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Abstract

We consider the following two problems. (1) Let t and n be positive integers
with n ≥ t ≥ 2. Determine the maximum number of edges of a graph of order n
that contains neither Kt nor Kt,t as a subgraph. (2) Let r, t and n be positive
integers with n ≥ rt and t ≥ 2. Determine the maximum number of edges of
a graph of order n that does not contain r disjoint copies of Kt. Problem 1 for
n < 2t is solved by Turán’s theorem and we solve it for n = 2t. We also solve
Problem 2 for n = rt.

1 Introduction

One of the best known results in extremal graph theory is the following theorem of
Turán.

Theorem 1 Let t and n be positive integers with n ≥ t ≥ 2. Then the maximum number
of edges of a graph of order n that does not contain a complete subgraph Kt of order t
equals (

n

2

)
−

t−1∑
i=1

(
ni
2

)
(1)

where n = n1 + · · · + nt−1 is a partition of n into t − 1 parts which are as equal as
possible. Furthermore, the only graph of order n whose number of edges equals (1) that
does not contain a complete subgraph Kt is the complete (t− 1)-partite graph Kn1,...,nt−1

with parts of sizes n1, . . . , nt−1, respectively.

In general, the extremal graph Kn1,...,nt−1 in Theorem 1 contains a complete bipartite
subgraph Kt,t. This suggests the following problem.
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Problem 1 Let t and n be positive integers with n ≥ t ≥ 2. Determine the maximum
number of edges of a graph of order n that contains neither Kt nor Kt,t as a subgraph.

If n < 2t, then Problem 1 is equivalent to Turán’s theorem. The case n = 2t is
settled in the next theorem.

If G and H are graphs, then their sum is the graph G+H obtained by taking disjoint
copies of G and H and putting an edge between each vertex of G and each vertex of H.
A path of order n is denoted by Pn. The complement of a graph G is denoted by G.
A connected graph is unicyclic provided it has a unique cycle. It follows easily that a
connected graph of order n is unicyclic if and only if it has exactly n edges. Recall that
a set of vertices of a graph is independent provided no two of its vertices are joined by
an edge. If n is an odd integer, then Hn denotes the collection of all unicyclic graphs
of order n for which the maximum cardinality of an independent set equals (n − 1)/2.
Note that H1 is empty. The graphs in Hn are characterized in the final section.

Theorem 2 Let t be a positive integer with t ≥ 3. Then the maximum number of edges
of a graph of order 2t that contains neither Kt nor Kt,t as a subgraph equals(

2t

2

)
− 3t

2
− 1 if t is even, (2)

and equals (
2t

2

)
− t− 4 if t is odd. (3)

If t is even, then the only graphs of order 2t that contain neither Kt nor Kt,t as a subgraph
and whose number of edges equals (2) are the graphs of the form K2,...,2 +Ha +Hb where
a and b are odd integers with a+b = t+2, Ha is in Ha and Hb is in Hb. If t is odd, then
the only graphs of order 2t that contain neither Kt nor Kt,t as a subgraph and whose
number of edges equals (3) are the graphs of the form K2,...,2,4 and K2,...,2 +U where U is
the graph obtained from K3,3 by removing an edge, and the graphs K1,3,3,3 and K3,3 +P4

for t = 5.

We prove Theorem 2 in the equivalent complementary form stated in the next theo-
rem.

If G and H are graphs, then their union is the graph G ∪ H consisting of disjoint
copies of G and H. If m is a positive integer, then mG is the graph consisting of m
disjoint copies of G. We call a graph bisectable provided its vertices can be partitioned
into two parts of equal size such that there are no edges between the two parts.

Theorem 3 Let t be a positive integer with t ≥ 3. Then the minimum number of edges
of a graph of order 2t that does not contain an independent set of t vertices and is not
bisectable equals

3t

2
+ 1 if t is even, (4)

and equals
t+ 4 if t is odd. (5)
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If t is even, then the only graphs of order 2t that do not contain an independent set of
t vertices and are not bisectable and whose number of edges equals (4) are the graphs of
the form (t/2− 1)K2 ∪Ha ∪Hb where a and b are odd integers with a+ b = t+ 2, Ha is
in Ha and Hb is in Hb. If t is odd, then the only graphs of order 2t that do not contain
an independent set of t vertices and are not bisectable and whose number of edges equals
(5) are the graphs (t−2)K2∪K4 and (t−3)K2∪W where W is the graph obtained from
K3 ∪K3 by inserting an additional edge, and the graphs K1 ∪ 3K3 and 2K3 ∪ P4 when
t = 5.

Problem 2 Let r, t and n be positive integers with n ≥ rt and t ≥ 2. Determine the
maximum number of edges of a graph of order n that does not contain r disjoint copies
of Kt.

If n is sufficiently large, then the solution to Problem 2 is contained in the following
theorem of Simonovits [5] (see also page 346 of [1]).

Theorem 4 Let r, t and n be positive integers with t ≥ 2 and n sufficiently large.
Then the unique graph of order n with the maximum number of edges that does not
contain r disjoint copies of Kt is the graph G = Kr−1 + H where H = Kn1,...,nt−1 and
n− r+ 1 = n1 + · · ·+nt−1 is a partition of n− r+ 1 into t− 1 parts as equal as possible.

The smallest instance of Problem 2 occurs when n = rt and this is settled in the next
theorem. By considering complements, we obtain the following equivalent formulation
of Problem 2 in this case: Determine the minimum number of edges of a graph of order
rt that is not r-partite with parts of size t.

Theorem 5 Let r and t be positive integers with t ≥ 2. Then the minimum number of
edges of a graph of order rt that is not r-partite with parts of size t equals

min{
(
r + 1

2

)
, rt− t+ 1} =

{ (
r+1

2

)
if r ≤ 2t− 2

rt− t+ 1 if r ≥ 2t− 2.
(6)

The only graphs of order rt that are not r-partite with parts of size t and whose number
of edges equals (6) are the graphs of the form

Kr+1 ∪ (rt− r − 1)K1 for r ≤ 2t− 2, (7)

and the graphs of the form

K1,rt−t+1−p ∪ pK2 ∪ (t− 2− p)K1, (0 ≤ p ≤ t− 2) for r ≥ 2t− 2. (8)

In the proof of Theorem 5 we shall make use of the following difficult result of Hajnal
and Szemerédi [3] (see also page 351 of [1]).

Theorem 6 Let r and t be positive integers, and let G be a graph of order rt each of
whose vertices has degree at most r − 1. Then G is r-partite with parts of size t.
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To conclude this introduction we note that by use of the adjacency matrix, each of
Problems 1 and 2 can be formulated in terms of matrices. If A is a matrix of order n
and α and β are subsets of {1, 2, . . . , n}, then A[α, β] is the submatrix of A determined
by the rows indexed by α and columns indexed by β.

Problem 1 is equivalent to the following.

Problem 3 Let t and n be positive integers with n ≥ t ≥ 2. Determine the minimum
number s(n, t) such that every symmetric (0, 1)-matrix of order n with 0’s on the main
diagonal and with at least s(n, t) 0’s above the main diagonal contains a zero submatrix
A[α, β] of order t where either α = β or α ∩ β = ∅.

From Theorem 2 we obtain that s(2t, t) =
(

2t
2

)
− 3t

2
if t is even and s(2t, t) =

(
2t
2

)
−t−3

if t is odd.
Problem 3 can be viewed as a symmetric version of the famous problem of Zarankiewicz:

Let 1 ≤ c ≤ a and 1 ≤ d ≤ b. Determine the minimum number Z(a, b; c, d), such that
each a× b matrix with Z(a, b; c, d) zeros contains an c × d zero submatrix.

2 Proofs

In this section we give the proofs of Theorems 3 and 5.

Lemma 7 Let G be a graph of order n. If G is a tree, then G has an independent set
of size dn/2e. If G is a unicyclic graph, then G has an independent set of size bn/2c.

Proof. A tree of order n is a bipartite graph and has either disjoint independent sets
of size dn/2e and bn/2c, or an independent set of size dn/2e+ 1. If G is unicyclic, then
G can be obtained from a tree of order n by adding an edge and hence G contains an
independent set of size bn/2c. 2

Lemma 8 Let G be a graph of order 2t such that G is not bisectable. Assume that G
has a component T which is a tree of odd order k and a component B of order l which
is not a tree. Let G′ be the graph obtained from G as follows:

(i) If B is a unicyclic graph of odd order, then replace T ∪B with Pk+l;

(ii) Otherwise, remove any edge of B which does not disconnect B and replace T by a
cycle of order k.

Then G′ is not bisectable and G′ does not contain a larger independent set than G.

Proof. The nonbisectability of G clearly implies the nonbisectability of G′. First assume
that B is unicyclic of odd order. By Lemma 7, T has an independent set of size (k+1)/2
and B has an independent set of size (l− 1)/2. Hence T ∪B has an independent set of
size (k+ l)/2. Since the maximum size of an independent set of Pk+l equals (k+ l)/2, G′

does not contain a larger independent set than G. Now assume that B is not unicyclic of
odd order. Removing an edge of a graph increases the maximum size of an independent
set by at most 1. Since T has an independent set of size (k + 1)/2 and the maximum
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size of an independent set of a cycle of odd order k equals (k−1)/2, G′ does not contain
a larger independent set than G. 2

In the proof of Theorem 3 we shall make use of the following result [2].

Lemma 9 Let a1, a2, . . . , am be positive integers with
∑m
i=1 ai = b. If m > bb/2c, then

for each positive integer k with k ≤ b there exists a subset I of {1, 2, . . . ,m} such that
k =

∑
i∈I ai.

Proof of Theorem 3 for t odd. Let G be a graph of order 2t with at most t+ 3
edges. By applying Theorem 1 to G, if G does not contain an independent set of size t
then G = 2K3 ∪ (t− 3)K2 and hence G is bisectable. The graphs for t odd given in the
statement of the theorem have t + 4 edges, do not contain an independent set of size t
and are not bisectable. This proves the first assertion of the theorem for t odd.

We now assume that G has exactly t + 4 edges, and that G does not contain an
independent set of size t and is not bisectable.

Case 1: Each component of G which is a tree equals K2. Then at least t − 4 of the
components of G are trees and thus are K2’s. Since G has t + 4 edges, at least one
component of G is not a tree and hence G has at least t− 3 components. Since G does
not have an independent set of size t, G has at most t− 1 components.

Case 1a: G has exactly t−3 components. Thus G = (t−4)K2∪F where F is a unicyclic
graph of order 8. By Lemma 7, F has an independent set of size 4, and thus G has an
independent set of size t, a contradiction.

Case 1b: G has exactly t− 2 components. Then either t− 4 or t− 3 of the components
of G are trees. Suppose that G has t− 4 trees. Then G has exactly two components G1

and G2 which are not trees (and so are unicyclic). If G1 and G2 have even order (and
so order equal to 4), then using Lemma 7, we see that G has an independent set of size
t, a contradiction. If G1 and G2 have odd order (and so of orders 3 and 5), then G is
bisectable, another contradiction.

Now suppose that G has t − 3 trees. Then G has exactly one component E which
is not a tree, and this component has order 6 and has 7 edges. Since G does not have
an independent set of size t, E does not have an independent set of size 3. It is now
easy to check that E must be the graph H in the statement of the theorem. Thus
G = (t− 3)K2 ∪H .

Case 1c: G has exactly t−1 components. SinceG does not have an independent set of size
t, each of its components is a complete graph. It follows easily that G = (t− 2)K2 ∪K4.

Case 2: There is a component T of G which is a tree of order 2m with m ≥ 2. We
replace T in G by mK2 and obtain a graph G′ of order 2t with at most t+ 3 edges. It
follows from Lemma 7 that the maximum size of an independent set of G′ is at most
t− 1. By Theorem 1, G′ = 2K3 ∪ (t− 3)K2 and hence G = 2K3 ∪ P4 ∪ (t− 5)K2. Since
G is not bisectable, t = 5 and G = 2K3 ∪ P4.

Case 3: There is a component of G which is a tree of odd order. We repeatedly apply
the transformation in Lemma 8 to obtain a graph G† none of whose components is a tree
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of odd order. By Lemma 8, G† is a graph of order 2t with t + 4 edges which does not
contain an independent set of size t and is not bisectable. Applying what we have proved
in Cases 1 and 2 to G†, we conclude that G† equals (t − 2)K2 ∪ K4, (t − 3)K2 ∪W ,
or 2K3 ∪ P4. First suppose that G† was obtained from a graph G∗ by applying the
transformation (i) in Lemma 8. Then one of the components of G† is a path of even
length at least 4. Hence G† = 2K3 ∪ P4. This implies that G∗ = K1 ∪ 3K3. Since G∗

cannot be obtained by applying a transformation in Lemma 8, G = K1 ∪ 3K3. Now
suppose that G† was obtained from a graph G∗ by applying the transformation (ii) in
Lemma 8. Then one of the components of G† must be a cycle of odd length and again
G† = 2K3 ∪ P4. This implies that G∗, and hence G, has an independent set of size 5.
Since G has 10 vertices, this is a contradiction. 2

Proof of Theorem 3 for t even. Let G be a graph of order 2t with at most
3t/2 edges. Suppose that G does not contain an independent set of size t and G is not
bisectable. By arbitrarily adding new edges to G we obtain a graph G∗ with 3t/2 + 1
edges with the same properties. Suppose G∗ is one of the graphs (t/2− 1)K2 ∪Ha ∪Hb

given in the theorem. If we remove an edge of one of the K2’s of G∗, then we obtain an
independent set of size t. Suppose that we remove an edge from, say, Hb. If the removal
disconnects Hb, we obtain a bisectable graph. Otherwise we obtain an independent set
of size t by Lemma 7. Therefore to complete the proof of the theorem it suffices to show
that the only graphs of order 2t with 3t/2+1 edges which do not contain an independent
set of size t and are not bisectable are the graphs (t/2 − 1)K2 ∪ Ha ∪ Hb given in the
theorem.

We now assume that G has exactly 3t/2 + 1 edges, and that G does not contain an
independent set of size t and is not bisectable. Then G has at least t/2− 1 components
which are trees. Since G does not have an independent set of size t, Lemma 7 implies
that G has at least t/2 + 1 components.

First suppose that G has at least t/2 components of even order. Let 2m1, . . . , 2mt/2

be the orders of t/2 components of G with even order. By the pigeonhole principle there

is a subset I of {1, . . . , t/2} such that
∑
i∈Imi is a multiple of t/2. Since

∑t/2
i=1 2mi < 2t,

it follows that
∑
i∈I 2mi = t and hence G is bisectable, a contradiction. Thus G has at

most t/2− 1 components of even order.

Case 1: No component of G is a tree of odd order. Thus exactly t/2−1 of the components
of G are trees and each has even order, and all other components are unicyclic of odd
order. If there are at least four components of odd order, then replacing the orders of
two of these components by their sum and arguing as above, we again contradict the
nonbisectability of G. Hence G has exactly two components of odd order. Let the order
of the trees be 2m1, . . . , 2mt/2−1. Suppose that at least one tree has order greater than

2 and hence
∑t/2−1
i=1 2mi ≥ t. Since also

∑t/2−1
i=1 2mi ≤ 2t− 6, we have

t

2
≤

t/2−1∑
i=1

mi ≤ t− 3.

It follows from Lemma 9 that there exists a subset I of {1, . . . , t/2 − 1} such that∑
i∈I mi = t/2. Once again we contradict the nonbisectability of G. We now conclude
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that G = (t/2− 1)K2 ∪Ha ∪Hb where a and b are odd integers with a+ b = t+ 2, Ha

is in Ha and Hb is in Hb.

Case 2: There is a component of G which is a tree of odd order. We repeatedly apply
the transformation in Lemma 8 to obtain a graph G† none of whose components is a
tree of odd order. By Lemma 8, G† is a graph of order 2t with 3t/2+1 edges which does
not contain an independent set of size t and is not bisectable. Applying what we have
proved in Case 1 to G†, we conclude that G† is of the form (t/2− 1)K2 ∪Ha ∪Hb given
in the theorem. Since G† does not contain a component which is a path of even order
at least 4, it was not obtained by applying the transformation (i) in Lemma 8. Thus G†

was obtained from a graph G∗ by applying the transformation (ii) in Lemma 8. Then
one of Ha and Hb, say Ha, is a cycle of odd length. Hence G∗ = T ∪H∗b ∪ (t/2− 1)K2

where T is a tree of order a and H∗b is obtained by adding a new edge to Hb. By Lemma
7, T has an independent set of size (a+1)/2, and by an extension of the proof of Lemma
7, H∗b has an independent set of size (b − 1)/2. Therefore G∗, and hence G, has an
independent set of size t, a contradiction. 2

Proof of Theorem 5. We first prove by induction on r that a graph G of order rt
whose number of edges is at most

min{
(
r + 1

2

)
− 1, rt− t}

is r-partite with parts of size t. If r = 1, then G has no edges and the conclusion holds.
Now let r > 1. By Theorem 6 we can assume that G has a vertex v whose degree is at
least r. Since G has at most rt− t edges, the number of connected components of G is
at least t. Thus there is an independent set A of vertices such that v ∈ A and |A| = t.
Let G′ be the graph obtained from G by removing the vertices in A. Since the degree
of v is at least r, G′ has at least r fewer edges than G. Hence the number of edges of G′

is at most (
r + 1

2

)
− 1− r =

(
r

2

)
− 1.

If r − 1 ≤ 2t− 2, then

min{
(
r

2

)
− 1, (r − 1)t− t} =

(
r

2

)
− 1

and hence by inductionG′ is (r−1)-partite with parts of size t. Assume that r−1 > 2t−2.
Since t ≥ 2, this implies that r ≥ t and thus G′ has at least t fewer edges than G. Hence
the number of edges of G′ is at most

(rt− t)− t = (r − 1)t− t = min{
(
r

2

)
− 1, (r − 1)t− t}.

Again by induction G′ is (r − 1)-partite with parts of size t. Since A is an independent
set of t vertices of G, G is r-partite with parts of size t.
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The graphs in (7) and (8) have order rt, are not r-partite with parts of size t, and
their number of edges is given by (6), and hence the first assertion of the theorem follows.
We now prove that the graphs in (7) and (8) are the only graphs with these properties.

Let G be a graph of order rt with number of edges given by (6) which is not r-partite
with parts of size t. Since G has at most rt− t+ 1 edges, G has at least t− 1 connected
components. By Theorem 6, G has a vertex v of degree at least r. First suppose that
r < 2t− 2. Then (

r + 1

2

)
< rt− t+ 1

implying that G has at most rt − t edges and hence at least t connected components.
Since G has at least t components, for each vertex u 6= v which is not adjacent to
v, there is an independent set of size t containing both u and v. G cannot have an
independent set of size t which is incident with at least r + 1 edges, since otherwise by
the first assertion of the theorem, G is r-partite with parts of size t. We now conclude
that the degree of v equals r, the component containing v has order r + 1, and every
other component has order one. It now follows that G is of the form (7).

Now suppose that r > 2t− 2. Then G has exactly rt− t+ 1 edges and at least t− 1
of its components are trees. Also G cannot have an independent set of size t containing
v, since otherwise by the first assertion of the theorem, G is r-partite with parts of size
t. Thus G has exactly t− 1 components, v is adjacent to each vertex in its component,
and every other component is a complete graph. Hence G has the form (8).

Finally, suppose that r = 2t − 2. If G has at least t components, then as in the
case r < 2t − 2, G is of the form (7). Thus we may assume that G has exactly t − 1
components. Since G has rt−t+1 edges, each of its components are trees. G cannot have
an independent set of size t which is incident with at least r+1 edges, since otherwise by
the first assertion of the theorem, G is r-partite with parts of size t. This implies that v
is adjacent to every vertex in its component, and every other component is a complete
graph. Therefore G has the form (8). 2

3 Characterization of Hn

In our characterization of the graphs in Hn we use the following lemma which is a simple
consequence of the well known theorem of König. Recall that a perfect matching of a
graph is a set of pairwise vertex disjoint edges which touch every vertex of the graph.

Lemma 10 Let G be a bipartite graph of order 2t. Then the maximum cardinality of
an independent set of G equals t if and only if G has a perfect matching.

Let H be a unicyclic graph of order n. Then H contains a unique cycle C =
(x1, x2, . . . , xp, x1). The connected components of the subgraph of H induced by the
vertices not belonging to C are trees. These trees are called the trees of the unicyclic
graph H . Each such tree is joined by an edge to exactly one vertex xi of C.

Theorem 11 Let n ≥ 3 be an odd integer. Then a unicyclic graph of order n is in Hn

if and only if its unique cycle has odd length and each of its trees is of even order and
has a perfect matching.
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Proof. Let G be a unicyclic graph of order n and let the unique cycle C of G have
length p. First assume that p is odd and each of the trees of G is of even order and has
a perfect matching. Each independent set of G contains at most half of the vertices of
each of its trees by Lemma 10 and at most (p− 1)/2 vertices of C. Thus the maximum
cardinality of an independent set of G is at most (n − 1)/2 and by Lemma 7, equals
(n− 1)/2. Therefore G is in Hn.

Now assume that G is in Hn. Suppose to the contrary that p is even. Then C has
exactly two independent sets A and B of size p/2. Since n is odd, the number of trees
of odd order of G is also odd. Without loss of generality assume that A is joined to
fewer trees of odd order than B. Each tree of order b joined to B has by Lemma 7
an independent set of size db/2e. Each tree of order a joined to A has by (the proof
of) Lemma 7 an independent set of size ba/2c none of whose vertices is joined to A.
These independent sets along with A give an independent set of G of size greater than
(n− 1)/2, contradicting the assumption that G is in Hn. Hence p is odd.

Now suppose to the contrary that at least one of the trees of G has odd order.Let
qi be the number of trees of odd order joined to vertex xi of C (i = 1, . . . , p), and let
q = q1 + · · ·+ qp be the number of odd trees of G. Let I be the set consisting of the p
independent sets of C of size (p−1)/2. Each vertex of C is contained in exactly (p−1)/2
sets of I. The average number of trees of odd order joined to the sets in I equals

1

p

∑
I∈I

∑
xi∈I

qi =
1

p

p∑
i=1

∑
{I∈I:xi∈I}

qi

=
1

p

p∑
i=1

p− 1

2
qi

=
p− 1

p
· q

2

<
q

2
.

Hence there exists a set A in I which is joined to fewer than q/2 trees of odd order.
As in the preceding paragraph we obtain an independent set of G of size greater than
(n − 1)/2, contradicting the assumption that G is in Hn. Thus all the trees of G have
even order.

If one of the trees of G does not have a perfect matching, then using Lemma 10 we
again construct an independent set of size greater than (n− 1)/2. Hence each tree of G
has a perfect matching. 2

Various characterizations of trees of even order are listed in [4].
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