Comment by David M. Einstein Cadec Systems, deinstemorld. std.com; October 8, 1994

1) In the proposition as stated at the top of page 7 the use of "uniform" is incorrect. The correct proposition is
Proposition. The Gaussian polynomial $\binom{n}{t}_{4}$ is the product of exactly those cyclotomic polynomials $F_{j}(q)$ for which $\bar{t}>\bar{n}$, modulo j.
This suggests splitting the Fourier transform sum into a sum of sums over the roots of the cyclotomic polynomials. Let us define

$$
\bar{f}(j, n, t, m)=\sum_{F_{u}(\omega)=0} \omega^{t(t+1) / 2-j}\binom{n}{t}_{\omega}
$$

so

$$
f(j, n, t, m)={ }_{m}^{1} \sum_{d \mid m} \bar{f}(j, n, t, d)
$$

Now the proposition implies that if $t \bmod d>n \bmod d$ then ()$\left._{t}^{n}\right)_{\omega}$ equals zero for all ω that are roots of the d'th cyclotomic polynomial. So $\bar{f}(i, n, t, d)=0$ for all i.
This allows us to answer question 4 b by saying that if $(n, t, m$) has only one bad divisor d then

$$
\begin{aligned}
f(i, n, t, m) & =\frac{1}{m}(\bar{f}(i, n, t, 1)+\bar{f}(i, n, t, d)) \\
& =\frac{d}{m}(1 / d)(\bar{f}(i, n, t, 1)+\bar{f}(i, n, t, d)) \\
& ={ }_{m}^{d} f(i, n, t, d)
\end{aligned}
$$

2) The general conjecture as stated is false, as can be seen by considering $f(16,6,5)$. There the bad divisors are 9 and 5 . The general conjecture would then imply that $\mathrm{f}(16,6,15)$ is a linear combination of $f(15,6,9)$ and $f(15,6,5)$ (extended appropriately). Computation reveals that the combination must be $(1 / 9) f(15,6,5)+(1 / 5) f(15,6,9)$, further computation shows that this combination does not work.
The General Conjecture might be true if we allow 1 to be included in the set of bad divisors.
