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Abstract. Given a graph G = (V,E), an even kernel is a nonempty independent
subset V ′ ⊆ V , such that every vertex of G is adjacent to an even number (possibly 0)
of vertices in V ′. It is proved that the question of whether a graph has an even kernel is
NP-complete. The motivation stems from combinatorial game theory. It is known that
this question is polynomial if G is bipartite. We also prove that the question of whether
there is an even kernel whose size is between two given bounds, in a given bipartite graph,
is NP-complete. This result has applications in coding and set theory.

1 Introduction

Even Kernel (EVEK). Given an undirected graph G = (V,E). Is there a nonempty
independent subset V ′ ⊆ V such that every u ∈ V has even degree with respect to V ′, i.e.,
u has an even number (possibly 0) of neighbors in V ′?

Example. In the graph depicted in Fig. 1, the subset {u1, u3, u7, u9} is an even kernel.
So is its subset {u1, u3}; and also {u2, u4, u5, u6, u8} is an even kernel. Thus an even kernel
may exist nonuniquely. A triangle has no even kernel.
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Figure 1. Even kernels in a graph G = (V,E).

The notion of an even kernel was defined in Fraenkel, Scheinerman and Ullman [1993],
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with the motivation that the vertices of an even kernel are P -positions (second player win
positions) in a game called “Edge Geography”. It was shown there that EK is polynomially
decidable if G is bipartite. In §2 we prove

Theorem 1. EVEK is NP-complete even for graphs with maximum degree 3.

This result is best possible, in the sense that for a graph with maximum degree ≤ 2,
the question can be decided in linear time, since a simple path or a simple circuit each
have an even kernel if and only if the path or circuit has even length (an even number of
edges).

The notion of an even kernel is not all that new, though our terminology for it might be.
Berlekamp, McEliece and van Tilborg [1978] showed that the problem of whether a binary
matrix A contains exactly L rows such that each column of these L rows has an even
number of 1-bits (i.e., whether there is a binary vector X such that XA ≡ 0 (mod 2))
is NP-complete, and asked about the status of the problem when “exactly L” is replaced
by “≤ L” (≤ DECOD). See also Garey and Johnson [1979, DECODING OF LINEAR
CODES]. They also asked in “OPEN5” about the following EVEN SET (EVES) problem:
“Given a collection C of subsets of a finite set X and L ∈ Z+, is there a nonempty
subcollection C ′ ⊆ C with |C ′| ≤ L, such that each x ∈ X belongs to an even number
(possibly 0) of sets in C ′?”. They stated that EVES is equivalent to ≤ DECOD. It is easy
to see that both EVES and ≤ DECOD are equivalent to asking whether a given bipartite
graph G = (V1, V2;E) with disjoint and independent parts V1 and V2 has an even kernel
K ⊆ V1 with |K| ≤ L.

Define the problem

Even Single Bipartite Kernel (ESBIK). Given A,C ∈ Z+ with A ≤ C and a
bipartite graph G = (V1, V2;E), where V1, V2 are disjoint independent subsets of vertices.
Is there a subset K ⊆ V1, with A ≤ |K| ≤ C such that every vertex has an even number
of neighbors (possibly 0) in K?

In §3 we prove

Theorem 2. ESBIK is NP-complete even for graphs with maximum degree 3.

A related problem is

Even Double Bipartite Kernel (EDBIK). Given A,C ∈ Z+ with A ≤ B and a
bipartite graph G = (V1, V2;E), where V1, V2 are disjoint indpendent subsets of vertices.
Is there a subset K ⊆ V1 ∪ V2 with A ≤ |K| ≤ C, such that every vertex has an even
number of neighbors (possibly 0) in K?

In §4 we prove

Theorem 3. EDBIK is NP-complete even for graphs with maximum degree 3.

All our reductions are made from 1-3SAT, defined below. A Boolean formula is positive
if it contains no negated variables. A Boolean formula is in 3CNF if it is a conjunction of
clauses, where each clause is a disjunction of three literals.
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One-In-Three 3SAT (1-3SAT). Given a positive Boolean 3CNF formula B. Is B
1-satisfiable, i.e., is there a truth assignment for B such that each clause in B has precisely
one true variable?

Schaefer [1978] proved that 1-3SAT is NP-complete. See also Garey and Johnson [1979].

For all the three proofs, we associate with any positive 3CNF-formula B = c1 ∧
· · · ∧ cm with clauses c1, . . . , cm and variables x1, . . . , xn, a graph G(B) whose vertex
set is {c1 . . . cm, x1, . . . , xn} and there is an edge (xj, ci) if and only if xj ∈ ci, i.e., xj is
in ci (Fig. 2). We shall make a standard modification on G(B), so as to preserve the
degree-at-most-3 requirement throughout the construction.
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x x x x x
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Figure 2. The graph G(B) for B = (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x4).

It is clear that each of the problems EVEK, ESBIK and EDBIK is in NP.

Notation. A vertex belonging to a given fixed even kernel will be termed marked.
Otherwise it is unmarked. In the figures below, we use asterisks to indicate marked vertices.
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The length of a simple path in a graph is the number of its edges, so it is 1 less than
the number of its vertices. An n-path is a path of length n.

2 Proof of Theorem 1

1. Injectors. An injector injects a mark onto a vertex. Typically, one end of an injector
is a two-pronged “or”-gate consisting of two adjacent vertices u1, u2, constituting one edge
e = (u1, u2) of a circuit in which alternate vertices are marked. Thus precisely one of u1, u2

is marked. The two vertices u1, u2 are both adjacent to the focus v of the injector. The
focus is adjacent to the other end of the injector, which is a single vertex u (Fig. 3(i)),
possibly joined to an or-gate of several vertices, an odd number of them being marked
(Fig. 3 (ii),(iii)). The latter vertices may be adjacent to each other (implying further mark
and adjacency restrictions) or not. Note that an injector injects a mark in either direction,
and in fact may be completely symmetric relative to its mid-vertex (Fig. 3(ii), if u3 and
u4 are adjacent).
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(i) Simple injector (ii) Injector with (iii) Injector with
2-pronged or-gate 3-pronged or-gate

Figure 3. Various manifestations of injectors.

We wish to make sure that the even kernel induced by our construction is a “full” even
kernel, rather than only some subset of an even kernel, such as pointed out in Fig. 1. The
injectors see to this.

2. Variable Circuits. Let m(j) be the total number of occurrences of the variable
xj in B. Construct a simple circuit of 2(2m(j) + 2) vertices for xj (1 ≤ j ≤ n), where
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alternate vertices are labeled x1j, x2j, . . . , x2m(j)+2,j; the vertices in-between are unlabeled.
The circuits for xj−1 and xj are joined by an injector with a 2-pronged or-gate on both of
its sides (Fig. 4), where, here and below, xij is indicated by ij. The locations of the ends
of the injector on any variable circuit are such that if the vertices of a variable circuit are
traversed in clockwise direction, then the first vertex of the injector which is encountered
in this traversal is labeled. (Note the distinction between marked and labeled vertices.)

6j
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3,j-1

4,j-1

1j

2j

3j

4j

5j

Figure 4. Two adjacent variable circuits joined via an injector.

3. Clause Circuits. A clause circuit ci (1 ≤ i ≤ m) is a network consisting of
12 vertices interconnected as shown in Fig. 5. (It would be more compact, if the degree
constraint would be relaxed to d ≤ 4.) It has four terminals, a, b, d and g.

d
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g

Figure 5. A clause circuit ci.
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Figure 6. Joining variable circuits with a clause circuit.

In the global construction, xij is joined via a 2-path to precisely one of the terminals a, b
or d of ci, if and only if xj is in ci. In addition, one injector, based on an xj-variable circuit
with xj in ci is joined, via a 2-path, to terminal g of ci (Fig. 6). Also here the location
of the ends of the injector is such that if the vertices of a variable circuit are traversed
in clockwise direction, then the first vertex of the injector encountered in this traversal is
labeled. Since there are m(j) 2-paths between the variable circuit of xj and the ci, and
at most m(j) + 2 injectors on it, the 2(2m(j) + 2) vertices on the variable circuit suffice
to insure that the degrees on any variable circuit are at most 3. The global construction
(Fig. 7) is clearly polynomial.
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Figure 7. The global construction for B = (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x4).

Now assume that 1-3SAT is 1-satisfiable, i.e., each clause in B has precisely one true
variable. In the variable circuits, mark the xij (1 ≤ i ≤ 2m(j) + 2) if xj = 1 for some
truth assignment for which B is 1-satisfiable, and the unlabeled vertices between the xij
(1 ≤ i ≤ 2m(j) + 2) if xj = 0. Then precisely one of the xij for xj in ci is marked for
each i, and precisely one of a, b, d is marked, namely, the one at the end of a 2-path whose
other end is a marked xij . Also the vertices u (Figs. 6 and 7) and the mid-vertices on the
injectors connecting adjacent variable circuits get injected marks. If d has been marked,
no further vertex of ci is marked. But if a or b has been marked, then h is marked; and
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so is a1 and a2 (if a is marked) or b1 and b2 (if b is marked). It is easily verified that the
marked vertices constitute an even kernel of the constructed graph G.

Conversely, assume that G has an even kernel. We begin by collecting a few properties
of G and its even kernel.

Proposition 1. If a labeled vertex of a variable circuit is marked, then all labeled
vertices of that variable circuit are marked.

Proof. Proceed in clockwise direction from a marked vertex xij , and note that the
mark necessarily “propagates” along the circuit at the labeled vertices, including those
which impinge on 2-paths joined to the ci, and at the beginnings of injectors, all of which
are labeled. 2

Proposition 2. No focus v of any injector can be marked.

Proof. Suppose v is marked. Then both xij in clockwise direction and the unlabeled
vertex w in counterclockwise direction of a variable circuit (Fig. 8) are marked. By Propo-
sition 1, all labeled vertices are marked, in particular xi−1,j. This is a contradiction, since
xi−1,j is adjacent to both v and w. 2

i-
2,

j
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i-

1,
j

 ij

v
*

 *

 *

u

Figure 8. An impossible situation.

Proposition 3. For every clause circuit ci, none of the vertices g and vj (1 ≤ j ≤ 6)
can be marked (Fig. 6).

Proof. For g, v1 and v6 this follows directly from Proposition 2. If v2 were marked, then
both b1 and b2 would be marked, so a1 would have an odd number of marked neighbors,
a contradiction. By symmetry, also v3 cannot be marked. But then also neither v4 nor v5

can be marked. 2
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Proposition 4. If an unlabeled vertex w of a variable circuit is marked, then all unla-
beled vertices of that variable circuit are marked.

Proof. The only neighbors of the vertices of a variable circuit which lie outside that
circuit, are vertices of the type v, v4, v5 and v6 (Fig. 6). By Propositions 2 and 3, none
of these is marked. Thus the mark at w necessarily propagates along the variable circuit
itself. 2

Propositions 1 and 4 imply that if any vertex on any variable circuit is marked, then
because of the injectors between adjacent variable circuits, all variable circuits are marked:
either all 2m(j)+2 labeled or all 2m(j)+2 unlabeled vertices are marked in every variable
circuit. Moreover, these two possible markings are independent of each other in the n
variable circuits.

We now show that any even kernel of G necessarily intersects a variable circuit. A mark
on any of a, b or d injects a mark into a variable circuit via v4, v5 or v6 respectively, a mark
on u does so via v, and a mark on h via d or u. Also a mark on b1 or b2 injects a mark
into a variable circuit via b, and a mark on a1 or a2 does so via a. By Propositions 2
and 3, no other vertex outside the variable circuits and their interconnecting injectors can
be marked. Since an even kernel is nonempty, some vertex of a variable circuit must be
marked. Hence all the variable circuits are marked; in fact, each one has all its labeled or
else all its unlabeled vertices marked.

Each clause circuit ci receives a mark that is injected via some u. Then precisely one
of d and h is marked, otherwise g would have 3 marked neighbors. Assume first that d is
marked. Since h is then unmarked, a is marked if and only if b is marked. But if both a
and b are marked, then so are the adjacent vertices a1 and b1, a contradiction. Thus a and
b are both unmarked. Secondly, assume that h is marked. Then precisely one of a and b
is marked (a1 and a2 are marked if a is marked; b1 and b2 are marked if b is marked).

It follows that for every ci, precisely one of the three terminals a, b or d is marked.
Hence precisely one of the three variable circuits connecting to the terminals via 2-paths
has all its labeled vertices marked, and the other two have all their unlabeled vertices
marked. Putting xj = 1 if and only if the jth variable circuit has all its labeled vertices
marked, thus constitutes a consistent truth assignment which 1-satisfies the given instance
of 1-3SAT. 2

3 Proof of Theorem 2

We make again a reduction from 1-3SAT. Since the construction is similar to that used
for proving Theorem 1, we give less detail and refer the reader to Fig. 9, where the global
construction is illustrated. We also use the same notation as in the proof of Theorem 1.
The main difference between the two constructions is that in the present case the injector
cannot be used, as it is not bipartite. Its function is emulated, in part, by long chains
(paths) whose length may cause certain subgraphs to be marked or unmarked.
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Figure 9. The global construction for B = (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x4).

1. Ignition Bus. This is a path of length 4(7m+n), where alternate vertices, including
the two end vertices, are numbered 1, . . . , 14m+2n+1. In a proper labeling, the numbered
vertices are “ignited”, i.e., marked. The vertices numbered 1, . . . , m feed into the m clause
circuits c1, . . . , cm, and the vertices numbered m + 1, . . . ,m + n feed into the n variable
circuits via ignitors (see below). Each of the vertices i (1 ≤ i ≤ m + n) appears twice in
Fig. 9, but it is one and the same vertex. Its split into two was precipitated only by the
desire to avoid the many intersecting edges which would otherwise clutter the drawing.

2. Ignitors. The variable-ignitors are 2-paths feeding into the variable circuits, and
the clause-ignitors are 3-paths feeding into the clause circuits. The vertices numbered
i are marked in proper operation (i ∈ {1, . . . ,m + n}). From each vertex labeled p on
each clause-ignitor, there emanates a simple path L of length 2(22m+ 3n+ 1). In proper
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operation, all vertices of the paths L remain unmarked.

3. Variable Circuits. The variable circuit for xj contains 2(m(j) + 1) vertices (1 ≤
j ≤ n), and again alternate vertices are labeled. There is a shunt of length 2(m(j) + 1)−1
connected to the jth variable circuit. If the ignition bus is marked, then either the variable
circuit or its shunt are marked, but not both.

4. Clause Circuits. There are terminals a, b, d, g as in the previous construction,
but the clause circuits are now bipartite.

The construction is complete by putting A = 14m+ 2n+ 1 and C = 22m+ 3n+ 1. It
is clearly polynomial and produces a bipartite graph G with degrees at most 3.

Suppose B is 1-satisfiable. Mark the numbered vertices on the ignition bus. Mark the
labeled vertices in the variable circuit of xj if and only if xj = 1 in a truth assignment
which makes B 1-satisfiable. In all other variable circuits, alternate vertices on the shunts
are marked. Since B is 1-satisfiable, exactly one of a, b, d gets an induced mark from a
variable circuit. Three additional vertices on ci or on the path leading from d to a variable
circuit are then marked. The resulting set of marked vertices forms an even kernel K of
size

|K| = 14m+ 2n+ 1 (ignition bus)

+ 4m+m (clause circuits and their ignitors)

+
∑n
j=1(m(j) + 1) (variable circuits/shunts)

= 22m+ 3n+ 1 = C.

Conversely, assume that G has an even kernel K of size A ≤ |K| ≤ C. First note that
none of the vertices labeled p can be marked: if any were marked, we would already have
an entire path marked, contributing 22m+ 3n+ 2 > C marks. Secondly, suppose that the
ignition bus is unmarked. The largest K could then be is when each ci contributes 8 labels
(d is marked; so is precisely one of a and b), and the labeled vertices on all the variable
circuits and shunts are marked. Then

|K| ≤ 8m+
n∑
j=1

2(m(j) + 1) = 14m+ 2n < A.

We could have unlabeled vertices in all the variable circuits and the two neighbors of v in
all the ci marked. But this clearly produces an even kernel of size < A.

Thus alternate vertices on the ignition bus have to be marked. It is easy to see that then
in each ci either one or all three terminals a, b, d are marked. If precisely one is marked,
then |K| = B as we saw in the first part of the proof. The marked terminal induces
marks on the labeld vertices in the variable circuit it is connected to via a two-path.
Putting xj = 1 if and only if the labeled vertices are marked in the j-th variable circuit,
thus constitutes a 1-satisfable solution to B. If even one ci has 3 marked terminals, then
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|K| > B, so this is not possible. So the existence of an even kernel K of size A ≤ |K| ≤ |C|
implies that B is 1-satisfiable. 2

4 Proof of Theorem 3

The construction is similar to the constructions used for Theorems 1 and 2, especially
to the latter. See Fig. 10 for the global picture. On the variable circuits we now have
two shunts. The one connected to a labeled vertex is termed shunt s, and the other,
connected to an unlabeled vertex, is shunt s′. From each of the vertices labeled p on the
clause-ignitors, there emanates a path L of length 2(39m+6n+2). There are two ignition
buses, numbered 1 and 2, each of length 4(7m + n). We put A = 31m + 5n + 2 and
C = 39m+ 6n+ 2, and note that the construction is polynomial and produces a bipartite
graph.
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Figure 10. The global construction for B = (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x4).
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Suppose B is 1-satisfiable. Mark the numbered vertices on the ignition buses. Mark
the labeled vertices in a variable circuit of xj and alternate vertices on shunt s′ if xj = 1;
the unlabeled vertices in the variable circuit or alternate vertices on s′ (but not both),
and alternate vertices on shunt s if xj = 0 for a given truth assignment that renders B
1-satisfiable. Then exactly one of a, b, d in each ci is marked, leading to a total of 4 marked
vertices in each ci. The result is an even kernel K of size

|K| = 28m+ 4n+ 2 + 5m+ 2
n∑
j=1

(m(j) + 1) = 39m+ 6n + 2 = C.

Conversely, assume that G has an even kernel K of size A ≤ |K| ≤ C. None of the
vertices labeled p can be labeled, for otherwise we would already have a kernel of size
≥ 39m+ 6n+ 3 > C. Now suppose that at most one of the ignition buses is marked, say
ignition bus 2. Then each ci can contribute at most 8 to K and each variable circuit at
most 3(m(j) + 1), so

|K| ≤ 14m+ 2n+ 1 + 8m+ 3
n∑
j=1

(m(j) + 1) = 31m+ 5n + 1 < A.

If ignition bus 1 rather than 2 is marked, we get a smaller even kernel. It follows that the
numbered vertices of both ignition buses have to be marked. Then each variable circuit
has the labeled vertices and alternate vertices on shunt s′ marked; or else alternate vertices
on s, and either the unlabeled vertices or alternate vertices on s′ (but not both). Each ci
has either precisely one of a, b, d labeled or else all three of them. In the first case we have
then a kernel K of size

|K| = 28m+ 4n+ 2 + 5m+ 2
n∑
j=1

(m(j) + 1) = 39m+ 6n + 2 = C.

If even a single ci has all of the a, b, d marked, then the kernel would obviously be larger
than C. 2
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