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Abstract: This report contains expository notes about a func-
tion ϑ(G) that is popularly known as the Lovász number of a
graph G. There are many ways to define ϑ(G), and the surpris-
ing variety of different characterizations indicates in itself that
ϑ(G) should be interesting. But the most interesting property
of ϑ(G) is probably the fact that it can be computed efficiently,
although it lies “sandwiched” between other classic graph num-
bers whose computation is NP-hard. I have tried to make these
notes self-contained so that they might serve as an elementary
introduction to the growing literature on Lovász’s fascinating
function.
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The Sandwich Theorem

It is NP-complete to compute ω(G), the size of the largest clique in a graph G, and it is
NP-complete to compute χ(G), the minimum number of colors needed to color the vertices
of G. But Grötschel, Lovász, and Schrijver proved [5] that we can compute in polynomial
time a real number that is “sandwiched” between these hard-to-compute integers:

ω(G) ≤ ϑ(G) ≤ χ(G) . (∗)

Lovász [13] called this a “sandwich theorem.” The book [7] develops further facts about the
function ϑ(G) and shows that it possesses many interesting properties. Therefore I think
it’s worthwhile to study ϑ(G) closely, in hopes of getting acquainted with it and finding
faster ways to compute it.

Caution: The function called ϑ(G) in [13] is called ϑ(G) in [7] and [12]. I am following
the latter convention because it is more likely to be adopted by other researchers—[7] is a
classic book that contains complete proofs, while [13] is simply an extended abstract.

In these notes I am mostly following [7] and [12] with minor simplifications and a few
additions. I mention several natural problems that I was not able to solve immediately
although I expect (and fondly hope) that they will be resolved before I get to writing
this portion of my forthcoming book on Combinatorial Algorithms. I’m grateful to many
people—especially to Martin Grötschel and László Lovász—for their comments on my first
drafts of this material.

These notes are in numbered sections, and there is at most one Lemma, Theorem,
Corollary, or Example in each section. Thus, “Lemma 2” will mean “the lemma in sec-
tion 2”.

0. Preliminaries. Let’s begin slowly by defining some notational conventions and by
stating some basic things that will be assumed without proof. All vectors in these notes
will be regarded as column vectors, indexed either by the vertices of a graph or by integers.
The notation x ≥ y, when x and y are vectors, will mean that xv ≥ yv for all v. If A is a
matrix, Av will denote column v, and Auv will be the element in row u of column v. The
zero vector and the zero matrix and zero itself will all be denoted by 0.

We will use several properties of matrices and vectors of real numbers that are familiar
to everyone who works with linear algebra but not to everyone who studies graph theory,
so it seems wise to list them here:

(i) The dot product of (column) vectors a and b is

a · b = aT b ; (0.1)
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the vectors are orthogonal (also called perpendicular) if a · b = 0. The length of vector a is

‖a‖ =
√
a · a . (0.2)

Cauchy’s inequality asserts that
a · b ≤ ‖a‖ ‖b‖ ; (0.3)

equality holds iff a is a scalar multiple of b or b = 0. Notice that if A is any matrix we
have

(ATA)uv =
n∑
k=1

(AT )ukAkv =
n∑
k=1

AkuAkv = Au ·Av ; (0.4)

in other words, the elements of ATA represent all dot products of the columns of A.

(ii) An orthogonal matrix is a square matrix Q such that QTQ is the identity ma-
trix I. Thus, by (0.4), Q is orthogonal iff its columns are unit vectors perpendicular to
each other. The transpose of an orthogonal matrix is orthogonal, because the condition
QTQ = I implies that QT is the inverse of Q, hence QQT = I.

(iii) A given matrix A is symmetric (i.e., A = AT ) iff it can be expressed in the form

A = QDQT (0.5)

where Q is orthogonal and D is a diagonal matrix. Notice that (0.5) is equivalent to the
matrix equation

AQ = QD , (0.6)

which is equivalent to the equations

AQv = Qvλv

for all v, where λv = Dvv. Hence the diagonal elements of D are the eigenvalues of A and
the columns of Q are the corresponding eigenvectors.

Properties (i), (ii), and (iii) are proved in any textbook of linear algebra. We can get
some practice using these concepts by giving a constructive proof of another well known
fact:

Lemma. Given k mutually perpendicular unit vectors, there is an orthogonal matrix

having these vectors as the first k columns.

Proof. Suppose first that k = 1 and that x is a d-dimensional vector with ‖x‖ = 1. If
x1 = 1 we have x2 = · · · = xd = 0, so the orthogonal matrix Q = I satisfies the desired
condition. Otherwise we let

y1 =
√

(1− x1)/2 , yj = −xj/(2y1) for 1 < j ≤ d . (0.7)
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Then

yTy = ‖y‖2 = y2
1 +

x2
2 + · · ·+ x2

d

4y2
1

=
1− x1

2
+

1− x2
1

2(1− x1)
= 1 .

And x is the first column of the Householder [8] matrix

Q = I − 2yyT , (0.8)

which is easily seen to be orthogonal because

QTQ = Q2 = I − 4yyT + 4yyT yyT = I .

Now suppose the lemma has been proved for some k ≥ 1; we will show how to increase
k by 1. Let Q be an orthogonal matrix and let x be a unit vector perpendicular to its first
k columns. We want to construct an orthogonal matrix Q′ agreeing with Q in columns 1
to k and having x in column k + 1. Notice that

QTx =


0
...
0
y


by hypothesis, where there are 0s in the first k rows. The (d− k)-dimensional vector y has
squared length

‖y‖2 = QTx ·QTx = xTQQTx = xTx = 1 ,

so it is a unit vector. (In particular, y 6= 0, so we must have k < d.) Using the construction
above, we can find a (d−k)× (d−k) orthogonal matrix R with y in its first column. Then
the matrix

Q′ = Q


1

. . . 0
1

0 R


does what we want.

1. Orthogonal labelings. Let G be a graph on the vertices V . If u and v are distinct
elements of V , the notation u −− v means that they are adjacent in G; u 6−− v means they
are not.

An assignment of vectors av to each vertex v is called an orthogonal labeling of G if
au · av = 0 whenever u 6−− v. In other words, whenever au is not perpendicular to av

in the labeling, we must have u −− v in the graph. The vectors may have any desired
dimension d; the components of av are ajv for 1 ≤ j ≤ d. Example: av = 0 for all v always
works trivially.
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The cost c(av) of a vector av in an orthogonal labeling is defined to be 0 if av = 0,
otherwise

c(av) =
a2

1v

‖av‖2
=

a2
1v

a2
1v + · · ·+ a2

dv

.

Notice that we can multiply any vector av by a nonzero scalar tv without changing its
cost, and without violating the orthogonal labeling property. We can also get rid of a zero
vector by increasing d by 1 and adding a new component 0 to each vector, except that
the zero vector gets the new component 1. In particular, we can if we like assume that all
vectors have unit length. Then the cost will be a2

1v.

Lemma. If S ⊆ V is a stable set of vertices (i.e., no two vertices of S are adjacent) and

if a is an orthogonal labeling then ∑
v∈S

c(av) ≤ 1 . (1.1)

Proof. We can assume that ‖av‖ = 1 for all v. Then the vectors av for v ∈ S must
be mutually orthogonal, and Lemma 0 tells us we can find a d × d orthogonal matrix Q

with these vectors as its leftmost columns. The sum of the costs will then be at most
q2
11 + q2

12 + · · ·+ q2
1d = 1.

Relation (1.1) makes it possible for us to study stable sets geometrically.

2. Convex labelings. An assignment x of real numbers xv to the vertices v of G is
called a real labeling of G. Several families of such labelings will be of importance to us:

The characteristic labeling for U ⊆ V has xv =
{ 1 if v ∈ U ;

0 if v /∈ U .
A stable labeling is a characteristic labeling for a stable set.

A clique labeling is a characteristic labeling for a clique (a set of mutually adjacent

vertices).

STAB(G) is the smallest convex set containing all stable labelings,

i.e., STAB(G) = convex hull {x | x is a stable labeling of G }.
QSTAB(G) = { x ≥ 0 |

∑
v∈Q xv ≤ 1 for all cliques Q of G } .

TH(G) = {x ≥ 0 |
∑

v∈V c(av)xv ≤ 1 for all orthogonal labelings a of G } .

Lemma. TH is sandwiched between STAB and QSTAB:

STAB(G) ⊆ TH(G) ⊆ QSTAB(G) . (2.1)

Proof. Relation (1.1) tells that every stable labeling belongs to TH(G). Since TH(G) is
obviously convex, it must contain the convex hull STAB(G). On the other hand, every
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clique labeling is an orthogonal labeling of dimension 1. Therefore every constraint of
QSTAB(G) is one of the constraints of TH(G).

Note: QSTAB first defined by Shannon [18], and the first systematic study of STAB was
undertaken by Padberg [17]. TH was first defined by Grötschel, Lovász, and Schrijver in [6].

3. Monotonicity. Suppose G and G′ are graphs on the same vertex set V , with G ⊆ G′
(i.e., u −− v in G implies u −− v in G′). Then

every stable set in G′ is stable in G, hence STAB(G) ⊇ STAB(G′);

every clique in G is a clique in G′, hence QSTAB(G) ⊇ QSTAB(G′);

every orthogonal labeling of G is an orthogonal labeling of G′,

hence TH(G) ⊇ TH(G′).

In particular, if G is the empty graph Kn on |V | = n vertices, all sets are stable and all
cliques have size ≤ 1, hence

STAB(Kn) = TH(Kn) = QSTAB(Kn) = { x | 0 ≤ xv ≤ 1 for all v }, the n-cube.

If G is the complete graph Kn, all stable sets have size ≤ 1 and there is an n-clique, so

STAB(Kn) = TH(Kn) = QSTAB(Kn) = {x ≥ 0 |
∑

v xv ≤ 1 }, the n-simplex.

Thus all the convex sets STAB(G), TH(G), QSTAB(G) lie between the n-simplex and the
n-cube.

Consider, for example, the case n = 3. Then there are three coordinates, so we can
visualize the sets in 3-space (although there aren’t many interesting graphs). The QSTAB

of s s sx y z
is obtained from the unit cube by restricting the coordinates to x + y ≤ 1 and

y + z ≤ 1; we can think of making two cuts in a piece of cheese:

The vertices {000, 100, 010, 001, 101} correspond to the stable labelings, so once again we
have STAB(G) = TH(G) = QSTAB(G).

4. The theta function. The function ϑ(G) mentioned in the introduction is a special
case of a two-parameter function ϑ(G,w), where w is a nonnegative real labeling:

ϑ(G,w) = max{w · x | x ∈ TH(G) } ; (4.1)

ϑ(G) = ϑ(G, 1l) where 1l is the labeling wv = 1 for all v. (4.2)
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This function, called the Lovász number of G (or the weighted Lovász number when w 6= 1l),
tells us about 1-dimensional projections of the n-dimensional convex set TH(G).

Notice, for example, that the monotonicity properties of §3 tell us

G ⊆ G′ ⇒ ϑ(G,w) ≥ ϑ(G′, w) (4.3)

for all w ≥ 0. It is also obvious that ϑ is monotone in its other parameter:

w ≤ w′ ⇒ ϑ(G,w) ≤ ϑ(G,w′) . (4.4)

The smallest possible value of ϑ is

ϑ(Kn, w) = max{w1, . . . , wn} ; ϑ(Kn) = 1 . (4.5)

The largest possible value is

ϑ(Kn, w) = w1 + · · ·+ wn ; ϑ(Kn) = n . (4.6)

Similar definitions can be given for STAB and QSTAB:

α(G,w) = max{w · x | x ∈ STAB(G) } , α(G) = α(G, 1l) ; (4.7)

κ(G,w) = max{w · x | x ∈ QSTAB(G) } , κ(G) = κ(G, 1l) . (4.8)

Clearly α(G) is the size of the largest stable set in G, because every stable labeling x

corresponds to a stable set with 1l · x vertices. It is also easy to see that κ(G) is at most
χ(G), the smallest number of cliques that cover the vertices of G. For if the vertices can
be partitioned into k cliques Q1, . . . , Qk and if x ∈ QSTAB(G), we have

1l · x =
∑
v∈Q1

xv + · · ·+
∑
v∈Qk

xv ≤ k .

Sometimes κ(G) is less than χ(G). For example, consider the cyclic graph Cn, with
vertices {0, 1, . . . , n − 1} and u −− v iff u ≡ v ± 1 (mod 1). Adding up the inequalities
x0 + x1 ≤ 1, . . . , xn−2 + xn−1 ≤ 1, xn−1 + x0 ≤ 1 of QSTAB gives 2(x0 + · · · + xn−1) ≤ n,
and this upper bound is achieved when all x’s are 1

2 ; hence κ(Cn) = n
2 , if n > 3. But χ(G)

is always an integer, and χ(Cn) =
⌈
n
2

⌉
is greater than κ(Cn) when n is odd.

Incidentally, these remarks establish the “sandwich inequality” (∗) stated in the in-
troduction, because

α(G) ≤ ϑ(G) ≤ κ(G) ≤ χ(G) (4.9)

and ω(G) = α(G), χ(G) = χ(G).
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5. Alternative definitions of ϑ. Four additional functions ϑ1, ϑ2, ϑ3, ϑ4 are defined
in [7], and they all turn out to be identical to ϑ. Thus, we can understand ϑ in many
different ways; this may help us compute it.

We will show, following [7], that if w is any fixed nonnegative real labeling of G, the
inequalities

ϑ(G,w) ≤ ϑ1(G,w) ≤ ϑ2(G,w) ≤ ϑ3(G,w) ≤ ϑ4(G,w) ≤ ϑ(G,w) (5.1)

can be proved. Thus we will establish the theorem of [7], and all inequalities in our proofs
will turn out to be equalities. We will introduce the alternative definitions ϑk one at a
time; any one of these definitions could have been taken as the starting point. First,

ϑ1(G,w) = min
a

max
v

(
wv/c(av)

)
, over all orthogonal labelings a. (5.2)

Here we regard wv/c(av) = 0 when wv = c(av) = 0; but the max is ∞ if some wv > 0 has
c(av) = 0.

Lemma. ϑ(G,w) ≤ ϑ1(G,w).

Proof. Suppose x ∈ TH(G) maximizes w ·x, and suppose a is an orthogonal labeling that
achieves the minimum value ϑ1(G,w). Then

ϑ(G,w) = w · x =
∑
v

wvxv ≤
(

max
v

wv
c(av)

)∑
v

c(av)xv ≤ max
v

wv
c(av)

= ϑ1(G,w) .

Incidentally, the fact that all inequalities are exact will imply later that every nonzero
weight vector w has an orthogonal labeling a such that

c(av) =
wv

ϑ(G,w)
for all v. (5.3)

We will restate such consequences of (5.1) later, but it may be helpful to keep that future
goal in mind.

6. Characterization via eigenvalues. The second variant of ϑ is rather different; this
is the only one Lovász chose to mention in [13].

We say that A is a feasible matrix for G and w if A is indexed by vertices and

A is real and symmetric;

Avv = wv for all v ∈ V ;

Auv =
√
wuwv whenever u 6−− v in G (6.1)
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The other elements of A are unconstrained (i.e., they can be anything between −∞ and
+∞).

If A is any real, symmetric matrix, let Λ(A) be its maximum eigenvalue. This is well
defined because all eigenvalues of A are real. Suppose A has eigenvalues {λ1, . . . , λn}; then
A = Q diag(λ1, . . . , λn)QT for some orthogonal Q, and ‖Qx‖ = ‖x‖ for all vectors x, so
there is a nice way to characterize Λ(A):

Λ(A) = max{xTAx | ‖x‖ = 1 } . (6.2)

Notice that Λ(A) might not be the largest eigenvalue in absolute value. We now let

ϑ2(G,w) = min{Λ(A) | A is a feasible matrix for G and w } . (6.3)

Lemma. ϑ1(G,w) ≤ ϑ2(G,w).

Proof. Note first that the trace trA =
∑
v wv ≥ 0 for any feasible matrix A. The trace

is also well-known to be the sum of the eigenvalues; this fact is an easy consequence of the
identity

trXY =
m∑
j=1

n∑
k=1

xjkykj = trY X (6.4)

valid for any matrices X and Y of respective sizes m×n and n×m. In particular, ϑ2(G,w)
is always ≥ 0, and it is = 0 if and only if w = 0

(
when also ϑ1(G,w) = 0

)
.

So suppose w 6= 0 and let A be a feasible matrix that attains the minimum value
Λ(A) = ϑ2(G,w) = λ > 0. Let

B = λI −A . (6.5)

The eigenvalues of B are λ minus the eigenvalues of A.
(
For if A = Qdiag(λ1, . . . , λn)QT

then B = Qdiag(λ− λ1, . . . , λ− λn)QT .
)

Thus they are all nonnegative; such a matrix B
is called positive semidefinite. By (0.5) we can write

B = XTX , i.e., Buv = xu · xv , (6.6)

when X = diag(
√
λ− λ1, . . . ,

√
λ− λn )QT .

Let av = (
√
wv , x1v, . . . , xrv)T . Then c(av) = wv/ ‖av‖2 = wv/(wv + x2

1v + · · ·+ x2
rv)

and x2
1v + · · · + x2

rv = Bvv = λ − wv, hence c(av) = wv/λ. Also if u 6−− v we have
au · av =

√
wuwv + xu · xv =

√
wuwv + Buv =

√
wuwv − Auv = 0. Therefore a is an

orthogonal labeling and maxv wv/c(av) = λ ≥ ϑ1(G,w).

7. A complementary characterization. Still another variation is based on orthogonal
labelings of the complementary graph G.
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In this case we let b be an orthogonal labeling of G, normalized so that
∑

v ‖bv‖2 = 1,
and we let

ϑ3(G,w) = max

{∑
u,v

(
√
wu bu) · (

√
wv bv)

∣∣∣∣
b is a normalized orthogonal labeling of G

}
. (7.1)

A normalized orthogonal labeling b is equivalent to an n×n symmetric positive semidefinite
matrix B, where Buv = bu · bv is zero when u −− v, and where trB = 1.

Lemma. ϑ2(G,w) ≤ ϑ3(G,w).

This lemma is the “heart” of the proof that all ϑs are equivalent, according to [7]. It
relies on a fact about positive semidefinite matrices that we will prove in §9.

Fact. If A is a symmetric matrix such that A · B ≥ 0 for all symmetric positive semi-

definite B with Buv = 0 for u −− v, then A = X + Y where X is symmetric positive

semidefinite and Y is symmetric and Yvv = 0 for all v and Yuv = 0 for u 6−− v.

Here C ·B stands for the dot product of matrices, i.e., the sum
∑

u,v CuvBuv, which can
also be written trCTB. The stated fact is a duality principle for quadratic programming.

Assuming the Fact, let W be the matrix with Wuv =
√
wuwv, and let ϑ3 = ϑ3(G,w).

By definition (7.1), if b is any nonzero orthogonal labeling ofG (not necessarily normalized),
we have ∑

u,v

(
√
wu bu) · (

√
wv bv) ≤ ϑ3

∑
v

‖bv‖2 . (7.2)

In matrix terms this says W ·B ≤ (ϑ3I) ·B for all symmetric positive semidefinite B with
Buv = 0 for u −− v. The Fact now tells us we can write

ϑ3I −W = X + Y (7.3)

where X is symmetric positive semidefinite, Y is symmetric and diagonally zero, and
Yuv = 0 when u 6−− v. Therefore the matrix A defined by

A = W + Y = ϑ3I −X

is a feasible matrix for G, and Λ(A) ≤ ϑ3. This completes the proof that ϑ2(G,w) ≤
ϑ3(G,w), because Λ(A) is an upper bound on ϑ2 by definition of ϑ2.
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8. Elementary facts about cones. A cone in N -dimensional space is a set of vectors
closed under addition and under multiplication by nonnegative scalars. (In particular, it
is convex: If c and c′ are in cone C and 0 < t < 1 then tc and (1 − t)c′ are in C, hence
tc+ (1− t)c′ ∈ C .) A closed cone is a cone that is also closed under taking limits.

F1. If C is a closed convex set and x /∈ C, there is a hyperplane separating x from C.
This means there is a vector y and a number b such that c ·y ≤ b for all c ∈ C but x ·y > b.

Proof. Let d be the greatest lower bound of ‖x − c‖2 for all c ∈ C. Then there’s a
sequence of vectors ck with ‖x−ck‖2 < d+1/k; this infinite set of vectors contained in the
sphere { y | ‖x− y‖2 ≤ d + 1 } must have a limit point c∞, and c∞ ∈ C since C is closed.
Therefore ‖x− c∞‖2 ≥ d; in fact ‖x− c∞‖2 = d, since ‖x− c∞‖ ≤ ‖x− ck‖ + ‖ck − c∞‖
and the right-hand side can be made arbitrarily close to d. Since x /∈ C, we must have
d > 0. Now let y = x − c∞ and b = c∞ · y. Clearly x · y = y · y + b > b. And if c is any
element of C and ε is any small positive number, the vector εc+ (1− ε)c∞ is in C , hence∥∥x− (εc+ (1− ε)c∞

)∥∥2 ≥ d. But∥∥x− (εc+ (1− ε)c∞
)∥∥2 − d = ‖x− c∞ − ε(c− c∞)‖2 − d

= − 2εy · (c− c∞) + ε2 ‖c− c∞‖2

can be nonnegative for all small ε only if y · (c− c∞) ≤ 0, i.e., c · y ≤ b.

If A is any set of vectors, let A∗ = { b | a · b ≥ 0 for all a ∈ A }.
The following facts are immediate:

F2. A ⊆ A′ implies A∗ ⊇ A′∗.

F3. A ⊆ A∗∗.

F4. A∗ is a closed cone.

From F1 we also get a result which, in the special case that C = {Ax | x ≥ 0 } for a
matrix A, is called Farkas’s Lemma:

F5. If C is a closed cone, C = C∗∗.

Proof. Suppose x ∈ C∗∗ and x /∈ C, and let (y, b) be a separating hyperplane as in F1.
Then (y, 0) is also a separating hyperplane; for we have x · y > b ≥ 0 because 0 ∈ C, and
we cannot have c · y > 0 for c ∈ C because (λc) · y would then be unbounded. But then
c · (−y) ≥ 0 for all c ∈ C, so −y ∈ C∗; hence x · (−y) ≥ 0, a contradiction.

If A and B are sets of vectors, we define A+B = { a+ b | a ∈ A and b ∈ B }.
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F6. If C and C′ are closed cones, (C ∩ C′)∗ = C∗ +C′∗.

Proof. If A and B are arbitrary sets we have A∗ + B∗ ⊆ (A ∩ B)∗, for if x ∈ A∗ + B∗

and y ∈ A ∩B then x · y = a · y+ b · y ≥ 0. If A and B are arbitrary sets including 0 then
(A + B)∗ ⊆ A∗ ∩ B∗ by F2, because A + B ⊇ A and A+ B ⊇ B. Thus for arbitrary A

and B we have (A∗ +B∗)∗ ⊆ A∗∗ ∩B∗∗, hence

(A∗ +B∗)∗∗ ⊇ (A∗∗ ∩B∗∗)∗ .

Now let A and B be closed cones; apply F5 to get A∗ +B∗ ⊇ (A ∩ B)∗.

F7. If C and C′ are closed cones, (C + C′)∗ = C∗ ∩ C′∗. (I don’t need this but I might
as well state it.) Proof. F6 says (C∗ ∩C ′∗)∗ = C∗∗ + C′∗∗; apply F5 and ∗ again.

F8. Let S be any set of indices and let AS = { a | as = 0 for all s ∈ S }, and let S be all
the indices not in S. Then

A∗S = AS .

Proof. If bs = 0 for all s /∈ S and as = 0 for all s ∈ S, obviously a · b = 0; so AS ⊆ A∗S .
If bs 6= 0 for some s /∈ S and at = 0 for all t 6= s and as = −bs then a ∈ AS and a · b < 0;
so b /∈ A∗S , hence AS ⊇ A∗S .

9. Definite proof of a semidefinite fact. Now we are almost ready to prove the result
needed in the proof of Lemma 7.

Let D be the set of real symmetric positive semidefinite matrices (called “spuds”
henceforth for brevity), considered as vectors inN -dimensional space where N = 1

2 (n+1)n.
We use the inner product A ·B = trATB; this is justified if we divide off-diagonal elements
by
√

2. For example, if n = 3 the correspondence between 6-dimensional vectors and 3× 3
symmetric matrices is

(a, b, c, d, e, f) ↔

 a d/
√

2 e/
√

2
d/
√

2 b f/
√

2
e/
√

2 f/
√

2 c


preserving sum, scalar product, and dot product. Clearly D is a closed cone.

F9. D∗ = D.

Proof. If A and B are spuds then A = XTX and B = Y TY and A ·B = trXTX Y TY =
trXY TY XT = (Y XT ) · (Y XT ) ≥ 0; hence D ⊆ D∗. (In fact, this argument shows that
A ·B = 0 iff AB = 0, for any spuds A and B, since A = AT .)
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If A is symmetric but has a negative eigenvalue λ we can write

A = Q diag (λ, λ2, . . . , λn)QT

for some orthogonal matrix Q. Let B = Qdiag (1, 0, . . . , 0)QT ; then B is a spud, and

A ·B = tr ATB = tr Q diag (λ, 0, . . . , 0)QT = λ < 0 .

So A is not in D∗; this proves D ⊇ D∗.

Let E be the set of all real symmetric matrices such that Euv = 0 when u −− v in a
graph G; let F be the set of all real symmetric matrices such that Fuv = 0 when u = v or
u 6−− v. The Fact stated in Section 7 is now equivalent in our new notation to

Fact. (D ∩ E)∗ ⊆ D + F .

But we know that

(D ∩E)∗ = D∗ + E∗ by F6

= D+ F by F9 and F8.

10. Another characterization. Remember ϑ, ϑ1, ϑ2, and ϑ3? We are now going to
introduce yet another function

ϑ4(G,w) = max

{∑
v

c(bv)wv

∣∣∣∣ b is an orthogonal labeling of G

}
. (10.1)

Lemma. ϑ3(G,w) ≤ ϑ4(G,w).

Proof. Suppose b is a normalized orthogonal labeling of G that achieves the maximum ϑ3;
and suppose the vectors of this labeling have dimension d. Let

xk =
∑
v

bkv
√
wv , for 1 ≤ k ≤ d ; (10.2)

then
ϑ3(G,w) =

∑
u,v

√
wu bu · bv

√
wv =

∑
u,v,k

√
wuwv bkubkv =

∑
k

x2
k .

Let Q be an orthogonal d × d matrix whose first row is (x1/
√
ϑ3, . . . , xd/

√
ϑ3)T , and let

b′v = Qbv. Then b′u · b′v = bTuQ
TQbv = bTu bv = bu · bv, so b′ is a normalized orthogonal

labeling of G. Also

x′k =
∑
v

b′kv
√
wv =

∑
v,j

Qkjbjv
√
wv

=
∑
j

Qkjxj =
{√

ϑ3 , k = 1;
0 , k > 1.

(10.3)
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Hence by Cauchy’s inequality

ϑ3(G,w) =
(∑

v

b′1v
√
wv

)2

≤
(∑

v

‖b′v‖2
)(∑

v
b′v 6=0

b′21v
‖b′v‖2

wv

)

=
∑
v

c(b′v)wv ≤ ϑ4(G,w) (10.4)

because
∑

v ‖b′v‖2 =
∑

v ‖bv‖2 = 1.

11. The final link. Now we can close the loop:

Lemma. ϑ4(G,w) ≤ ϑ(G,w).

Proof. If b is an orthogonal labeling of G that achieves the maximum ϑ4, we will show
that the real labeling x defined by xv = c(bv) is in TH(G). Therefore ϑ4(G,w) = w · x is
≤ ϑ(G,w).

We will prove that if a is any orthogonal labeling of G, and if b is any orthogonal
labeling of G, then ∑

v

c(av)c(bv) ≤ 1 . (11.1)

Suppose a is a labeling of dimension d and b is of dimension d′. Then consider the d× d′
matrices

Av = avb
T
v (11.2)

as elements of a vector space of dimension dd′. If u 6= v we have

Au ·Av = tr ATuAv = tr bua
T
uavb

T
v = tr aTu avb

T
v bu = 0 , (11.3)

because aTuav = 0 when u 6−− v and bTv bu = 0 when u −− v. If u = v we have

Av ·Av = ‖av‖2 ‖bv‖2 .

The upper left corner element of Av is a1vb1v, hence the “cost” of Av is (a1vb1v)2/ ‖Av‖2 =
c(av)c(bv). This, with (11.3), proves (11.1). (See the proof of Lemma 1.)

12. The main theorem. Lemmas 5, 6, 7, 10, and 11 establish the five inequalities
claimed in (5.1); hence all five variants of ϑ are the same function of G and w. Moreover,
all the inequalities in those five proofs are equalities

(
with the exception of (11.1)

)
. We

can summarize the results as follows.
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Theorem. For all graphs G and any nonnegative real labeling w of G we have

ϑ(G,w) = ϑ1(G,w) = ϑ2(G,w) = ϑ3(G,w) = ϑ4(G,w) . (12.1)

Moreover, if w 6= 0, there exist orthogonal labelings a and b of G and G, respectively, such

that

c(av) = wv/ϑ ; (12.2)∑
c(av)c(bv) = 1 . (12.3)

Proof. Relation (12.1) is, of course, (5.1); and (12.2) is (5.3). The desired labeling b is
what we called b′ in the proof of Lemma 10. The fact that the application of Cauchy’s
inequality in (10.4) is actually an equality,

ϑ =
(∑

v

b1v
√
wv

)2

=
(∑

v

‖bv‖2
)( ∑

v
bv 6=0

b21v
‖bv‖2

wv

)
, (12.4)

tells us that the vectors whose dot product has been squared are proportional: There is a
number t such that

‖bv‖ = t
b1v
√
wv

‖bv‖
, if bv 6= 0 ; ‖bv‖ = 0 iff b1v

√
wv = 0 . (12.5)

The labeling in the proof of Lemma 10 also satisfies∑
v

‖bv‖2 = 1 ; (12.6)

hence t = ±1/
√
ϑ .

We can now show

c(bv) = ‖bv‖2 ϑ/wv , when wv 6= 0 . (12.7)

This relation is obvious if ‖bv‖ = 0; otherwise we have

c(bv) =
b21v
‖bv‖2

=
‖bv‖2
t2wv

by (12.5). Summing the product of (12.2) and (12.7) over v gives (12.3).

13. The main converse. The nice thing about Theorem 12 is that conditions (12.2)
and (12.3) also provide a certificate that a given value ϑ is the minimum or maximum
stated in the definitions of ϑ, ϑ1, ϑ2, ϑ3, and ϑ4.
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Theorem. If a is an orthogonal labeling of G and b is an orthogonal labeling of G such

that relations (12.2) and (12.3) hold for some ϑ and w, then ϑ is the value of ϑ(G,w).

Proof. Plugging (12.2) into (12.3) gives
∑
wvc(bv) = ϑ, hence ϑ ≤ ϑ4(G,w) by definition

of ϑ4. Also,
max
v

wv
c(av)

= ϑ ,

hence ϑ ≥ ϑ1(G,w) by definition of ϑ1.

14. Another look at TH. We originally defined ϑ(G,w) in (4.1) in terms of the convex
set TH defined in section 2:

ϑ(G,w) = max{w · x | x ∈ TH(G) } , when w ≥ 0 . (14.1)

We can also go the other way, defining TH in terms of ϑ:

TH(G) = {x ≥ 0 | w · x ≤ ϑ(G,w) for all w ≥ 0 } . (14.2)

Every x ∈ TH(G) belongs to the right-hand set, by (14.1). Conversely, if x belongs to the
right-hand set and if a is any orthogonal labeling of G, not entirely zero, let wv = c(av),
so that w · x =

∑
v c(av)xv. Then

ϑ1(G,w) ≤ max
v

(
wv/c(av)

)
= 1

by definition (5.2), so we know by Lemma 5 that
∑
c(av)xv ≤ 1. This proves that x

belongs to TH(G).

Theorem 12 tells us even more.

Lemma. TH(G) = {x ≥ 0 | ϑ(G,x) ≤ 1 }.

Proof. By definition (10.1),

ϑ4(G,w) = max

{∑
v

c(av)wv | a is an orthogonal labeling of G

}
. (14.3)

Thus x ∈ TH(G) iff ϑ4(G,x) ≤ 1, when x ≥ 0.

Theorem. TH(G) = { x | xv = c(bv) for some orthogonal labeling b of G }.

Proof. We already proved in (11.1) that the right side is contained in the left.

Let x ∈ TH(G) and let ϑ = ϑ(G,x). By the lemma, ϑ ≤ 1. Therefore, by (12.2), there
is an orthogonal labeling b of G such that c(bv) = xv/ϑ ≥ xv for all v. It is easy to reduce
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the cost of any vector in an orthogonal labeling to any desired value, simply by increasing
the dimension and giving this vector an appropriate nonzero value in the new component
while all other vectors remain zero there. The dot products are unchanged, so the new
labeling is still orthogonal. Repeating this construction for each v produces a labeling with
c(bv) = xv.

This theorem makes the definition of ϑ4 in (10.1) identical to the definition of ϑ
in (4.1).

15. Zero weights. Our next result shows that when a weight is zero, the corresponding
vertex might as well be absent from the graph.

Lemma. Let U be a subset of the vertices V of a graph G, and let G′ = G|U be the graph

induced by U (i.e., the graph on vertices U with u −− v in G′ iff u −− v in G). Then if w

and w′ are nonnegative labelings of G and G′ such that

wv = w′v when v ∈ U , wv = 0 when v /∈ U , (15.1)

we have

ϑ(G,w) = ϑ(G′, w′) . (15.2)

Proof. Let a and b satisfy (12.2) and (12.3) for G and w. Then c(av) = 0 for v /∈ U , so
a|U and b|U satisfy (12.2) and (12.3) for G′ and w′. (Here a|U means the vectors av for
v ∈ U .) By Theorem 13, they determine the same ϑ.

16. Nonzero weights. We can also get some insight into the significance of nonzero
weights by “splitting” vertices instead of removing them.

Lemma. Let v be a vertex of G and let G′ be a graph obtained from G by adding a new

vertex v′ and new edges

u −− v′ iff u −− v . (16.1)

Let w and w′ be nonnegative labelings of G and G′ such that

wu = w′u , when u 6= v ; (16.2)

wv = w′v + w′v′ . (16.3)

Then

ϑ(G,w) = ϑ(G′, w′) . (16.4)

Proof. By Theorem 12 there are labelings a and b of G and G satisfying (12.2) and
(12.3). We can modify them to obtain labelings a′ and b′ of G′ and G′ as follows, with the
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vectors of a′ having one more component than the vectors of a:

a′u =
(
au
0

)
, b′u = bu , when u 6= v ; (16.5)

a′v =
(
av
α

)
, a′v′ =

(
av
−β

)
, α =

√
w′v′
w′v
‖av‖ , β =

√
w′v
w′v′
‖av‖ ; (16.6)

b′v = b′v′ = bv . (16.7)

(We can assume by Lemma 15 that w′v and w′v′ are nonzero.) All orthogonality relations
are preserved; and since v 6−− v′ in G′, we also need to verify

a′v · a′v′ = ‖av‖2 − αβ = 0 .

We have

c(a′v) =
c(av) ‖av‖2
‖av‖2 + α2

=
c(av)

1 + w′v′/w
′
v

=
c(av)w′v
wv

=
w′v
ϑ
,

and similarly c(a′v′) = w′v′/ϑ; thus (12.2) and (12.3) are satisfied by a′ and b′ for G′ and w′.

Notice that if all the weights are integers we can apply this lemma repeatedly to
establish that

ϑ(G,w) = ϑ(G′) , (16.8)

where G′ is obtained from G by replacing each vertex v by a cluster of wv mutually
nonadjacent vertices that are adjacent to each of v’s neighbors.

(
Recall that ϑ(G′) =

ϑ(G′, 1l), by definition (4.2).
)

In particular, if G is the trivial graph K2 and if we assign
the weights M and N , we have ϑ

(
K2, (M,N )T

)
= ϑ(KM,N) where KM,N denotes the

complete bipartite graph on M and N vertices.

A similar operation called “duplicating” a vertex has a similarly simple effect:

Corollary. Let G′ be constructed from G as in the lemma but with an additional edge

between v and v′. Then ϑ(G,w) = ϑ(G′, w′) if w′ is defined by (16.2) and

wv = max(w′v, w
′
v′) . (16.9)

Proof. We may assume that wv = w′v and w′v′ 6= 0. Most of the construction (16.5)–
(16.7) can be used again, but we set α = 0 and b′v′ = 0 and

β =

√
wv −w′v′
w′v′

‖av‖ .
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Once again the necessary and sufficient conditions are readily verified.

If the corollary is applied repeatedly, it tells us that ϑ(G) is unchanged when we
replace the vertices of G by cliques.

17. Simple examples. We observed in section 4 that ϑ(G,w) always is at least

ϑmin = ϑ(Kn, w) = max{w1, . . . , wn} (17.1)

and at most
ϑmax = (Kn, w) = w1 + · · ·+ wn . (17.2)

What are the corresponding orthogonal labelings?

For Kn the vectors of a have no orthogonal constraints, while the vectors of b must
satisfy bu · bv = 0 for all u 6= v. We can let a be the two-dimensional labeling

av =
( √

wv√
ϑ− wv

)
, ϑ = ϑmin (17.3)

so that ‖av‖2 = ϑ and c(av) = wv/ϑ as desired; and b can be one-dimensional,

bv =
{

(1) , if v = vmax

(0) , if v 6= vmax

(17.4)

where vmax is any particular vertex that maximizes wv. Clearly∑
v

c(av)c(bv) =
c(avmax)

ϑ
=
wvmax

ϑ
= 1 .

For Kn the vectors of a must be mutually orthogonal while the vectors of b are
unrestricted. We can let the vectors a be the columns of any orthogonal matrix whose top
row contains the element √

wv/ϑ , ϑ = ϑmax (17.5)

in column v. Then ‖av‖2 = 1 and c(av) = wv/ϑ. Once again a one-dimensional labeling
suffices for b; we can let bv = (1) for all v.

18. The direct sum of graphs. Let G = G′ +G′′ be the graph on vertices

V = V ′ ∪ V ′′ (18.1)

where the vertex sets V ′ and V ′′ of G′ and G′′ are disjoint, and where u −− v in G if and
only if u, v ∈ V ′ and u −− v in G′, or u, v ∈ V ′′ and u −− v in G′′. In this case

ϑ(G,w) = ϑ(G′, w′) + ϑ(G′′, w′′) , (18.2)
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where w′ and w′′ are the sublabelings of w on vertices of V ′ and V ′′. We can prove (18.2)
by constructing orthogonal labelings (a, b) satisfying (12.2) and (12.3).

Suppose a′ is an orthogonal labeling of G′ such that

‖a′v‖2 = ϑ′ a′1v =
√
w′v , (18.3)

and suppose a′′ is a similar orthogonal labeling of G′′. If a′ has dimension d′ and a′′ has
dimension d′′, we construct a new labeling a of dimension d = d′ + d′′ as follows, where j′

runs from 2 to d′ and j′′ runs from 2 to d′′:

if v ∈ V ′ if v ∈ V ′′

a1v =
√
w′v = a′1v , a1v =

√
w′′v = a′′1v ,

aj′v =
√
ϑ/ϑ′ a′j′v , aj′v = 0 ,

a(d′+1)v =
√
ϑ′′w′v/ϑ

′ , a(d′+1)v = −
√
ϑ′w′′v/ϑ

′′ ,

a(d′+j′′)v = 0 , a(d′+j′′)v =
√
ϑ/ϑ′′ a′′j′′v .

(18.4)

Now if u, v ∈ V ′ we have

au · av =
√
w′uw

′
v +

ϑ

ϑ′
(
a′u · a′v −

√
w′uw

′
v

)
+
ϑ′′

ϑ′
√
w′uw

′
v =

ϑ

ϑ′
a′u · a′v ; (18.5)

thus au · av = 0 when a′u · a′v = 0, and

‖av‖2 =
ϑ

ϑ′
‖a′v‖2 = ϑ . (18.6)

It follows that c(av) = wv/ϑ as desired. A similar derivation holds for u, v ∈ V ′′. And if
u ∈ V ′, v ∈ V ′′, then

au · av =
√
w′uw

′′
v −

√
w′uw

′′
v = 0 . (18.7)

The orthogonal labeling b of G′ +G′′ is much simpler; we just let bv = b′v for v ∈ V ′
and bv = b′′v for v ∈ V ′′. Then (12.2) and (12.3) are clearly preserved. This proves (18.2).

There is a close relation between the construction (18.4) and the construction (16.6),
suggesting that we might be able to define another operation on graphs that generalizes
both the splitting and direct sum operation.

19. The direct cosum of graphs. If G′ and G′′ are graphs on disjoint vertex sets V ′

and V ′′ as in section 18, we can also define

G = G′ +G′′ ⇐⇒ G = G′ +G′′ . (19.1)
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This means u −− v in G if and only if either u −− v in G′ or u −− v in G′′ or u and v

belong to opposite vertex sets. In this case

ϑ(G,w) = max
(
ϑ(G′, w′), ϑ(G′′, w′′)

)
(19.2)

and again there is an easy way to construct (a, b) from (a′, b′) and (a′′, b′′) to prove (19.2).
Assume “without lots of generality” that

ϑ(G′, w′) ≥ ϑ(G′′, w′′) (19.3)

and suppose again that we have (18.3) and its counterpart for a′′. Then we can define

if v ∈ V ′ if v ∈ V ′′

a1v =
√
wv′ = a′1v , a1v =

√
wv′′ = a′′1v ,

aj′v = a′j′v , aj′v = 0 ,

a(d′+1)v = 0 , a(d′+1)v =
√

(ϑ′ − ϑ′′)w′′v/ϑ′′ ,
a(d′+j′′)v = 0 , a(d′+j′′)v =

√
ϑ′/ϑ′′ a′′j′′v .

(19.4)

Now av is essentially unchanged when v ∈ V ′; and when u, v ∈ V ′′ we have

au · av =
√
w′′uw

′′
v +

(
ϑ′

ϑ′′
− 1
) √

w′′uw
′′
v +

ϑ′

ϑ′′
(
a′′u · a′′v −

√
w′′uw

′′
v

)
=
ϑ′

ϑ′′
a′′u · a′′v . (19.5)

Again we retain the necessary orthogonality, and we have c(av) = wv/ϑ for all v.

For the b’s, we let bv = b′v when v ∈ V ′ and bv = 0 when v ∈ V ′′.

20. A direct product of graphs. Now let G′ and G′′ be graphs on vertices V ′ and V ′′

and let V be the n = n′n′′ ordered pairs

V = V ′ × V ′′ . (20.1)

We define the ‘strong product’,
G = G′ ∗ G′′ (20.2)

on V by the rule

(u′, u′′) −− (v′, v′′) or (u′, u′′) = (v′, v′′) in G

⇐⇒ (u′ −− v′ or u′ = v′ in G′) and (u′′ −− v′′ or u′′ = v′′ in G′′) . (20.3)

In this case we have, for example, Kn′ ∗ Kn′′ = Kn′n′′ and Kn′ ∗ Kn′′ = Kn′n′′ .
More generally, if G′ is regular of degree r′ and G′′ is regular of degree r′′, then G′ ∗ G′′
is regular of degree (r′ + 1)(r′′ + 1)− 1 = r′r′′ + r′ + r′′.
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I don’t know the value of ϑ(G,w) for arbitrary w, but I do know it in the special case

w(v′,v′′) = w′v′w
′′
v′′ . (20.4)

Lemma. If G and w are given by (20.2) and (20.4), then

ϑ(G,w) = ϑ(G′, w′)ϑ(G′′, w′′) . (20.5)

Proof. [12] Given orthogonal labelings (a′, b′) and (a′′, b′′) of G′ and G′′, we let a be the
Hadamard product

a(j′,j′′)(v′,v′′) = a′j′v′a
′′
j′′v′′ , 1 ≤ j′ ≤ d′ , 1 ≤ j′′ ≤ d′′ , (20.6)

where d′ and d′′ are the respective dimensions of the vectors in a′ and a′′. Then

a(u′,u′′) · a(v′,v′′) =
∑
j′,j′′

a′j′u′a
′′
j′′u′′a

′
j′v′a

′′
j′′v′′

= (a′u′ · a′v′)(a′′u′′ · a′′v′′) . (20.7)

Thus ‖a(v′,v′′)‖2 = ‖a′v′‖2 ‖a′′v′′‖2 and

c(a(v′v′′)) = c(a′v′)c(a
′′
v′′) . (20.8)

The same construction is used for b in terms of b′ and b′′.

All necessary orthogonalities are preserved, because we have

(u′, u′′) −− (v′, v′′) and (u′, u′′) 6= (v′, v′′) in G

⇒ (u′ −− v′ and u′ 6= v′ in G′) or (u′′ −− v′′ and u′′ 6= v′′ in G′′)

⇒ b(u′,u′′) · b(v′,v′′) = 0 ;

(u′, u′′) 6−− (v′, v′′) and (u′, u′′) 6= (v′, v′′) in G

⇒ (u′ 6−− v′ and u′ 6= v′ in G′) or (u′′ 6−− v′′ and u′′ 6= v′′ in G′′)

⇒ a(u′,u′′) · a(v′,v′′) = 0 .

(In fact one of these relations is⇔, but we need only⇒ to make (20.7) zero when it needs
to be zero.) Therefore a and b are orthogonal labelings of G that satisfy (12.2) and (12.3).

21. A direct coproduct of graphs. Guess what? We also define

G = G′ ∗ G′′ ⇐⇒ G = G′ ∗ G′′ . (21.1)
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This graph tends to be “richer” than G′ ∗ G′′; we have

(u′, u′′) −− (v′, v′′) and (u′, u′′) 6= (v′, v′′) in G

⇐⇒ (u′ −− v′ and u′ 6= v′ in G′) or (u′′ −− v′′ and u′′ 6= v′′ in G′′) . (21.2)

Now, for instance, if G′ is regular of degree r′ and G′′ is regular of degree r′′, then

G′ ∗̄ G′′ is regular of degree n′n′′ − (n′ − r′)(n′′ − r′′) = r′n′′ + r′′n′ − r′r′′ .

(This is always ≥ r′r′′ + r′ + r′′, because r′(n′′ − 1 − r′′) + r′′(n′ − 1 − r′) ≥ 0.) Indeed,
G′ ∗ G′′ ⊇ G′ ∗ G′′ for all graphs G′ and G′′. The Hadamard product construction used
in section 20 can be applied word-for-word to prove that

ϑ(G,w) = ϑ(G′, w′)ϑ(G′′, w′′) (21.3)

when G satisfies (21.1) and w has the special factored form (20.4).

It follows that many graphs have identical ϑ’s:

Corollary. If G′ ∗ G′′ ⊆ G ⊆ G′ ∗ G′′ and w satisfies (20.4), then (21.3) holds.

Proof. This is just the monotonicity relation (4.3). The reason it works is that we have
a(u′,v′) · a(u′′,v′′) = b(u′,v′) · b(u′′,v′′) = 0 for all pairs of vertices (u′, u′′) and (v′, v′′) whose
adjacency differs in G′ ∗ G′′ and G′ ∗ G′′.

Some small examples will help clarify the results of the past few sections. Let P3 be
the path of length 2 on 3 vertices, •—•—•, and consider the four graphs we get by taking
its strong product and coproduct with K2 and K2:

K2 ∗ P3 = ϑ = max(u+ w, v) + max(x+ z, y)

(
Since P3 may be regarded as K2 +K1 and K2 is K1 +K2, this graph is(

(K1 +K1) +K1

)
+
(
(K1 +K1) +K1

)
and the formula for ϑ follows from (18.2) and (19.2).

)

K2 ∗ P3 = ϑ = max(u+ w + x+ z, v + y)
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(This graph is K2 +K4; we could also obtain it by applying Lemma 16 three times to P3.)

K2 ∗ P3 = ϑ = max
(
max(u, x) + max(w, z),max(v, y)

)

K2 ∗ P3 = ϑ = max
(
max(u+ w, x+ z),max(v, y)

)
If the weights satisfy u = λx, v = λy, w = λz for some parameter λ, the first two formulas
for ϑ both reduce to (1 +λ) max(u+w, v), in agreement with (20.5) and (21.3). Similarly,
the last two formulas for ϑ reduce to max(1, λ) max(u+ w, v) in such a case.

22. Odd cycles. Now let G = Cn be the graph with vertices 0, 1, . . . , n− 1 and

u −− v ⇐⇒ u− v ≡ ±1 (mod n) , (22.1)

where n is an odd number. A general formula for ϑ(Cn, w) appears to be very difficult;
but we can compute ϑ(Cn) without too much labor when all weights are 1, because of the
cyclic symmetry.

It is easier to construct orthogonal labelings of Cn than of Cn, so we begin with that.
Given a vertex v, 0 ≤ v < n, let bv be the three-dimensional vector

bv =

 α
cos vϕ
sin vϕ

 , (22.2)

where α and ϕ remain to be determined. We have

bu · bv = α2 + cosuϕ cos vϕ+ sinuϕ sin vϕ

= α2 + cos(u− v)ϕ . (22.3)

Therefore we can make bu · bv = 0 when u ≡ v ± 1 by setting

α2 = − cosϕ , ϕ =
π(n− 1)

n
. (22.4)

This choice of ϕ makes nϕ a multiple of 2π, because n is odd. We have found an orthogonal
labeling b of Cn such that

c(bv) =
α2

1 + α2
=

cosπ/n
1 + cosπ/n

. (22.5)
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Turning now to orthogonal labelings of Cn, we can use (2n− 1)-dimensional vectors

av =



α0

α1 cos vϕ
α1 sin vϕ
α2 cos 2vϕ
α2 sin 2vϕ

...
αn−1 cos(n− 1)vϕ
αn−1 sin(n− 1)vϕ


, (22.6)

with ϕ = π(n− 1)/n as before. As in (22.3), we find

au · av =
n−1∑
k=0

α2
k cos k(u− v)ϕ ; (22.7)

so the result depends only on (u− v) mod n. Let ω = eiϕ. We can find values of αk such
that au · av = x(u−v)modn by solving the equations

xj =
n−1∑
k=0

α2
kω

jk . (22.8)

Now ω is a primitive nth root of unity; i.e., ωk = 1 iff k is a multiple of n. So (22.9) is
just a finite Fourier transform, and we can easily invert it: For 0 ≤ m < n we have

n−1∑
j=0

ω−mjxj =
n−1∑
k=0

α2
k

n−1∑
j=0

ωj(k−m) = nα2
m .

In our case we want a solution with x2 = x3 = · · · = xn−2 = 0, and we can set x0 = 1,
xn−1 = x1 = x, so we find

nα2
k = x0 + ω−kx1 + ωkxn−1 = 1 + 2x cos kϕ .

We must choose x so that these values are nonnegative; this means 2x ≤ −1/ cosϕ, since
cos kϕ is most negative when k = 1. Setting x to this maximum value yields

c(av) = α2
0 =

1
n

(
1− 1

cosϕ

)
=

1 + cosπ/n
n cosπ/n

. (22.9)

So (22.5) and (22.9) give ∑
v

c(av)c(bv) =
∑
v

1/n = 1 . (22.10)
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This is (12.3), hence from (12.2) we know that ϑ(Cn) = λ. We have proved, in fact, that

ϑ(Cn, 1l) =
n cosπ/n

1 + cosπ/n
; (22.11)

ϑ(Cn, 1l) =
1 + cosπ/n

cosπ/n
. (22.12)

When n = 3, Cn = Kn and these values agree with ϑ(K3) = 1, ϑ(K3) = 3; when n = 5,
C5 is isomorphic to C5 so ϑ(C5) =

√
5; when n is large,

ϑ(Cn) =
n

2
− π2

8n
+O(n−3) ; ϑ(Cn) = 2 +

π2

2n2
+O(n−4) . (22.13)

Instead of an explicit construction of vectors av as in (22.6), we could also find ϑ(Cn)
by using the matrix characterization ϑ2 of section 6. When all weights are 1, a feasible
A has 1 everywhere except on the superdiagonal, the subdiagonal, and the corners. This
suggests that we look at “circulant” matrices; for example, when n = 5,

A =


1 1 + x 1 1 1 + x

1 + x 1 1 + x 1 1
1 1 + x 1 1 + x 1
1 1 1 + x 1 1 + x

1 + x 1 1 1 + x 1

 = J + xP + xP−1 , (22.14)

where J is all 1’s and P is the permutation matrix taking j into (j + 1) mod n. It is well
known and not difficult to prove that the eigenvalues of the circulant matrix a0I + a1P +
· · ·+ an−1P

n−1 are ∑
0≤j<n

ωkjaj , 0 ≤ k < n , (22.15)

where ω = e2πi/n.
(
Indeed, it suffices to find the eigenvalues of P itself. This ω is a

different primitive root of unity from the ω we used in (22.8).
)

Hence the eigenvalues of
(22.14) are

n+ 2x , x(ω + ω−1) , x(ω2 + ω−2) , . . . , x(ωn−1 + ω1−n) . (22.16)

We minimize the maximum of these values if we choose x so that

n+ 2x = −2x cosπ/n ;

then
Λ(A) = −2x cosπ/n =

n cosπ/n
1 + cosπ/n

(22.17)
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is the value of ϑ(G).

If n is even, the graph Cn is bipartite. We will prove later that bipartite graphs are
perfect, hence ϑ(Cn) = n/2 and ϑ(Cn) = 2 in the even case.

23. Comments on the previous example. The cycles Cn provide us with infinitely
many graphs G for which ϑ(G)ϑ(G ) = n, and it is natural to wonder whether this is true
in general. Of course it is not: If G = Km+Kn−m then G = Km+Kn−m, hence we know
from Lemmas 18 and 19 that

ϑ(G) = m+ 1 , ϑ(G ) = max(1, n−m) . (23.1)

In particular, we can make ϑ(G)ϑ(G ) as high as n2/4 + n/2 when m = bn/2c.
We can, however, prove without difficulty that ϑ(G)ϑ(G ) ≥ n:

Lemma.
ϑ(G,w)ϑ(G,w′) ≥ w · w′ . (23.2)

Proof. By Theorem 12 there is an orthogonal labeling a of G and an orthogonal labeling b
of G such that

c(av) = wv/ϑ(G,w) , c(bv) = w′v/ϑ(G,w′) . (23.3)

By (11.1) we have ∑
v

c(av)c(bv) ≤ 1 . (23.4)

QED.

24. Regular graphs. When each vertex of G has exactly r neighbors, Lovász and
Hoffman observed that the construction in (22.14) can be generalized. Let B be the
adjacency matrix of G, i.e., the n× n matrix with

Buv =
{

1 , if u −− v;
0 , if u = v or u 6−− v.

(24.1)

Lemma. If G is a regular graph,

ϑ(G) ≤ nΛ(−B)
Λ(B) + Λ(−B)

. (24.2)

Proof. Let A be a matrix analogous to (22.14),

A = J + xB . (24.3)
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Since G is regular, the all-1’s vector 1l is an eigenvector of B, and the other eigenvectors
are orthogonal to 1l so they are eigenvectors also of A. Thus if the eigenvalues of B are

r = Λ(B) = λ1 ≥ λ2 ≥ · · · ≥ λn = −Λ(−B) , (24.4)

the eigenvalues of A are
n+ rx , xλ2 , . . . , xλn . (24.5)

(The Perron-Frobenius theorem tells us that λ1 = r.) We have λ1 + · · ·+ λn = tr(B) = 0,
so λn < 0, and we minimize the maximum of (24.5) by choosing n+ rx = xλn; thus

Λ(A) = xλn =
−nλn
r− λn

,

which is the right-hand side of (24.2). By (6.3) and Theorem 12 this is an upper bound
on ϑ.

Incidentally, we need to be a little careful in (24.2): The denominator can be zero,
but only when G = Kn.

25. Automorphisms. An automorphism of a graph G is a permutation p of the vertices
such that

p(u) −− p(v) iff u −− v . (25.1)

Such permutations are closed under multiplication, so they form a group.

We call G vertex-symmetric if its automorphism group is vertex-transitive, i.e., if
given u and v there is an automorphism p such that p(u) = v. We call G edge-symmetric
if its automorphism group is edge-transitive, i.e., if given u −− v and u′ −− v′ there is an
automorphism p such that p(u) = u′ and p(v) = v′ or p(u) = v′ and p(v) = u′.

Any vertex-symmetric graph is regular, but edge-symmetric graphs need not be reg-
ular. For example,

s sss©H is edge-symmetric, not vertex-symmetric;

ssss ss©©HH­­JJJJ­­ is vertex-symmetric, not edge-symmetric. ( ss is a maximal clique)

The graph Cn is not edge-symmetric for n > 7 because it has more edges than automor-
phisms. Also, C7 has no automorphism that takes 0 −− 2 into 0 −− 3.

Lemma. If G is edge-symmetric and regular, equality holds in Lemma 24.

Proof. Say that A is an optimum feasible matrix for G if it is a feasible matrix with

Λ(A) = ϑ(G)
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as in section 6. We can prove that optimum feasible matrices form a convex set, as follows.
First, tA+ (1− t)B is clearly feasible when A and B are feasible. Second,

Λ
(
tA+ (1− t)B

)
≤ tΛ(A) + (1− t)Λ(B) , 0 ≤ t ≤ 1 (25.2)

holds for all symmetric matrices A and B, by (6.2); this follows because there is a unit
vector x such that Λ

(
tA + (1 − t)B

)
= xT

(
tA + (1 − t)B

)
x = txTAx + (1 − t)xTBx ≤

tΛ(A) + (1 − t)Λ(B). Third, if A and B are optimum feasible matrices, the right side of
(25.2) is ϑ(G) while the left side is ≥ ϑ(G) by (6.3). Therefore equality holds.

If A is an optimum feasible matrix for G, so is p(A), the matrix obtained by permuting
rows and columns by an automorphism p. (I mean p(A)uv = Ap(u)p(v).) Therefore the
average, Ā, over all p is also an optimal feasible matrix. Since p(Ā) = Ā for all automor-
phisms p, and since G is edge-symmetric, Ā has the form J+xB where B is the adjacency
matrix of G. The bound in Lemma 24 is therefore tight.

(Note: If p is a permutation, let Puv = 1 if u = p(v), otherwise 0. Then (PTAP )uv =∑
PTujAjkPkv = Ap(u)p(v), so p(A) = PTAP .)

The argument in this proof shows that the set of all optimum feasible matrices A
for G has a common eigenvector x such that Ax = ϑ(G)x. The argument also shows
that, if G has an edge automorphism taking u −− v into u′ −− v′, we can assume without
loss of generality that Auv = Au′v′ in an optimum feasible matrix. This simplifies the
computation of Λ(A), and justifies our restriction to circulant matrices (22.14) in the case
of cyclic graphs.

Theorem. If G is vertex-symmetric, ϑ(G)ϑ(G ) = n.

Proof. Say that b is an optimum normalized labeling of G if it is a normalized orthogonal
labeling of G achieving equality in (7.1) when all weights are 1:

ϑ =
∑
u,v

bu · bv ,
∑
v

‖bv‖2 = 1 , bu · bv = 0 when u −− v . (25.3)

Let B be the corresponding spud; i.e., Buv = bu · bv and ϑ =
∑

u,v Buv. Then p(B) is also
equivalent to an optimum normalized labeling, whenever p is an automorphism; and such
matrices B form a convex set, so we can assume as in the lemma that B = p(B) for all
automorphisms p. Since G is vertex-symmetric, we must have Bvv = 1/n for all vertices v.
Thus there is an optimum normalized labeling b with ‖bv‖2 = 1/n, and the arguments of
Lemma 10 and Theorem 12 establish the existence of such a b with

c(bv) = ϑ(G)/n (25.4)
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for all v. But b is an orthogonal labeling of G, hence

ϑ1(G, 1l) ≤ n/ϑ(G)

by the definition (5.2) of ϑ1. Thus ϑ(G )ϑ(G) ≤ n; we have already proved the reverse
inequality in Lemma 23.

26. Consequence for eigenvalues. A curious corollary of the results just proved is
the following fact about eigenvalues.

Corollary. If the graphs G and G are vertex-symmetric and edge-symmetric, and if the

adjacency matrix of G has eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn , (26.1)

then

(λ1 − λn)(n− λ1 + λ2) = −λn(λ2 + 1)n . (26.2)

Proof. By Lemma 25 and Theorem 25,

nΛ(−B)
Λ(B) + Λ(−B)

nΛ(−B )
Λ(B ) + Λ(−B )

= n , (26.3)

where B and B are the adjacency matrices of G and G, and where we interpret 0/0 as 1.
We have

B = J − I −B . (26.4)

If the eigenvalues of B are given by (26.1), the eigenvalues of B are therefore

n− 1− λ1 ≥ −1− λn ≥ · · · ≥ −1− λ2 . (26.5)

(We use the fact that G is regular of degree λ1.) Formula (26.2) follows if we plug the
values Λ(B) = λ1, Λ(−B) = −λn, Λ(B ) = n− 1− λ1, Λ(−B ) = 1 + λ2 into (26.3).

27. Further examples of symmetric graphs. Consider the graph P (m, t, q) whose
vertices are all

(
m
t

)
subsets of cardinality t of some given set S of cardinality m, where

u −− v ⇐⇒ |u ∩ v| = q . (27.1)

We want 0 ≤ q < t and m ≥ 2t− q, so that the graph isn’t empty. In fact, we can assume
that m ≥ 2t, because P (m, r, q) is isomorphic to P (m,m− t,m− 2t + q) if we map each
subset u into the set difference S \ u:

|(S \ u) ∩ (S \ v)| = |S| − |u ∪ v| = |S| − |u| − |v|+ |u ∩ v| . (27.2)
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The letter P stands for Petersen, because P (5, 2, 0) is the well known “Petersen graph” on
10 vertices,

t t t t
t
t
t tt t
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(27.3)

These graphs are clearly vertex-symmetric and edge-symmetric, because every permutation
of S induces an automorphism. For example, to find an automorphism that maps u −− v
into u′ −− v′, let u = (u∩ v)∪ ū, v = (u∩ v)∪ v̄, u′ = (u′ ∩ v′)∪ ū′, v′ = (u′ ∩ v′)∪ v̄′, and
apply any permutation that takes the q elements of u∩v into the q elements of u′ ∩ v′, the
t− q elements of ū into the t− q elements of u′, and the t− q elements of v̄ into v̄′. Thus
we can determine ϑ

(
P (m, t, q)

)
from the eigenvalues of the adjacency matrix. Lovász [12]

discusses the case q = 0, and his discussion readily generalizes to other values of q. It
turns out that ϑ

(
P (m, t, 0)

)
=
(
m−1
t−1

)
. This is also the value of α

(
P (m, t, 0)

)
, because the(

m−1
t−1

)
vertices containing any given point form a stable set.

The special case t = 2, q = 0 is especially interesting because those graphs also satisfy
the condition of Corollary 26. We have

n =
(
m

2

)
, λ1 =

(
m− 2

2

)
, λ2 = 1 , λn = 3−m, (27.4)

and (26.2) does indeed hold (but not “trivially”). It is possible to cover P (m, 2, 0) with
disjoint maximum cliques; hence κ

(
P (m, 2, 0)

)
=
(
m
2

) /
bm

2
c = 2dm

2
e − 1. In particular,

when G is the Petersen graph we have α(G) = ϑ(G) = 4, κ(G) = 5; also α(G) = 2,
ϑ(G) = κ(G) = 5

2 .

28. A bound on ϑ. The paper [12] contains one more result about ϑ that is not in [7],
so we will wrap up our discussion of [12] by describing [12, Theorem 11].

Theorem. If G has an orthogonal labeling of dimension d with no zero vectors, we have

ϑ(G) ≤ d.

Proof. Given a non-zero orthogonal labeling a of dimension d, we can assume that
‖av‖2 = 1 for all v. (The hypothesis about zeros is important, since there is trivially an
orthogonal labeling of any desired dimension if we allow zeros. The labeling needn’t be
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optimum.) Then we construct an orthogonal labeling a′′ of dimension d2, with c(a′′v) = 1/d
for all v, as follows:

Let a′v have d2 components where the (j, k) component is ajvakv. Then

a′u · a′v = (au · av)2 (28.1)

as in (20.7). Let Q be any orthogonal matrix with d2 rows and columns, such that the
(j, k) entry in row (1, 1) is 1/

√
d for j = k, 0 otherwise. Then we define

a′′v = Qa′v . (28.2)

Once again a′′u ·a′′v = (au ·av)2, so a′′ is an orthogonal labeling. We also have first component

a′′(1,1)v =
∑
j,k

[j = k]√
d

a′(j,k)v =
∑
k

a2
kv√
d

=
1√
d

; (28.3)

hence c(a′′v) = 1/d. This proves ϑ(G) ≤ d, by definition of ϑ1.

This theorem improves the obvious lower bound α(G) on the dimension of an optimum
labeling.

29. Compatible matrices. There’s another way to formulate the theory we’ve been
developing, by looking at things from a somewhat higher level, following ideas developed
by Lovász and Schrijver [15] a few years after the book [7] was written. Let us say that
the matrix A is λ-compatible with G and w if A is an (n + 1)× (n + 1) spud indexed by
the vertices of G and by a special value 0, having the following properties:

• A00 = λ;

• Avv = A0v = wv for all vertices v;

• Auv = 0 whenever u 6−− v in G.

Lemma. There exists an orthogonal labeling a for G with costs c(av) = wv/λ if and only

if there exists a matrix A that is λ-compatible with G and w.

Proof. Given such an orthogonal labeling, we can normalize each vector so that ‖av‖2 =
wv. Then when wv 6= 0 we have

wv
λ

= c(av) =
a2

1v

wv
,

so we can assume that a1v = wv/
√
λ for all v. Add a new vector a0, having a10 =

√
λ

and aj0 = 0 for all j > 1. Then the matrix A with Auv = au · av is easily seen to be
λ-compatible with G and w.
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Conversely, if such a matrix A exists, there are n + 1 vectors a0, . . . , an such that
Auv = au · av; in particular, ‖a0‖2 = λ. Let Q be an orthogonal matrix with first row
aT0/
√
λ, and define a′v = Qav for all v. Then a′10 =

√
λ and a′j0 = 0 for all j > 1.

Also a′u · a′v = au · av = Auv for all u and v. Hence
√
λa′1v = a′0 · a′v = A0v = wv and

‖a′v‖2 = a′v · a′v = Avv = wv, for all v ∈ G, proving that c(a′v) = wv/λ. Finally a′ is an
orthogonal labeling, since a′u · a′v = Auv = 0 whenever u 6−− v.

Corollary. x ∈ TH(G) iff there exists a matrix 1-compatible with G and x.

Proof. Set λ = 1 in the lemma and apply Theorem 14.

The corollary and definition (4.1) tell us that ϑ(G,w) is max(w1x1 + · · · + wnxn)
over all x that appear in matrices that are 1-compatible for G and x. Theorem 12 tells
us that ϑ(G,w) is also the minimum λ such that there exists a λ-compatible matrix for
G and w. The “certificate” property of Theorem 13 has an even stronger formulation in
matrix terms:

Theorem. Given a nonnegative weight vector w = (w1, . . . , wn)T , let A be λ-compatible

with G and w, where λ is as small as possible, and let B be 1-compatible with G and x,

where w1x1 + · · ·+ wnxn is as large as possible. Then

ADB = 0 , (29.1)

where D is the diagonal matrix with D00 = −1 and Dvv = +1 for all v 6= 0. Conversely,

if A is λ-compatible with G and w and if B is 1-compatible with G and x, then (29.1)

implies that λ = w1x1 + · · ·+ wnxn = ϑ(G,w).

Proof. Assume that A is λ-compatible with G and w, and B is 1-compatible with G

and x. Let B′ = DBD, so that B′ is a spud with B′00 = 1, B′0v = B′v0 = −xv, and
B′uv = Buv when u and v are nonzero. Then the dot product A ·B′ is

λ−w1x1−· · ·−wnxn−w1x1−· · ·−wnxn+w1x1 + · · ·+wnxn = λ− (w1x1 + · · ·+wnxn) ,

because AuvBuv = 0 when u and v are vertices of G. We showed in the proof of F9
in section 9 that the dot product of spuds is nonnegative; in fact, that proof implies
that the dot product is zero if and only if the ordinary matrix product is zero. So λ =
w1x1 + · · ·+ wnxn = ϑ(G,w) iff AB′ = 0, and this is equivalent to (29.1).

Equation (29.1) gives us further information about the orthogonal labelings a and b

that appear in Theorems 12 and 13. Normalize those labelings so that ‖a‖2 = wv and
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‖b‖2 = xv. Then we have ∑
t∈G

wt (bt · bv) = ϑxv , (29.2)

∑
t∈G

xt (at · av) = wv , (29.3)

∑
t∈G

(at · au)(bt · bv) = wuxv , (29.4)

for all vertices u and v of G. (Indeed, (29.2) and (29.4) are respectively equivalent to
(AB′)0v = 0 and (AB′)vv = 0; (29.3) is equivalent to (B′A)0v = 0.) Notice that if Â and
B̂ are the n× n spuds; obtained by deleting row 0 and column 0 from optimum matrices
A and B, these equations are equivalent to

B̂w = ϑx , Âx = w , ÂB̂ = wxT . (29.5)

Equation (29.1) is equivalent to (29.5) together with the condition w1x1 + · · ·+wnxn = ϑ.

Since AB′ = 0 iff B′A = 0 when A and B′ are symmetric matrices, the optimum
matrices A and B′ commute. This implies that they have common eigenvectors: There is
an orthogonal matrix Q such that

A = Q diag (λ0, . . . , λn)QT , B′ = Q diag (µ0, . . . , µn)QT . (29.6)

Moreover, the product is zero, so

λ0µ0 = · · · = λnµn = 0 . (29.7)

The number of zero eigenvalues λk is n+1−d, where d is the smallest dimension for which
there is an orthogonal labeling a with Auv = au ·av. A similar statement holds for B′, since
the eigenvalues of B and B′ are the same; y is an eigenvector for B iff Dy is an eigenvector
for B′. In the case G = Cn, studied in section 22, we constructed an orthogonal labeling
(22.3) with only three dimensions, so all but 3 of the eigenvalues µk were zero. When all
the weights wv are nonzero and ϑ(G) is large, Theorem 28 implies that a large number of
λk must be nonzero, hence a large number of µk must be zero.

The “optimum feasible matrices” A studied in section 6 are related to the matrices Â
of (29.5) by the formula

ϑÂ = wwT − ϑdiag (w1, . . . , wn)− diag (
√
w1, . . . ,

√
wn )A diag (

√
w1, . . . ,

√
wn ) , (29.8)

because of the construction following (6.6). If the largest eigenvalue Λ(A) = ϑ of A occurs
with multiplicity r, the rank of ϑI − A will be n − r, hence Â will have rank n − r or
n− r + 1, and the number of zero eigenvalues λk in (29.6) will be r + 1 or r.
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30. Antiblockers. The convex sets STAB, TH, and QSTAB defined in section 2 have
many special properties. For example, they are always nonempty, closed, convex, and
nonnegative; they also satisfy the condition

0 ≤ y ≤ x and x ∈ X ⇒ y ∈ X . (30.1)

A set X of vectors satisfying all five of these properties is called a convex corner.

If X is any set of nonnegative vectors we define its antiblocker by the condition

ablX = { y ≥ 0 | x · y ≤ 1 for all x ∈ X } . (30.2)

Clearly ablX is a convex corner, and ablX ⊇ ablX ′ when X ⊆ X ′.

Lemma. If X is a convex corner we have abl ablX = X.

Proof. (Compare with the proof of F5 in section 8.) The relation X ⊆ abl ablX is
obvious by definition (30.2), so the lemma can fail only if there is some z ∈ abl ablX with
z /∈ X. Then there is a hyperplane separating z from X, by F1; i.e., there is a vector y
and a number b such that x · y ≤ b for all x ∈ X but z · y > b. Let y′ be the same as y but
with all negative components changed to zero. Then (y′, b) is also a separating hyperplane.
[Proof: If x ∈ X, let x′ be the same as x but with all components changed to zero where
y has a negative entry; then x′ ∈ X, and x · y′ = x′ · y ≤ b. Furthermore z · y′ ≥ z · y > b.]
If b = 0, we have λy′ ∈ ablX for all λ > 0; this contradicts z · λy′ ≤ 1. We cannot have
b < 0, since 0 ∈ X. Hence b > 0, and the vector y′/b ∈ ablX . But then z · (y′/b) must be
≤ 1, a contradiction.

Corollary. If G is any graph we have

STAB(G) = abl QSTAB(G) , (30.3)

TH(G) = abl TH(G) , (30.4)

QSTAB(G) = abl STAB(G) . (30.5)

Proof. First we show that

ablX = abl convex hull X. (30.6)

The left side surely contains the right. And any element y ∈ ablX will satisfy

(α1x
(1) + · · ·+ αkx

(k)) · y ≤ 1

when the α’s are nonnegative scalars summing to 1 and the x(j) are in X. This proves
(30.6), because the convex hull of X is the set of all such α1x(1) + · · ·+ αkx(k).



��� ������	
�� �	
�
�� 	� �	���
��	���� � ������� � �� 36

Now (30.6) implies (30.5), because the definitions in section 2 say that

QSTAB(G) = abl {x | x is a clique labeling of G }

= abl {x | x is a stable labeling of G } ,

STAB(G) = convex hull {x | x is a stable labeling of G } .

And (30.5) is equivalent to (30.3) by the lemma, because STAB(G) is a convex corner. (We
must prove (30.1), and it suffices to do this when y equals x in all but one component; and
in fact by convexity we may assume that y is 0 in that component; and then we can easily
prove it, because any subset of a stable set is stable.)

Finally, (30.4) is equivalent to Theorem 14, because TH(G) = abl {x | xv = c(av) for
some orthogonal labeling of G }.

The sets STAB and QSTAB are polytopes, i.e., they are bounded and can be defined
by a finite number of inequalities. But the antiblocker concept applies also to sets with
curved boundaries. For example, let

X = {x ≥ 0
∣∣ ‖x‖ ≤ 1 } (30.7)

be the intersection of the unit ball and the nonnegative orthant. Cauchy’s inequality
implies that x · y ≤ 1 whenever ‖x‖ ≤ 1 and ‖y‖ ≤ 1, hence X ⊆ ablX. And if y ∈ ablX
we have y ∈ X, since y 6= 0 implies ‖y‖ = y · (y/ ‖y‖) ≤ 1. Therefore X = ablX .

In fact, the set X in (30.7) is the only set that equals its own antiblocker. If Y = ablY
and y ∈ Y we have y · y ≤ 1, hence Y ⊆ X; this implies ablY ⊇ X.

31. Perfect graphs. Let ω(G) be the size of a largest clique in G. The graph G is
called perfect if every induced subgraph G′ of G can be colored with ω(G′) colors. (See
section 15 for the notion of induced subgraph. This definition of perfection was introduced
by Claude Berge in 1961.)

Let G+ be G with vertex v duplicated, as described in section 16. This means we add
a new vertex v′ with the same neighbors as v and with v −− v′.

Lemma. If G is perfect, so is G+.

Proof. Any induced subgraph of G+ that is not G+ itself is either an induced subgraph
of G (if it omits v or v′ or both), or has the form G′+ for some induced subgraph G′ of G
(if it retains v and v′). Therefore it suffices to prove that G+ can be colored with ω(G+)
colors.

Color G with ω(G) colors and suppose v is red. Let G′ be the subgraph induced
from G by leaving out all red vertices except v. Recolor G′ with ω(G′) colors, and assign a
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new color to the set G+\G′, which is stable in G+. This colors G+ with ω(G′) + 1 colors,
hence ω(G+) ≤ ω(G′) + 1.

We complete the proof by showing that ω(G+) = ω(G′) + 1. Let Q be a clique of size
ω(G′) in G′.

Case 1. v ∈ Q. Then Q ∪ {v′} is a clique of G+.

Case 2. v /∈ Q. Then Q contains no red element.

In both cases we can conclude that ω(G+) ≥ ω(G′) + 1.

Theorem. If G is perfect, STAB(G) = QSTAB(G).

Proof. It suffices to prove that every x ∈ QSTAB(G) with rational coordinates is a member
of STAB(G), because STAB(G) is a closed set.

Suppose x ∈ QSTAB(G) and qx has integer coordinates. Let G+ be the graph obtained
fromG by repeatedly duplicating vertices until each original vertex v of G has been replaced
by a clique of size qxv. Call the vertices of that clique the clones of v.

By definition of QSTAB(G), if Q is any clique of G we have∑
v∈Q

xv ≤ 1 .

Every clique Q′ of G+ is contained in a clique of size
∑
v∈Q qxv for some clique Q of G.

(Including all clones of each element yields this possibly larger clique.) Thus ω(G+) ≤ q,
and the lemma tells us that G+ can be colored with q colors because G+ is perfect.

For each color k, where 1 ≤ k ≤ q, let x(k)
v = 1 if some clone of v is colored k, otherwise

x
(k)
v = 0. Then x(k) is a stable labeling. Hence

1
q

q∑
k=1

x(k) ∈ STAB(G) .

But every vertex of G+ is colored, so
∑q
k=1 x

(k)
v = qxv for all v, so q−1

∑q
k=1 x

(k) = x.

32. A characterization of perfection. The converse of Theorem 31 is also true; but
before we prove it we need another fact about convex polyhedra.

Lemma. Suppose P is the set {x ≥ 0 | x · z ≤ 1 for all z ∈ Z } = ablZ for some finite

set Z and suppose y ∈ ablP , i.e., y is a nonnegative vector such that x · y ≤ 1 for all

x ∈ P . Then the set

Q = {x ∈ P | x · y = 1 } (32.1)

is contained in the set { x | x · z = 1 } for some z ∈ Z (unless Q and Z are both empty).

Proof. This lemma is “geometrically obvious”—it says that every vertex, edge, etc., of
a convex polyhedron is contained in some “facet”—but we ought also to prove it. The
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proof is by induction on |Z|. If Z is empty, the result holds because P is the set of all
nonnegative x, hence y must be 0 and Q must be empty.

Suppose z is an element of Z that does not satisfy the condition; i.e., there is an
element x ∈ P with x · y = 1 and x · z 6= 1. Then x · z < 1. Let Z ′ = Z \ {z} and
P ′ = ablZ ′. It follows that x′ ·y ≤ 1 for all x′ ∈ P ′. For if x′ ·y > 1, a convex combination
x′′ = εx+ (1− ε)x′ will lie in P for sufficiently small ε, but x′′ · y > 1.

Therefore by induction, Q′ = {x ∈ P ′ | x · y = 1 } is contained in { x | x · z′ = 1 } for
some z′ ∈ Z ′, unless Q′ is empty, when we can take z′ = z. And Q ⊆ Q′, since P ⊆ P ′.

Theorem. G is perfect if and only if STAB(G) = QSTAB(G).

Proof. As in section 15, let G|U be the graph induced fromG by restriction to vertices U .
If X is a set of vectors indexed by V and if U ⊆ V , let X |U be the set of all vectors indexed
by U that arise from the vectors of X when we suppress all components xv with v /∈ U .
Then it is clear that

QSTAB(G|U) = QSTAB(G)|U , (32.2)

because every x ∈ QSTAB(G|U ) belongs to QSTAB(G) if we set xv = 0 for v /∈ U , and every
x ∈ QSTAB(G) satisfies

∑
v∈Q xv ≤ 1 for every clique Q ⊆ U . Also

STAB(G|U) = STAB(G)|U , (32.3)

because every stable labeling of G|U is a stable labeling of G if we extend it with zeros,
and every stable labeling of G is stable for G|U if we ignore components not in U .

Therefore STAB(G) = QSTAB(G) iff STAB(G′) = QSTAB(G′) for all induced graphs. By
Theorem 31 we need only prove that STAB(G) = QSTAB(G) implies G can be colored with
ω(G) colors.

Suppose STAB(G) = QSTAB(G). Then by Corollary 30,

STAB(G) = QSTAB(G) . (32.4)

Let P = STAB(G), and let y = 1l/ω(G). Then x · y ≤ 1 whenever x is a clique labeling
of G, i.e., whenever x is a stable labeling of G; so x · y ≤ 1 for all x ∈ P . Let Z be the
set of all stable labelings of G, i.e., clique labelings of G. Then P = QSTAB(G) = ablZ
and Z is nonempty. So the lemma applies and it tells us that the set Q defined in (32.1)
is contained in {x | x · z = 1 } for some stable labeling z of G. Therefore every maximum
clique labeling x satisfies x · z = 1; i.e., every clique of size ω(G) intersects the stable set S
corresponding to z. So ω(G′) = ω(G)− 1, where

G′ = G|(V \ S) . (32.5)
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By induction on |V | we can color the vertices of G′ with ω(G′) colors, then we can use a
new color for the vertices of S; this colors G with ω(G) colors.

Lovász states in [13] that he knows no polynomial time algorithm to test if G is perfect;
but he conjectures (“guesses”) that such an algorithm exists, because the results we are
going to discuss next suggest that much more might be provable.

33. Another definition of ϑ. The following result generalizes Lemma 9.3.21 of [7].

Lemma. Let a and b be orthogonal labelings of G and G that satisfy the conditions of

Theorem 12, normalized so that

‖av‖2‖bv‖2 = wvc(bv) , a1v ≥ 0 , and b1v ≥ 0 , (33.1)

for all v. Then ∑
v

ajvbkv =
{√

ϑ(G,w) , if j = k = 1;
0, otherwise.

(33.2)

Proof. Let a0 = (
√
ϑ, 0, . . . , 0)T and b0 = (−1, 0, . . . , 0)T . Then the (n + 1) × (n + 1)

matrices A = aTa and B = bT b are spuds, and A ·B = 0. (In the special case ‖av‖2 = wv,
‖bv‖2 = c(bv), matrix B is what we called B′ in the proof of Theorem 29.) Therefore
0 = trATB = tr aT abT b = tr baTabT = (abT ) · (abT ), and we have abT = 0. In other words

aj0bk0 +
∑
v

ajvbkv = 0

for all j and k.

We now can show that ϑ has yet another definition, in some ways nicer than the one
we considered in section 6. (Someday I should try to find a simpler way to derive all these
facts.) Call the matrix B dual feasible for G and w if it is indexed by vertices and

B is real and symmetric;

Bvv = wv for all v ∈ V ;

Buv = 0 whenever u 6−− v in G; (33.3)

and define

ϑ6(G,w) = max{Λ(B) |
B is positive semidefinite and dual feasible for G and w } . (33.4)(

Compare with the analogous definitions in (6.1) and (6.3).
)
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Theorem. ϑ(G,w) = ϑ6(G,w).

Proof. If B is positive semidefinite and dual feasible, and if λ is any eigenvalue of B,
we can write B = QDQT where Q is orthogonal and D is diagonal, with D11 = λ. Let
b =
√
DQT ; then b is an orthogonal labeling of G with ‖bv‖2 = wv for all v. Furthermore

c(bv) = b21v/wv = λ q2
v1/wv, where (q11, . . . , qn1) is the first column of Q. Therefore∑

v c(bv)wv = λ
∑

v q
2
v1 = λ, and we have λ ≤ ϑ4(G,w) by (10.1). This proves that

ϑ6 ≤ ϑ.

Conversely, let a and b be orthogonal labellings of G and G that satisfy the con-
ditions of Theorem 12. Normalize them so that ‖av‖2 = c(bv) and ‖bv‖2 = wv. Then
a2

1v = c(av)c(bv) = wvc(bv)/ϑ = b21v/ϑ. The lemma now implies that (b11, . . . , b1n)T is an
eigenvector of bT b, with eigenvalue ϑ. This proves that ϑ ≤ ϑ6.

Corollary. ϑ(G) = 1 + max{Λ(B)/Λ(−B) |B is dual feasible for G and 0 }.

Proof. If B is dual feasible for G and 0, its eigenvalues are λ1 ≥ · · · ≥ λn where
λ1 = Λ(B) and λn = −Λ(−B). Then B′ = I +B/Λ(−B) has eigenvalues 1 − λ1/λn, . . . ,

1 − λn/λn = 0. Consequently B′ is positive semidefinite and dual feasible for G and 1l,
and 1 + Λ(B)/Λ(−B) = Λ(B′) ≤ ϑ6(G).

Conversely, suppose B′ is positive semidefinite and dual feasible for G and 1l, with
Λ(B′) = ϑ = ϑ(G). Let B = B′ − I. Then B is dual feasible for G and 0, and 0 ≤
Λ(−B) ≤ 1 since the sum of the eigenvalues of B is trB = 0. It follows that ϑ − 1 =
Λ(B) ≤ Λ(B)/Λ(−B).

34. Facets of TH. We know that TH(G) is a convex corner set in n-dimensional space,
so it is natural to ask whether it might have (n − 1)-dimensional facets on its nontrivial
boundary—for example, a straight line segment in two dimensions, or a region of a plane
in three dimensions. This means it has n linearly independent vectors x(k) such that∑

v

x(k)
v c(av) = 1 (34.1)

for some orthogonal labeling a of G.

Theorem. If TH(G) contains linearly independent solutions x(1), . . . , x(n) of (34.1), then

there is a maximal clique Q of G such that

c(av) =
{

1 , v ∈ Q;
0 , v /∈ Q.

(34.2)

Proof. Theorem 14 tell us that every x(k) ∈ TH(G) has x(k)
v = c(b(k)

v ) for some orthogonal
labeling of G. Set wv = c(av); then ϑ(G,w) = 1, by Theorem 13. We can normalize the
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labelings so that ‖av‖2 = a1v = wv and ‖b(k)
v ‖2 = b

(k)
1v = x

(k)
v . Hence, by Lemma 33,

∑
v

x(k)
v av =


1
0
...
0

 = e1 . (34.3)

Let
Q = { v | a1v 6= 0 } = { v | c(av) 6= 0 } (34.4)

and suppose Q has m elements. Then (34.3) is equivalent to the matrix equation

Ax(k) = e1 (34.5)

where A is a d × m matrix and x(k) has m components x(k)
v , one for each v ∈ Q. By

hypothesis there are m linearly independent solutions to (34.5), because there are n linearly
independent solutions to (34.3). But then there are m − 1 linearly independent solutions
to Ax = 0, and it follows that A has rank 1: Every row of A must be a multiple of the top
row (which is nonzero). And then (34.5) tells us that all rows but the top row are zero.
We have proved that

c(av) 6= 0 ⇒ c(av) = 1 . (34.6)

Therefore if u and v are elements of Q we have au · av 6= 0, hence u −− v; Q is a clique.

Moreover, Q is maximal. For if v /∈ Q is adjacent to all elements of Q, there is a k
such that x(k)

v > 0. But the characteristic labeling of Q ∪ {v} is an orthogonal labeling a′

such that
∑

u x
(k)
u c(a′u) = 1 + x

(h)
v > 1, hence x(k) /∈ TH(G).

Conversely, it is easy to see that the characteristic labeling of any maximal clique Q
does have n linearly independent vectors satisfying (34.1), so it does define a facet. For
each vertex u we let x(u)

u = 1, and x
(u)
v = 0 for all v 6= u except for one vertex v ∈ Q

with v 6−− u (when u /∈ Q). Then x(u) is a stable labeling so it is in TH(G). The point
of the theorem is that a constraint

∑
v xvc(av) ≤ 1 of TH(G) that is not satisfied by all

x ∈ QSTAB(G) cannot correspond to a facet of TH(G).

Corollary.

TH(G) is a polytope ⇐⇒ TH(G) = QSTAB(G)

⇐⇒ TH(G) = STAB(G) ⇐⇒ G is perfect.

Proof. If TH(G) is a polytope it is defined by facets as in the theorem, which are nothing
more than the constraints of QSTAB(G); hence TH(G) = QSTAB(G). Also the antiblocker of
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a convex corner polytope is a polytope, so TH(G) is a polytope by (30.4); it must be equal
to QSTAB(G). Taking antiblockers, we have TH(G) = STAB(G) by (30.3). The converses
are easy since STAB and QSTAB are always polytopes. The connection to perfection is an
immediate consequence of Theorem 32 and Lemma 2.

We cannot strengthen the corollary to say that ϑ(G) = α(G) holds if and only if
ϑ(G) = κ(G); the Petersen graph (section 27) is a counterexample.

35. Orthogonal labelings in a perfect graph. A perfect graph has

ϑ(G,w) = α(G,w) = max{x · w | x is a stable labeling of G} , (35.1)

and Theorem 12 tells us there exist orthogonal labelings of G and G such that (12.2)
and (12.3) hold. But it isn’t obvious what those labelings might be; the proof was not
constructive.

The problem is to find vectors av such that au · av = 0 when u 6−− v and such that
(12.2) holds; then it is easy to satisfy (12.3) by simply letting b be a stable labeling where
the maximum occurs in (35.1).

The following general construction gives an orthogonal labeling (not necessarily op-
timum) in any graph: Let g(Q) be a nonnegative number for every clique Q, chosen so
that ∑

v∈Q
g(Q) = wv , for all v . (35.2)

Furthermore, for each clique Q, let

aQv =
{√

g(Q), if v ∈ Q;
0, otherwise.

(35.3)

Then
au · av =

∑
{u,v}⊆Q

g(Q) ,

hence au · av = 0 when u 6−− v. If we also let aQ0 =
√
g(Q) for all Q, a00 = 0, we find

a0 · av = av · av =
∑
v∈Q

g(Q) = wv .

We have constructed a matrix A that is λ-compatible with G and w, in the sense of
section 29, where

λ = a0 · a0 =
∑
Q

g(Q) . (35.4)
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An orthogonal labeling with costs c(a′v) = wv/λ can now be found as in the proof of
Lemma 29.

The duality theorem of linear programming tells us that the minimum of (35.4) subject
to the constraints (35.2) is equal to the maximum value of w ·x over all x with

∑
v∈Q xv ≤ 1

for all Q. When x maximizes w · x, we can assume that x ≥ 0, because a negative xv can
be replaced by 0 without decreasing w · x or violating a constraint. (Every subset of a
clique is a clique.) Thus, we are maximizing w · x over QSTAB(G); the construction in the
previous paragraph allows us to reduce λ as low as κ(G,w). But κ(G,w) = ϑ(G,w) in a
perfect graph, so this construction solves our problem, once we have computed g(Q).

The special case of a bipartite graph is especially interesting, because its cliques have
only one or two vertices. Suppose all edges of G have the form u −− v where u ∈ U and
v ∈ V , and consider the network defined as follows: There is a special source vertex s

connected to all u ∈ U by a directed arc of capacity wu, and a special sink vertex t

connected from all v ∈ V by a directed arc of capacity wv. The edges u −− v of G are also
present, directed from u to v with infinite capacity. Any flow from s to t in this network
defines a suitable function g, if we let

g({u, v}) = the flow in u→ v ,

g({u}) = wu minus the flow in s→ u ,

g({v}) = wv minus the flow in v → t ,

for all u ∈ U and v ∈ V . Let S be a subset of U ∪ V . If we cut the edges that connect s
or t with vertices not in S, we cut off all paths from s to t if and only if S is a stable
set. The minimum cut (i.e., the minimum sum of capacities of cut edges) is equal to the
maximum flow; and it is also equal to∑

u∈U
wu +

∑
v∈V

wv −max{w · x | x is a stable labeling} =
∑
u∈U

wu +
∑
v∈V

wv − α(G,w) .

Thus the value of λ =
∑

Q g(Q) is
∑

u∈U wu − {flow from s} +
∑
v∈V wv − {flow to t} +

{flow in u→ v arcs} = α(G,w) = ϑ(G,w) as desired.

For general perfect graphs G, a solution to (35.4) with λ = ϑ(G,w) can be found in
polynomial time as shown in equation (9.4.6) of [7]. However, the methods described in
[7] are not efficient enough for practical calculation, even on small graphs.

36. The smallest non-perfect graph. The cyclic graph C5 is of particular interest
because it is the smallest graph that isn’t perfect, and the smallest case where the function
ϑ(G,w) is not completely known.

The discussion following Theorem 34 points out that TH(G) always has facets in com-
mon with QSTAB(G), when those facets belong also to STAB(G). It is not hard to see that
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QSTAB(C5) has ten facets, defined by xj = 0 and xj + xjmod5 = 1 for 0 ≤ j < 5; and
STAB(C5) has an additional facet defined by x0 + x1 + x2 + x3 + x4 = 2. The weighted
functions α and κ of section 4 are evaluated by considering the vertices of STAB and QSTAB:

α(C5, {w0, . . . , w4}T ) = max(w0 + w2, w1 + w3, w2 +w4, w3 +w0, w4 +w1) ; (36.1)

κ(C5, {w0, . . . , w4}T ) = max
(
α(C5, {w0, . . . , w4}T ), (w0 + · · ·+ w4)/2

)
. (36.2)

Where these functions agree, they tell us also the value of ϑ.

For example, let f(x) = ϑ(C5, {x, 1, 1, 1, 1, 1}T ). Relations (36.1) and (36.2) imply
that f(x) = x+ 1 when x ≥ 2. Clearly f(0) = 2, and section 22 tells us that f(1) =

√
5.

Other values of f(x) are not yet known. Equation (23.2) gives the lower bound f(x)2 ≥
x2 + 4. Incidentally, the a vectors
√
x

1
0
0
0




√
x

1√
x+ 1√

(x− 2)(x+ 1)
0




1
−
√
x

0
0
0




1
−
√
x

0
0
0




√
x

1
−
√
x+ 1
0√

(x− 2)(x+ 1)


and b = (1) (0) (0) (0) (0) establish f(x) for x ≥ 2 in the fashion of Theorems 12 and 13.

Let φ = (1 +
√

5 )/2 be the golden ratio. The matrices A and B′ of Theorem 29, when
G = C5 and w = 1l, are

A =



√
5 1 1 1 1 1

1 1 φ− 1 0 0 φ− 1
1 φ− 1 1 φ− 1 0 0
1 0 φ− 1 1 φ− 1 0
1 0 0 φ− 1 1 φ− 1
1 φ− 1 0 0 φ− 1 1

 ;

B′ =
1√
5



√
5 −1 −1 −1 −1 −1
−1 1 0 φ− 1 φ− 1 0
−1 0 1 0 φ− 1 φ− 1
−1 φ− 1 0 1 0 φ− 1
−1 φ− 1 φ− 1 0 1 0
−1 0 φ− 1 φ− 1 0 1

 .

They have the common eigenvectors

√
5

1
1
1
1
1





√
5
−1
−1
−1
−1
−1




0
φ
1
−1
−φ
0




0
0
φ
1
−1
−φ




0
1
−φ
φ
−1
0




0
0
1
−φ
φ
−1

 ,
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with respective eigenvalues (λ0, . . . , λ5) = (2
√

5, 0,
√

5/φ,
√

5/φ, 0, 0) and (µ0, . . . , µ5) =
(0, 2, 0, 0, 1/φ, 1/φ). (Cf. (29.6) and (29.7).)

37. Perplexing questions. The book [7] explains how to compute ϑ(G,w) with given
tolerance ε, in polynomial time using an ellipsoid method, but that method is too slow
and numerically unstable to deal with graphs that have more than 10 or so vertices. For-
tunately, however, new “interior-point methods” have been developed for this purpose,
especially by Alizadeh [1,2], who has computed ϑ(G) when G has hundreds of vertices
and thousands of edges. He has also shown how to find large stable sets, as a byproduct
of evaluating ϑ(G,w) when w has integer coordinates. Calculations on somewhat smaller
cyclically symmetric graphs have also been reported by Overton [16]. Further computa-
tional experience with such programs should prove to be very interesting.

Solutions to the following four concrete problems may also help shed light on the
subject:

P1. Describe TH(C5) geometrically. This upright set is isomorphic to its own anti-
blocker. (Namely, if (x0, x1, x2, x3, x4) ∈ TH(C5), then so are its cyclic permutations
(x1, x2, x3, x4, x0), etc., as well as the cyclic permutations of (x0, x4, x3, x2, x1); TH(C5)
contains the cyclic permutations of (x0, x2, x4, x1, x3) and (x0, x3, x1, x4, x2).) Can the
values f(x) = ϑ(C5, {x, 1, 1, 1, 1}T ), discussed in section 36, be expressed in closed form
when 0 < x < 2, using familiar functions?

P2. What is the probable value of ϑ(G,w) when G is a random graph on n vertices,
where each of the

(
n
2

)
possible edges is independently present with some fixed probability p?

(Juhász [9] has solved this problem in the case w = 1l, showing that ϑ(G)/
√

(1− p)n/p
lies between 1

2 and 2 with probability approaching 1 as n→∞.)

P3. What is the minimum d for which G almost surely has an orthogonal labeling
of dimension d with no zero vectors, when G is a random graph as in Problem P2? (Theo-
rem 28 and the theorem of Juhász [9] show that d must be at least of order

√
n. But Lovász

tells me that he suspects the correct answer is near n. Theorem 29 and its consequences
might be helpful here.)

P4. Is there a constant c such that ϑ(G) ≤ c
√
nα(G) for all n-vertex graphs G?

(This conjecture was suggested by Lovász in a recent letter. He knows no infinite family
of graphs where ϑ(G)/α(G) grows faster than O(

√
n/ logn). The latter behavior occurs

for random graphs, which have α(G) = log1/p n with high probability [4, Chapter XI].)

Another, more general, question is to ask whether it is feasible to study two- or three-
dimensional projections of TH(G), and whether they have combinatorial significance. The
function ϑ(G,w) gives just a one-dimensional glimpse.

Lovász and Schrijver have recently generalized the topics treated here to a wide variety
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of more powerful techniques for studying 0–1 vectors associated with graphs [15]. In
particular, one of their methods can be described as follows: Let us say that a strong
orthogonal labeling is a vector labeling such that ‖av‖2 = c(av) and au · av ≥ 0, also
satisfying the relation

c(au) + c(av) + c(aw)− 1 ≤ au · av + av · aw ≤ c(av) (37.1)

whenever u 6−− w. In particular, when w = v this relation implies that au · av = 0, so the
labeling is orthogonal in the former sense.

Notice that every stable labeling is a strong orthogonal labeling of G. Let S be a
stable set and let u and w be vertices such that u −− w. If u and w are not in S, condition
(37.1) just says that 0 ≤ c(av) ≤ 1, which surely holds. If u is in S, then w /∈ S and (37.1)
reduces to c(av) ≤ c(av) ≤ c(av); this holds even more surely.

Let

TH−(G) = { x | xv = c(bv) for some strong orthogonal labeling of G }. (37.2)

(This set is called N+(FR(G)) in [15].) We also define

ϑ−(G,w) = max{w · x | x ∈ TH−(G) } . (37.3)

The argument in the two previous paragraphs implies that

STAB(G) ⊆ TH−(G) ⊆ TH(G) ,

hence
α(G,w) ≤ ϑ−(G,w) ≤ ϑ(G,w) . (37.4)

The authors of [15] prove that ϑ−(G,w) can be computed in polynomial time, about as
easily as ϑ(G,w); moreover, it can be a significantly better approximation to α(G,w).
They show, for example, that TH−(G) = STAB(G) when G is any cyclic graph Cn. In fact,
they prove that if x ∈ TH−(G) and if v0 −− v1, v1 −− v2, . . . , v2n −− v0 is any circuit
or multicircuit of G, then xv0 + xv1 + · · · + xv2n ≤ n. This suggests additional research
problems:

P5. What is the smallest graph such that STAB(G) 6= TH−(G)?

P6. What is the probable value of ϑ−(G) when G is a random graph as in Prob-
lem P2?

A recent theorem by Arora, Lund, Motwani, Sudan, and Szegedy [3] proves that there
is an ε > 0 such that no polynomial algorithm can compute a number between α(G) and
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nεα(G) for all n-vertex graphs G, unless P = NP . Therefore it would be surprising if
the answer to P6 turns out to be that ϑ−(G) is, say, O(logn)2 with probability → 1 for
random G. Still, this would not be inconsistent with [3], because the graphs for which
α(G) is hard to approximate might be decidedly nonrandom.

Lovász has called my attention to papers by Kashin and Konyagin [10, 11], which
prove (in a very disguised form, related to (6.2) and Theorem 33) that if G has no stable
set with 3 elements we have

ϑ(G) ≤ 22/3n1/3 ; (37.5)

moreover, such graphs exist with

ϑ(G) = Ω(n1/3/
√

logn ) . (37.6)

Further study of methods like those in [15] promises to be exciting indeed. Lovász
has sketched yet another approach in [14].
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