping ψ from
Theorem 19 and the mapping ησ from Corollary 20.

Theorem 23. We have λ = ψ ◦ τ . So there is a surjective mapping

λ : R // // S
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and, for each σ ∈ S, a commutative diagram

S � � ησ // O
ρq
��
R.

λ

ffffNNNNNNNNNNNNN

(4)

Proof. All the statements in the theorem follow directly from the equality λ = ψ◦τ , which
we now prove by induction. If r is the central region then τ(r) is the partial orientation
in which all edges are marked blank. Therefore, in this case, λ(r) = ψ(τ(r)).

Let the labeling algorithm run, and suppose that the region r has just been removed
from the queue. By induction, suppose that λ = ψ ◦ τ when restricted to those regions
that have been labeled so far. Let r′ be an unlabeled region bordering r. Say that the
inequalities that define r are the same as those that define r′ except that |xi−xj| < 1 in r
and xj > xi + 1 in r′. It follows that if O = τ(r) then τ(r′) = O ∪ {(vi, vj)}. Therefore,
going from τ(r) to τ(r′), only the indegree of vj has increased by one, so

λ(r′) = λ(r) + vj (algorithm)

= ψ(τ(r)) + vj (induction)

= ψ(τ(r′)).

The result follows by induction.

4 Fixing a sink vertex

In this section, we finally fully explain Figure 2. For that figure, we started with a
graph with a given sink vertex and constructed a hyperplane arrangement with regions
labeled by partial orientations of the graph and sandpile configurations. The nonnegative
configurations arising were exactly the superstables for the graph.

Let G be a graph with vertices V = {v0, . . . , vn}, and designate vertex v0 as the sink.

Definition 24. The (G, v0)-semiorientations, denoted O0, are the G-semiorientations
satisfying the additional requirement that v0 is a source:

O0 = {O ∈ O : outdegO(v0) = deg(v0)}.

The set of admissible (G, v0)-semiorientations is

Õ0 = {O ∈ O0 : indegO(vi) > 1 for all i 6= 0}.

Thus, while v0 is the sink for the sandpile model on G—i.e., the sink for the sake of
defining the sandpile group, superstable configurations, and G-parking functions—it is a
source for any O ∈ O0.

Example 25. Figure 2 shows the admissible (G, q)-semiorientations for the graph in
Figure 3. Due to lack of space, the requisite edges (q, v1) and (q, v2) are understood in
Figure 2, but not drawn.
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Our next goal is to describe the image of O0 under the mapping ψ : O → S from
Theorem 19, thus accounting for the configurations labeling the regions in Figure 2. We
show below that the image of O0 is the set of quasi-superstables assigning the value −1
to v0 and whose only other negative values must occur at vertices not connected to v0 by
an edge. Further, the image of Õ0 ⊆ A0 is the set of G-parking functions of G.

Let Ṽ = V \ {v0}, and let

X = {v ∈ Ṽ : {v, v0} /∈ E}.

Define 1X =
∑

v∈X v, a configuration on G (having chosen v0 as the sink). Let K(G)0
denote the graph G but with an edge {v, v0} added for each v ∈ X, and fix v0 as its sink.

Thus, configurations on G and on K(G)0 are elements of ZṼ , the free abelian group on Ṽ ,
a subgroup of ZV , the configurations on K(G). Recall that K(G) is the graph used to
define quasi-superstables.

Theorem 26.

1. Define
S0 = {c ∈ S : cv0 = −1 and c+ v0 > −1X}.

Then
ψ(O0) = {c̃− v0 : c̃+ 1X a superstable on K(G)0}

= S0.

2. Define

S̃0 = {c ∈ S : cv0 = −1 and c+ v0 > 0} ⊆ S0.

Then

ψ(Õ0) = {c̃− v0 : c̃ a superstable on G}
= {c̃− v0 : c̃+ 1X a superstable on K(G)0 and c̃ > 0}

= S̃0.

Thus, ψ(Õ0) = S̃0 is the set of G-parking functions with respect to v0.

Proof. We first prove

Claim A: If c ∈ ZṼ , then c + 1X is superstable on K(G)0 if and only if
c− v0 + 1V is superstable on K(G) and c > −1X .

For any graph H, let EH denote its edges. Recall that q̃ is the sink vertex for K(G).

Let c ∈ ZṼ with c > −1X , and consider c−v0+1V as a configuration on K(G). Let U ⊆ V .
If v0 ∈ U , then we cannot legally fire U from c − v0 + 1V : since (c − v0 + 1V )v0 = 0 and
{v0, q̃} ∈ EK(G), firing U would result in a configuration with a negative v0-component.
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Thus, c − v0 + 1V is superstable if and only if there are no nonnempty subsets U ⊆ Ṽ
that can be legally fired.

For v ∈ U ⊆ Ṽ , consider the edges incident with v that lead out of U :

M(v, U) =
{
w ∈ (V ∪ {q̃}) \ U : {v, w} ∈ EK(G)

}
M(v, U)0 =

{
w ∈ V \ U : {v, w} ∈ EK(G)0

}
.

Then,

M(v, U) \M(v, U)0 = {q̃} and M(v, U)0 \M(v, U) =

{
∅ if v /∈ X,
{v0} if v ∈ X.

So the cardinality of M(v, U) is

|M(v, U)| =

{
|M(v, U)0|+ 1 if v /∈ X,
|M(v, U)0| if v ∈ X.

(5)

Now c − v0 + 1V is superstable on K(G) if and only if (c − v0 + 1V )v < |M(v, U)| for

all v ∈ U for all nonempty U ⊆ Ṽ , and c + 1X is superstable on K(G)0 if and only if

(c+ 1X)v < |M(v, U)0| for all v ∈ U for all nonempty U ⊆ Ṽ . For v ∈ Ṽ we have

(c− v0 + 1V )v = cv + 1 =

{
(c+ 1X)v + 1 if v /∈ X,
(c+ 1X)v if v ∈ X.

So Claim A follows from (5). The condition c > −1X is required in the statement of the
claim since superstables must be nonnegative.

Now let
P = {c̃− v0 : c̃+ 1X superstable on K(G)0}.

The fact that P = S0 follows directly from Claim A. We now show that ψ(O0) = S0 to
finish the proof of part (1). Let O ∈ O0. Then ψ(O) ∈ S by Theorem 19. Since v0
is a source for O, we have ψ(O)v0 = −1, and if v ∈ Ṽ \ X, then ψ(O)v > 0. Thus,
ψ(O) ∈ S0. Conversely, given c ∈ S0, run the superstables algorithm from Section 3.3
with any vertex ordering of V in which v0 appears first. Using the notation from the
initialization stage of the algorithm, let b = cmax − c. Since cv0 = −1, the vertex v0 is

unstable in b and will fire first. Since c + v0 > −1X , no vertex v ∈ Ṽ \ X is unstable
in b. So when v0 fires, the algorithm will orient each edge incident on v0 out from v0.
If O is the semiorientation produced by the algorithm, it follows that O ∈ O0 and, by
Theorem 19, we have ψ(O) = c. Thus, ψ(O0) = S0.

To prove part (2), let

N = {c̃− v0 : c̃ a superstable on G},
P̃ = {c̃− v0 : c̃+ 1X a superstable on K(G)0 and c̃ > 0} ⊆ P.
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From part (1), it follows directly that ψ(Õ0) = P̃ = S̃0. To show N = S̃0 and finish,

proceed exactly as in the proof of Claim A. Let c̃ ∈ ZṼ with c̃ > 0. We must show that c̃
is superstable on G if and only if c̃− v0 + 1V is superstable on K(G). Given v ∈ U ⊂ Ṽ ,
this time consider the set

M(v, U)G = {w ∈ V \ U : {v, w} ∈ EG},

and note that |M(v, U)| = |M(v, U)G| + 1, with M(v, U) defined as before, from which
the result follows.

Part 2 of the following corollary recaptures a well-known result from sandpile theory.
For instance, it occurs as Lemma 5 in [4] as a statement about recurrent configurations,
equivalent to our statement in light of Proposition 7.

Corollary 27. Order the superstable configurations on G by the relation “<” defined in
Section 2.4. Let Smax denote the maximal quasi-superstables on G, and let g := |E|−|V |−1
be the genus of G, as in Corollary 20. Let c̃ be a superstable configuration on G. Then,

1. c̃ is maximal if and only if c̃− v0 ∈ S̃0 ∩ Smax,

2. deg(c̃) :=
∑

v∈Ṽ c̃v 6 g with equality if and only if c̃ is maximal.

Proof. By Theorem 26 (2), c̃−v0 ∈ S̃0. Hence, part (2) follows immediately from part (1)
by Corollary 20 (2). We now prove part (1).

(⇒) Suppose c̃ − v0 /∈ Smax. By Theorem 26 (2), there exists O ∈ Õ0 such that ψ(O) =
c̃ − v0. By Corollary 20, we have O /∈ Omax, i.e., O is not an acyclic orientation of G,
but by the beginning of the proof to Corollary 20, there exists O′ ∈ Omax such that O is
a proper subset of O′. It follows that ψ(O) = c̃ − v0 < ψ(O′) =: c′, where c′ ∈ S. Since

O ⊂ O′ and O′ is acyclic, we have c′v0 = −1 and c′ + v0 > 0, i.e., c′ ∈ S̃0. Define c̃ ′ by
c′ = c̃ ′−v0. Then c̃ ′ is a superstable configuration on G by Theorem 26, and c̃ < c̃ ′. So c̃
is not a maximal superstable.
(⇐) Conversely, suppose c̃− v0 ∈ Smax. Take any superstable configuration c̃ ′ such that
c̃ 6 c̃ ′. Then c̃ ′ − v0 ∈ S by Theorem 26 (2), and c̃ − v0 6 c̃ ′ − v0. By maximality of
c̃− v0, it follows that c̃ = c̃ ′. Hence, c̃ is a maximal superstable.

Definition 28. The (G, v0)-semiorder arrangement, denoted I0, is the set of hyperplanes
in Rn given by

xi − xj = 1,

for all i, j not equal to 0 such that {vi, vj} ∈ E.

Definition 29. The regions of I0, denoted R0, are the connected components of Rn\I0.

Define the subset

T0 = {(x0, . . . , xn) ∈ Rn+1 : xi > x0 + 1 whenever {vi, v0} ∈ EG}

the electronic journal of combinatorics 19(4) (2012), #P8 27



and let
R′0 = {r ∈ R : r ⊆ T0}.

The elements of R′0 are exactly those regions with corresponding semiorientations (un-
der ρ) having v0 as a source. Hence, the bijection ρ : O → R restricts to a bijection
O0 → R′0. The projection mapping (x0, . . . , xn)→ (x1, . . . , xn), omitting the 0-th coordi-
nate, induces a bijection

π0 : R′0 → R0.

Therefore, we have the following theorem.

Theorem 30. The mapping

ρ0 := π0 ◦ ρ : O0 → R0

is a bijection.

Example 31. The (G, v0)-semiorder arrangement for graph G of Figure 3 with v0 = q
is drawn in Figure 2. Its regions, R0, are the projections of the regions R′0 displayed in
Figure 6.

The central region of I0 is the region defined by |xi − xj| < 1 for all distinct i, j
not equal to 0 such that {vi, vj} is an edge of G. Inductively label the regions of I0 as
in Section (3.4), but starting with the central region labeled with the configuration that
assigns 0 to all vi such that {vi, v0} ∈ E and −1 to all other vertices, including v0. For
each r ∈ R0, define λ0(r) to be the label assigned to r in this fashion.

Define τ0 = ρ−10 . There is a version of Theorem 3.4 in this context (proved similarly):

Theorem 32. We have λ0 = ψ ◦ τ0. So there is a surjective mapping

λ0 : R0
// // S0

and, for each σ ∈ S0, a commutative diagram

S0 �
� ησ,0 // O0

ρ0q
��
R0,

λ0

ggggNNNNNNNNNNNNN

(6)

where ησ,0 is the restriction of ησ to S0.

For i = 1, . . . , n, if {vi, v0} ∈ EG, let

Rn
(i,0) = Rn,

otherwise, if {vi, v0} /∈ EG, let

Rn
(i,0) = {(x1, . . . , xn) ∈ Rn : xi > xj + 1 for some j with {vi, vj} ∈ E}.

Define R̃n =
⋂n
i=1Rn

(i,0).
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Definition 33. The admissible regions of I0, denoted R̃0, are the connected components
of R̃n \I0.

Note that R̃0 = R0 exactly when each nonsink vertex is connected by an edge to the
sink.

The admissible regions of I0 are exactly those regions whose corresponding G-semi-
orientations satisfy indegO(vi) > 1 for all i 6= 0. So combining Theorem 26 and Theo-
rem 32 gives

Theorem 34.
λ0(R̃0) = S̃0 = {c− v0 : c a superstable on G}.

Example 35. The 9 admissible regions in Figure 2 are labeled by the 8 distinct super-
stables (or G-parking functions if one remembers that the sink is labeled by −1). The
zero-configuration appears twice.

5 Conclusion.

Let A be an (n+ 1)× (n+ 1) matrix. Define HA to be the set of hyperplanes

xi − xj = Aij,

for all i 6= j such that {vi, vj} ∈ E. For example, HA = I if A has all 1s as its entries.
Define the regions of HA, denoted RA, to be the connected components of Rn+1 \HA.

The set of inequalities xi − xj < Aij for all i and j defines the central region of HA. We
say that HA has a central region if this central region is nonempty.

Conjecture 36. Suppose that HA has a central region. Labeling the regions of HA as in
Section 3.4 defines a surjection

λA : RA
// // S.

A similar conjecture holds if one first chooses v0 as a sink: replace A with an n × n
matrix, and label regions as in Section 4. So the central region would be labeled with
the configuration that assigns 0 to vertices connected to v0 and −1 to the other vertices
(including v0). We conjecture that the nonnegative configurations that arise as labels are
exactly the G-parking functions. The G-Shi conjecture of Duval, Klivans, and Martin is
a special case.

In the spirit of [1] and [16], it would be interesting to extend our results to the case of
multigraphs: graphs in which multiple edges are allowed between vertices. If there are k
edges between vi and vj, one might replace the two hyperplanes xi−xj = ±1 with the 2k
hyperplanes xi − xj = ±1, . . . ,±k.

the electronic journal of combinatorics 19(4) (2012), #P8 29



References

[1] Christos A. Athanasiadis and Svante Linusson. A simple bijection for the regions of
the Shi arrangement of hyperplanes. Discrete Math., 204(1-3):27–39, 1999.

[2] Per Bak, Chao Tang, and Kurt Wiesenfeld. Self-organized criticality: An explanation
of 1/f noise. Phys. Rev. Lett., 59(4):381–384, 1987.

[3] Brian Benson, Deeparnab Chakrabarty, and Prasad Tetali. G-parking functions,
acyclic orientations and spanning trees. Discrete Math., 310(8):1340–1353, 2010.

[4] Norman Biggs. The Tutte polynomial as a growth function. J. Algebraic Combin.,
10(2):115–133, 1999.

[5] Deepak Dhar. Self-organized critical state of sandpile automaton models. Phys. Rev.
Lett., 64(14):1613–1616, 1990.

[6] Deepak Dhar. Theoretical studies of self-organized criticality. Phys. A, 369(1):29–70,
2006.

[7] Art Duval, Caroline Klivans, and Jeremy Martin. The G-shi arrangement, and
its relation to G-parking functions. http://www.math.utep.edu/Faculty/duval/

papers/nola.pdf, January 2011.

[8] Eric Goles and Erich Prisner. Source reversal and chip firing on graphs. Theoret.
Comput. Sci., 233(1-2):287–295, 2000.

[9] Curtis Greene and Thomas Zaslavsky. On the interpretation of Whitney numbers
through arrangements of hyperplanes, zonotopes, non-Radon partitions, and orien-
tations of graphs. Trans. Amer. Math. Soc., 280(1):97–126, 1983.

[10] Alexander E. Holroyd, Lionel Levine, Karola Mészáros, Yuval Peres, James Propp,
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