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Abstract

We describe an explicit construction of triangle-free graphs with no independent sets of size
m and with Ω(m3/2) vertices, improving a sequence of previous constructions by various authors.
As a byproduct we show that the maximum possible value of the Lovász θ-function of a graph
on n vertices with no independent set of size 3 is Θ(n1/3), slightly improving a result of Kashin
and Konyagin who showed that this maximum is at least Ω(n1/3/ logn) and at most O(n1/3).
Our results imply that the maximum possible Euclidean norm of a sum of n unit vectors in Rn,
so that among any three of them some two are orthogonal, is Θ(n2/3).

1 Introduction

Let R(3, m) denote the maximum number of vertices of a triangle-free graph whose independence
number is at most m. The problem of determining or estimating R(3,m) is a well studied Ramsey
type problem. Ajtai, Komlós and Szemerédi proved in [1] that R(3,m) ≤ O(m2/ logm), (see also
[17] for an estimate with a better constant). Improving a result of Erdös , who showed in [7] that
R(3,m) ≥ Ω((m/ logm)2), (see also [18], [13] or [4] for a simpler proof), Kim [10] proved, very
recently, that the upper bound is tight, up to a constant factor, that is: R(3,m) = Θ(m2/ logm).
His proof, as well as that of Erdös, is probabilistic, and does not supply any explicit construction of
such a graph. The problem of finding an explicit construction of triangle-free graphs of independence
number m and many vertices has also received a considerable amount of attention. Erdös [8] gave
an explicit construction of such graphs with

Ω(m(2 log 2)/3(log 3−log 2)) = Ω(m1.13)

vertices. This has been improved by Cleve and Dagum [6], and improved further by Chung, Cleve
and Dagum in [5], where the authors present a construction with

Ω(mlog 6/ log 4) = Ω(m1.29)
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vertices. The best known explicit construction is given in [2], where the number of vertices is
Ω(m4/3).

Here we improve this bound and describe an explicit construction of triangle free graphs with
independence numbers m and Ω(m3/2) vertices. Our graphs are Cayley graphs and their construc-
tion is based on some of the properties of certain Dual BCH error-correcting codes. The bound on
their independence numbers follows from an estimate of their Lovász θ-function. This fascinating
function, introduced by Lovász in [14], can be defined as follows. If G = (V,E) is a graph, an
orthonormal labeling of G is a family (bv)v∈V of unit vectors in an Euclidean space so that if u and
v are distinct non-adjacent vertices, then btubv = 0, that is, bu and bv are orthogonal. The θ-number
θ(G) is the minimum, over all orthonormal labelings bv of G and over all unit vectors c, of

maxv∈V
1

(ctbv)2
.

It is known (and easy; see [14]) that the independence number of G does not exceed θ(G). The
graphs Gn we construct here are triangle free graphs on n vertices satisfying θ(Gn) = Θ(n2/3), and
hence the independence number of Gn is at most O(n2/3).

The construction and the properties of the θ-function settle a geometric problem posed by Lovász
and partially solved by Kashin and Konyagin [12], [9]. Let ∆n denote the maximum possible value
of the Euclidean norm ||∑n

i=1 ui|| of the sum of n unit vectors u1, . . . , un in Rn, so that among any
three of them some two are orthogonal. Motivated by the study of the θ-function, Lovász raised
the problem of determining the order of magnitude of ∆n. In [12] it is shown that ∆n ≤ O(n2/3)
and in [9] it is proved that this is nearly tight, namely that ∆n ≥ Ω(n2/3/(logn)1/2). Here we show
that the upper bound is tight up to a constant factor, that is:

∆n = Θ(n2/3).

The rest of this note is organized as follows. In Section 2 we construct our graphs and estimate
their θ-numbers and their independence numbers. The resulting lower bound for ∆n is described
in Section 3. Our method in these sections combines the ideas of [9] with those in [2]. The final
Section 4 contains some concluding remarks.

2 The graphs

For a positive integer k, let Fk = GF (2k) denote the finite field with 2k elements. The elements of
Fk are represented, as usual, by binary vectors of length k. If a, b and c are three such vectors, let
(a, b, c) denote their concatenation, i.e., the binary vector of length 3k whose coordinates are those
of a, followed by those of b and those of c. Suppose k is not divisible by 3 and put n = 23k. Let
W0 be the set of all nonzero elements α ∈ Fk so that the leftmost bit in the binary representation
of α7 is 0, and let W1 be the set of all nonzero elements α ∈ Fk for which the leftmost bit of α7 is
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1. Since 3 does not divide k, 7 does not divide 2k − 1 and hence |W0| = 2k−1 − 1 and |W1| = 2k−1,
as when α ranges over all nonzero elements of Fk so does α7.

Let Gn be the graph whose vertices are all n = 23k binary vectors of length 3k, where two
vectors u and v are adjacent if and only if there exist w0 ∈ W0 and w1 ∈ W1 so that u + v =
(w0, w

3
0, w

5
0) + (w1, w

3
1, w

5
1), where here the powers are computed in the field Fk and the addition is

addition modulo 2. Note that Gn is the Cayley graph of the additive group (Z2)3k with respect to
the generating set S = U0+U1 = {u0+u1 : u0 ∈ U0, u1 ∈ U1}, where U0 = {(w0, w3

0, w
5
0) : w0 ∈W0},

and U1 is defined similarly. The following theorem summerizes some of the properties of the graphs
Gn.

Theorem 2.1 If k is not divisible by 3 and n = 23k then Gn is a dn = 2k−1(2k−1 − 1)-regular
graph on n = 23k vertices with the following properties.

1. Gn is triangle-free.

2. Every eigenvalue µ of Gn, besides the largest, satisfies

−9 · 2k − 3 · 2k/2 − 1/4 ≤ µ ≤ 4 · 2k + 2 · 2k/2 + 1/4.

3. The θ-function of Gn satisfies

θ(Gn) ≤ n 36 · 2k + 12 · 2k/2 + 1
2k(2k − 2) + 36 · 2k + 12 · 2k/2 + 1

≤ (36 + o(1))n2/3,

where here the o(1) term tends to 0 as n tends to infinity.

Proof. The graph Gn is the Cayley graph of Z3k
2 with respect to the generating set S = Sn =

U0 +U1, where Ui are defined as above.
Let A0 be the 3k by 2k−1− 1 binary matrix whose columns are all vectors of U0, and let A1 be

the 3k by 2k−1 matrix whose columns are all vectors of U1. Let A = [A0, A1] be the 3k by 2k − 1
matrix whose columns are all those of A0 and those of A1. This matrix is the parity check matrix
of a binary BCH-code of designed distance 7 (see, e.g., [16], Chapter 9), and hence every set of six
columns of A is linearly independent over GF (2). In particular, all the sums (u0+u1)u0∈U0,u1∈U1 are
distinct and hence |Sn| = |U0||U1|. It follows that Gn has 23k vertices and it is |Sn| = 2k−1(2k−1−1)
regular.

The fact that Gn is triangle-free is equivalent to the fact that the sum (modulo 2) of any set of 3
elements of Sn is not the zero-vector. Let u0 +u1, u′0 +u′1 and u”0 +u”1 be three distinct elements
of Sn, where u0, u′0, u”0 ∈ U0 and u1, u′1, u”1 ∈ U1. If the sum (modulo 2) of these six vectors is
zero then, since every six columns of A are linearly independent, every vector must appear an even
number of times in the sequence (u0, u

′
0, u”0, u1, u

′
1, u”1). However, since U0 and U1 are disjoint

this implies that every vector must appear an even number of times in the sequence (u0, u′0, u”0)
and this is clearly impossible. This proves part 1 of the theorem.
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In order to prove part 2 we argue as follows. Recall that the eigenvalues of Cayley graphs
of abelian groups can be computed easily in terms of the characters of the group. This result,
decsribed in, e.g., [15], implies that the eigenvalues of the graph Gn are all the numbers∑

s∈Sn
χ(s),

where χ is a character of Z3k
2 . By the definition of Sn, these eigenvalues are precisely all the

numbers
(
∑
u0∈U0

χ(u0))(
∑
u1∈U1

χ(u1)).

It follows that these eigenvalues can be expressed in terms of the Hamming weights of the linear
combinations (over GF (2)) of the rows of the matrices A0 and A1 as follows. Each linear combi-
nation of the rows of A of Hamming weight x+ y, where the Hamming weight of its projection on
the columns of A0 is x and the weight of its projection on the columns of A1 is y, corresponds to
the eigenvalue

(2k−1 − 1− 2x)(2k−1 − 2y).

Our objective is thus to bound these quantities.
The linear combinations of the rows of A are simply all words of the code whose generating

matrix is A, which is the dual of the BCH-code whose parity-check matrix is A. It is known (see
[16], pages 280-281) that the Carlitz-Uchiyama bound implies that the Hamming weight x + y of
each non-zero codeword of this dual code satisfies

2k−1 − 21+k/2 ≤ x+ y ≤ 2k−1 + 21+k/2. (1)

Let p denote the characteristic vector of W1, that is, the binary vector indexed by the non-zero
elements of Fk which has a 1 in each coordinate indexed by a member of W1 and a 0 in each
coordinate indexed by a member of W0. Note that the sum (modulo 2) of p and any linear
combination of the rows of A is a non-zero codeword in the dual of the BCH-code with designed
distance 9. Therefore, by the Carlitz-Uchiyama bound, the Hamming weight of the sum of p with
the linear combination considered above, which is x+ (2k−1 − y), satisfies

2k−1 − 3 · 2k/2 ≤ x+ 2k−1 − y ≤ 2k−1 + 3 · 2k/2. (2)

Since for any two reals a and b,

−(
a− b

2
)2 ≤ ab ≤ (

a+ b

2
)2

we conclude from (1) that

(2k−1 − 1− 2x)(2k−1 − 2y) ≤ (2k − 1− 2(x+ y))2

4
≤ 4 · 2k + 2 · 2k/2 + 1/4.
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Similarly, (2) implies that

(2k−1 − 1− 2x)(2k−1 − 2y) ≥ −(1 + 2(x− y))2

4
≥ −9 · 2k − 3 · 2k/2 − 1/4.

This completes the proof of part 2 of the theorem.
Part 3 follows from part 2 together with Theorem 9 of [14] which asserts that for d-regular

graphs G with eigenvalues d = λ1 ≥ λ2 ≥ . . . ≥ λn,

θ(G) ≤ −nλn
λ1 − λn

.

It is worth noting that the fact that the right hand side in the last inequality bounds the indepen-
dence number of G is due to A. J. Hoffman. 2

Since the independence number of each graph G does not exceed θ(G) the following result
follows.

Corollary 2.2 If k is not divisible by 3 and n = 23k, then the graph Gn is a triangle-free graph
with independence number at most (36 + o(1))n2/3. 2

Let Gn be one of the graphs above and let Gn denote its complement. Since Gn is a Cayley
graph, Theorem 8 in [14] implies that θ(Gn)θ(Gn) = n and hence, by Theorem 2.1, θ(Gn) ≥
(1 + o(1)) 1

36n
1/3.

In [9] it is proved (in a somewhat disguised form), that for any graph H with n vertices and
no independent set of size 3, θ(H) ≤ 22/3n1/3. (See also [3] for an extension). Since Gn has no
independent set of size 3 and since for every graph H, θ(H)θ(H) ≥ n (see Corollary 2 of [14]) the
following result follows.

Corollary 2.3 If k is not divisible by 3 and n = 23k, then θ(Gn) = Θ(n2/3) and θ(Gn) = Θ(n1/3).
Therefore, the minimum possible value of the θ-number of a triangle-free graph on n vertices is
Θ(n2/3) and the maximum possible value of the θ-number of an n-vertex graph with no independent
set of size 3 is Θ(n1/3).

3 Nearly orthogonal systems of vectors

A system of n unit vectors u1, . . . , un in Rn is called nearly orthogonal if any set of three vectors
of the system contains an orthogonal pair. Let ∆n denote the maximum possible value of the
Euclidean norm ||∑n

i=1 ui||, where the maximum is taken over all systems u1, . . . , un of nearly
orthogonal vectors. Lovász raised the problem of determining the order of magnitude of ∆n.
Konyagin showed in [12] that ∆n ≤ O(n2/3) and that

∆n ≥ Ω(n4/3−log 3/2 log 2) ≥ Ω(n0.54).
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The lower bound was improved by Kashin and Konyagin in [9], where it is shown that

∆n ≥ Ω(n2/3/(logn)1/2)

.
The following theorem asserts that the upper bound is tight up to a constant factor.

Theorem 3.1 There exists an absolute positive constant a so that for every n

∆n ≥ an2/3.

Thus, ∆n = Θ(n2/3).

Proof. It clearly suffices to prove the lower bound for values of n of the form n = 23k, where k is
an integer and 3 does not divide k. Fix such an n, let G = Gn = (V,E) be the graph constructed in
the previous section and define θ = θ(G). By Theorem 2.1, θ ≤ (36 + o(1))n2/3. By the definition
of θ there exists an orthonormal labeling (bv)v∈V of G and a unit vector c so that (ctbv)2 ≥ 1/θ
for every v ∈ V . Therefore, the norm of the projection of each bv on c is at least 1/

√
θ and by

assigning appropriate signs to the vectors bv we can ensure that all these projections are in the
same direction. With this choice of signs, the norm of the projection of

∑
v∈V bv on c is at least

n/
√
θ, implying that

||
∑
v∈V

bv || ≥ n/
√
θ ≥ (

1
6
− o(1))n2/3.

Note that since the vectors bv form an orthonormal labeling of G, which is triangle-free, among
any three of them there are some two which are orthogonal. This implies that (bv)v∈V is a nearly
orthogonal system and shows that for every n = 23k as above

∆n ≥ (
1
6
− o(1))n2/3,

completing the proof of the theorem. 2

4 Concluding remarks

The method applied here for explicut constructions of triangle-free graphs with small independence
numbers cannot yield asymptotically better constructions. This is because the independence num-
ber is bounded here by bounding the θ-number which, by Corollary 2.3, cannot be smaller than
Θ(n2/3) for any triangle-free graph on n vertices.

Some of the results of [9] can be extended. In a forthcoming paper with N. Kahale [3] we show
that for every k ≥ 3 and every graph H on n vertices with no independent set of size k,

θ(H) ≤Mn1−2/k, (3)
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for some absolute positive constant M . It is not known if this is tight for k > 3. Combining this
with some of the properties of the θ-function, this can be used to show that for every k ≥ 3 and any
system of n unit vectors u1, . . . , un in Rn so that among any k of them some two are orthogonal,
the inequality

||
n∑
i=1

ui|| ≤ O(n1−1/k)

holds. This is also not known to be tight for k > 3. Lovász (cf. [11]) conjectured that there exists
an absolute constant c so that for every graph H on n vertices and no independent set of size k,

θ(H) ≤ ck
√
n.

Note that this conjecture, if true, would imply that the estimate (3) above is not tight for all fixed
k > 4.
Acknowledgment I would like to thank Nabil Kahale for helpful comments and Rob Calderbank
for fruitful suggestions that improved the presentation significantly.
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