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Abstract

In this paper we study the spectra of certain classes of Room frames. The
three spectra are incomplete Room squares, uniform Room frames and Room
frames of type 2ut1. These problems have been studied in numerous papers over
the years; in this paper, we complete the three spectra except for one possible
exception in each case.

Math reviews classification: 05B15

1 Introduction

Room squares and generalizations have been extensively studied for over 35 years.
In 1974, Mullin and Wallis [15] showed that the spectrum of Room squares consists
of all odd positive integers other than 3 or 5; however, many other related questions
have remained unsolved. (For a recent survey, see [6].) In this paper, we study three
well-known spectra:
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Incomplete Room squares This problem asks for which ordered pairs (n, s) does
there exist a Room square of side n containing a Room square of side s as a
subarray. By considering “incomplete” Room squares, we can allow s = 3 or
5, as well. This problem has been under investigation for over 20 years, and a
history up to 1992 can be found in [6]. Two more recent papers are [19, 9].

Uniform Room frames This problem involves the determination of the existence
of Room frames of type tu (i.e. having u holes of size t). A systematic study of
this problem was begun in 1981 in [3]. The history up to 1992 is found in [6]
and more recent results appear in [11, 1].

Room frames of type 2ut1 Here we are asking for Room frames with one hole of
size t and u holes of size 2. This problem can be thought of as an even-side
analogue of the incomplete Room square problem. The known results on this
problem can be found in [10, 12].

We will describe our new results more precisely a bit later in this introduction,
but we first give some formal definitions. We first define a very general object we call
a holey Room square. Let S be a set, let ∞ be a “special” symbol not in S, and let
H be a set of subsets of S. A holey Room square having hole set H is an |S| × |S|
array, F , indexed by S, which satisfies the following properties:

1. Every cell of F either is empty or contains an unordered pair of symbols of
S
⋃{∞}.

2. Every symbol of S
⋃{∞} occurs at most once in any row or column of F , and

every unordered pair of symbols occurs in at most one cell of F .

3. The subarrays H×H are empty, for every H ∈ H (these subarrays are referred
to as holes).

4. The symbol s ∈ S occurs in row or column t if and only if

(s, t) ∈ (S × S)\
⋃
H∈H

(H ×H);

and symbol ∞ occurs in row or column t if and only if

t ∈ S\
⋃
H∈H

H.

5. The pair {s, t} occurs in F if and only if

(s, t) ∈ (S × S)\
⋃
H∈H

(H ×H);

the pair {∞, t} occurs in F if and only if

t ∈ S\
⋃
H∈H

H.
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The holey Room square F will be denoted as HRS(H). The order of F is |S|. Note
that ∞ does not occur in any cell of F if

⋃
H∈HH = S.

We now identify several special cases of holey Room squares. First, if H = ∅, then
an HRS(H) is just a Room square of side |S|. Also, if H = {H}, then an HRS(H) is
an (|S|, |H|)−incomplete Room square, or (|S|, |H|)−IRS.

If H = {S1, . . . , Sn} is a partition of S, then an HRS(H) is called a Room frame.
As is usually done in the literature, we refer to a Room frame simply as a frame.
The type of the frame is defined to be the multiset {|Si| : 1 ≤ i ≤ n}. We usually
use an “exponential” notation to describe types: a type t1u1t2

u2 . . . tk
uk denotes ui

occurrences of ti, 1 ≤ i ≤ k.
We do not display any specific Room frames in this paper, but examples are shown

in numerous papers, such as [6] and [7].
We observe that existence of a Room square of side n is equivalent to existence

of a frame of type 1n; and existence of an (n, s)−IRS is equivalent to existence of a
frame of type 1n−ss1.

If H = {S1, . . . , Sn, T} , where {S1, . . . , Sn} is a partition of S, then an HRS(H)
is called an incomplete frame or an I−frame. The type of the I−frame is defined to be
the multiset {(|Si|, |Si

⋂
T |) : 1 ≤ i ≤ n}. We may also use an “exponential” notation

to describe types of I−frames.
We also make use of a new type of HRS. Suppose H = {S1, . . . , Sn, T1, . . . , Tm},

where {S1, . . . , Sn} and {T1, . . . , Tm} are both partitions of S. Then an HRS(H) is
called a double frame. For 1 ≤ i ≤ n, 1 ≤ j ≤ m, define aij = |Si ∩ Tj |. Then the
type of the double frame HRS(H) is defined to be the n×m matrix A = (aij).

It is immediate that n must be odd for a Room square of side n to exist. The
spectrum of Room squares was determined in 1974 by Mullin and Wallis [15].

Theorem 1.1 [15] A Room square of side n exists if and only if n is odd and n 6= 3
or 5.

A frame of type tu is called uniform. Uniform frames have been studied by several
researchers. The following theorem summarizes known existence results.

Theorem 1.2 [3, 11, 1] Suppose t and u are positive integers, u ≥ 4, and (t, u) 6=
(1, 5), (2, 4). Then there exists a frame of type tu if and only if t(u−1) is even, except
possibly when u = 4 and t = 14, 22, 26, 34, 38, 46, 62, 74, 82, 86, 98, 122, 134, 146.

Many papers over the years have studied constructions for IRS. It is not difficult
to see that, if s 6= 0, then existence of an (n, s)−IRS requires that n and s be odd
and n ≥ 3s+ 2. The Existence Conjecture [16] is that these conditions are sufficient
for existence of an (n, s)−IRS, with the single exception (n, s) 6= (5, 1). In fact, the
Existence Conjecture has been proved with only 45 possible exceptions remaining
unknown. The following theorem summarizes the current situation.

Theorem 1.3 [19, 9] Suppose n and s are odd positive integers, n ≥ 3s + 2, and
(n, s) 6= (5, 1). Then there exists an (n, s)−IRS except possibly for the following 45
ordered pairs:
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(55, 17) (59, 17) (61, 17) (63, 17) (61, 19) (63, 19) (65, 19)
(67, 21) (79, 25) (81, 25) (83, 25) (85, 27) (89, 27) (93, 27)
(95, 27) (91, 29) (95, 29) (97, 29) (97, 31) (99, 31) (109, 35)
(111, 35) (115, 37) (127, 41) (129, 41) (139, 45) (143, 45) (145, 47)
(149, 47) (151, 47) (153, 47) (151, 49) (153, 49) (157, 51) (169, 55)
(171, 55) (173, 55) (175, 57) (271, 89) (275, 89) (277, 89) (319, 105)
(325, 105) (327, 105) (367, 121).

We mentioned above that an (n, s)−IRS is equivalent to a frame of type 1n−ss1.
The order of such a frame is odd. If we wanted to study an even order analogue of
these frames, the most natural types to consider would be types 2ut1. Frames of these
types were studied in [10, 12], where the following results were proved.

Theorem 1.4 [10, 12] Suppose t and u are positive integers. If t ≥ 20 or t = 4,
then there exists a frame of type 2ut1 if and only if t is even and u ≥ t+ 1. Also, for
6 ≤ t ≤ 18, there exists a frame of type 2ut1 if t is even and u ≥ 5

⌈
t
4

⌉
+ 20.

We now describe the main results of this paper. For uniform Room frames, we
have removed all but one of the possible exceptions, so we have the following:

Theorem 1.5 Suppose t and u are positive integers, u ≥ 4, and (t, u) 6= (1, 5), (2, 4).
Then there exists a frame of type tu if and only if t(u − 1) is even, except possibly
when u = 4 and t = 14.

We construct IRS for 44 of the 45 exceptions given in Theorem 1.3, so the following
theorem results:

Theorem 1.6 Suppose n and s are odd positive integers, n ≥ 3s + 2, and (n, s) 6=
(5, 1). Then there exists an (n, s)−IRS, except possibly for (n, s) = (67, 21).

For Room frames of type 2ut1, we can also eliminate all but one of the possible
exceptions, producing the following theorem:

Theorem 1.7 Suppose t and u are positive integers. If t ≥ 4, then there exists a
frame of type 2ut1 if and only if t is even and u ≥ t+ 1, except possibly when u = 19
and t = 18.

The results of this paper are accomplished by a variety of direct and recursive
constructions, both new and old. The constructions we employ are summarized in
the next section, including some new constructions which should also be useful in
constructing other types of designs.
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2 Constructions

2.1 Filling in Holes

We first discuss the idea of Filling in Holes.

Construction 2.1 (Frame Filling in Holes) [16] Suppose there is a frame of type
{si : 1 ≤ i ≤ n}, and let a ≥ 0 be an integer. For 1 ≤ i ≤ n − 1, suppose there is an
(si + a, a)−IRS. Then there is an (s+ a, a)−IRS, where s =

∑
si.

The following construction is obtained from [19, Construction 2.2] by setting a = b.

Construction 2.2 (I−frame Filling in Holes) [19] Suppose there is an I−frame
of type {(si, ti) : 1 ≤ i ≤ n}, and let a be a non-negative integer. For 1 ≤ i ≤ n,
suppose there is an (si + a; ti + a)−IRS. Then there is an (s+ a, t+ a)−IRS, where
s =

∑
si and t =

∑
ti.

Here is a variation where we fill in holes of an I−frame in such a way that we
produce another I−frame.

Construction 2.3 (I−frame Filling in Holes) Let m be a positive integer. Sup-
pose there is an I−frame of type (mt1, t1)n(s, t2)1. Let a be a non-negative inte-
ger, and suppose there is a frame of type t1

ma1. Then there is an I−frame of type
(t1, t1)

n(t1, 0)n(m−1)(s+ a, t2)
1.

The following new Filling in Holes construction starts with a double frame and
yields a frame.

Construction 2.4 (Double Frame Filling in Holes) Suppose there is a double
frame of type A = (aij). For each j, 1 ≤ j ≤ m, suppose there is a frame of
type {a1j, . . . , anj}. Then there is a frame of type {s1, . . . , sn} where si =

∑m
j=1 aij,

1 ≤ i ≤ n.

2.2 Fundamental Construction

The following recursive construction that uses group-divisible designs is known as the
Fundamental Frame Construction.

Construction 2.5 (Fundamental Frame Construction) [16] Let (X,G,A) be a
group-divisible design, and let w : X → Z+ ∪ {0} (we say that w is a weighting). For
every A ∈ A, suppose there is a frame having type {w(x) : x ∈ A}. Then there is a
frame having type {∑x∈G w(x) : G ∈ G}.
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2.3 Transversals and Inflation Constructions

In this section we give some constructions that use orthogonal Latin squares and
generalizations to “blow up” the cells of a frame or similar object. Before giving the
constructions, some further definitions will be useful. Let S be a set and let H be a
set of disjoint subsets of S. A holey Latin square having hole set H is an |S| × |S|
array, L, indexed by S, which satisfies the following properties:

1. every cell of L either is empty or contains a symbol of S

2. every symbol of S occurs at most once in any row or column of L

3. the subarrays H ×H are empty, for every H ∈ H (these subarrays are referred
to as holes)

4. symbol s ∈ S occurs in row or column t if and only if

(s, t) ∈ (S × S)\
⋃
H∈H

(H ×H).

Two holey Latin squares on symbol set S and hole set H, say L1 and L2, are said
to be orthogonal if their superposition yields every ordered pair in

(S × S)\
⋃
H∈H

(H ×H).

If H = ∅, then a pair of orthogonal holey Latin squares on symbol set S and hole set
H is just a pair of orthogonal Latin squares of order |S|, denoted MOLS(|S|).

We shall use the notation IMOLS(s; s1, . . . , sn) to denote a pair of orthogonal
holey Latin squares on symbol set S and hole set H = {H1, . . . , Hn}, where s = |S|,
si = |Hi| for 1 ≤ i ≤ n, and the Hi’s are disjoint. In the special case where

∑n
i=1 si = s

(i.e. the holes are spanning), we use the notation HMOLS(s; s1, . . . , sn). The type of
HMOLS(s; s1, . . . , sn) is defined to be the multiset {s1, . . . , sn}.

If T is the type (of a frame) t1u1t2
u2 . . . tk

uk and m is an integer, then mT is defined
to be the type mt1u1mt2

u2 . . .mtk
uk . The following recursive construction is referred

to as the Inflation Construction. It essentially “blows up” every filled cell of a frame
into MOLS(m).

Construction 2.6 (MOLS Inflation Construction) [16] Suppose there is a frame
of type T , and suppose m is a positive integer, m 6= 2 or 6. Then there is a frame of
type mT .

Here is a version of the Inflation Construction that produces a double frame. It
uses HMOLS of type 1m instead of MOLS(m).

Construction 2.7 (HMOLS Inflation Construction) Suppose there is a frame
of type {s1, . . . , sn}, and suppose m is a positive integer, m 6= 2, 3, 6. Then there is a
double frame of type (aij), where aij = si, 1 ≤ i ≤ n, 1 ≤ j ≤ m.
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In the remainder of this section, we discuss several powerful generalizations of the
inflation construction that use transversals in various ways.

Suppose F is an {S1, . . . , Sn}−Room frame, where S =
⋃
Si. A complete transver-

sal is a set T of |S| filled cells in F such that every symbol is contained in exactly
two cells of T . If the pairs in the cells of T are ordered so that every symbol occurs
once as a first co-ordinate and once as a second co-ordinate in a cell of T , then T is
said to be an ordered transversal. (Note that any transversal can be ordered, since
the union of all the edges in a transversal forms a disjoint union of cycles. If these
cycles are arbitrarily oriented, then the direction of each edge provides an ordering
for the transversal.)

If |S| is even and the cells of T can be partitioned into two subsets T1 and T2 of
|S|/2 cells, so that every symbol is contained in one cell in each of T1 and T2, then
T is said to be partitioned. A transversal can be partitioned if and only if the cycles
formed from the edges in it all have even length. A complete ordered partitioned
(complete ordered, resp.) transversal will be referred to as a COP transversal (CO
transversal, resp.).

Here is the first generalization of the Inflation Construction.

Construction 2.8 [14], [2] Suppose there is a frame of type tg having ` disjoint COP
transversals. For 1 ≤ i ≤ `, let ui ≥ 0 be an integer. Let m be a positive integer,
m 6= 2 or 6, and suppose there exist IMOLS(m+ ui; ui), for 1 ≤ i ≤ `. Then there is
a frame of type (mt)g(2u)1, where u =

∑
ui.

In order to apply Construction 2.8, it must be the case that tg is even in order that
transversals be partitionable. We now give a variation in which tg can be odd. This
variation uses CO transversals rather than COP transversals. However, the IMOLS
need an additional property, which will imply that m must now be even. We describe
this property now.

Suppose L1 and L2 are IMOLS(m+u; u) on symbol set S and hole set H = {H}.
A holey row (or column) of L1 or L2 is one that meets the hole. A holey row (or
column), T , is said to be partitionable if the superposition of row (or column) T of
L1 and L2 can be partitioned into two subsets T1 and T2 of m/2 cells, so that every
symbol of S\H is contained in one cell in each of T1 and T2. An IMOLS(m+ u; u) is
said to be partitionable if every holey row and column is partitionable.

Finally, we use the notation ISOLS(m + u; u) to denote IMOLS(m + u; u) that
are transposes of each other. In Figure 1, we present partitionable ISOLS(5; 1). We
present only one square, since the other can be obtained by transposing.

Construction 2.9 [9] Suppose there is a frame of type tg having ` disjoint CO
transversals. For 1 ≤ i ≤ `, let ui ≥ 0 be an integer. Let m be an even posi-
tive integer, m 6= 2 or 6. Suppose there exist partitionable IMOLS(m + ui;ui), for
1 ≤ i ≤ `. Then there is a frame of type (mt)g(2u)1, where u =

∑
ui.

We also use some constructions involving frames with a different type of transver-
sal. Suppose F is an {S1, . . . , Sn}−Room frame, where S =

⋃
Si. A holey transversal
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Figure 1: ISOLS(5; 1)

1 x 4 3 2
3 2 1 x 4
x 4 3 2 1
2 1 x 4 3
4 3 2 1

(with respect to hole Si) is a set T of |S\Si| filled cells in F such that every symbol
of S\Si is contained in exactly two cells of T . If the pairs in the cells of T are ordered
so that every symbol of S\Si occurs once as a first co-ordinate and once as a second
co-ordinate in a cell of T , then T is said to be ordered (as before, any transversal can
be ordered). If |S\Si| is even and the cells of T can be partitioned into two subsets
T1 and T2 of |S\Si|/2 cells, so that every symbol of |S\Si| is contained in one cell in
each of T1 and T2, then T is said to be partitioned. A holey ordered partitioned (holey
ordered, resp.) transversal will be referred to as a HOP transversal (HO transversal,
resp.).

HOP transversals are used in a very similar manner as COP transversals. We
state the following construction of Lamken and Vanstone without proof.

Construction 2.10 [14], [2] Suppose there is a frame of type t1
gt2

1 having ` disjoint
HOP transversals with respect to the hole of size t2. For 1 ≤ i ≤ `, let ui ≥ 0
be an integer. Let m be a positive integer, m 6= 2 or 6, and suppose there exist
IMOLS(m+ ui; ui), for 1 ≤ i ≤ `. Then there is a frame of type (mt1)g(mt2 + 2u)1,
where u =

∑
ui.

We now indicate a slight extension of Construction 2.10 in which the result is an
I−frame rather than a frame.

Construction 2.11 Suppose there is a frame of type t1gt21 having ` disjoint HOP
transversals with respect to the hole of size t2. For 1 ≤ i ≤ `, let ui ≥ 0 be an integer.
Let m be a positive integer, m 6= 2 or 6, and suppose there exist IMOLS(m+ui; ui, 1),
for 1 ≤ i ≤ `. Then there is an I−frame of type (mt1, t1)g(mt2 + 2u, t2)

1, where
u =

∑
ui.

We need one further ingredient for our last construction, a self-orthogonal Latin
square with a symmetric orthogonal mate (or SOLSSOM). A self-orthogonal Latin
square (SOLS) is one that is orthogonal to its transpose. The symmetric orthogonal
mate (SOM) must be symmetric (i.e. equal to its transpose) and orthogonal to the
SOLS. If the order of these squares is m, we denote them by SOLSSOM(m). If the
main diagonal of the SOM is constant, then the SOM is termed unipotent. The SOM
can be unipotent only if m is even. In Figure 2, we present a SOLSSOM(4) in which
the SOM is unipotent.

Here is a construction for frames having HOP transversals.
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Figure 2: a SOLSSOM of order 4

1 3 4 2
4 2 1 3
2 4 3 1
3 1 2 4

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

Construction 2.12 Suppose there is a frame of type tg having ` disjoint CO transver-
sals. For 1 ≤ i ≤ `, let ui ≥ 0 be an integer, and let m be an even positive integer.
Suppose there exists a SOLSSOM(m) such that the SOM is unipotent. Suppose also
that there exist partitionable IMOLS(m+ui; ui), for 1 ≤ i ≤ `. Let k = |{i : ui = 0}|.
Then there is a frame of type (mt)g(2u)1, where u =

∑
ui, having k(m − 1) HOP

transversals with respect to the hole of size 2u.

2.4 Starter-adder Constructions

Let G be an additive abelian group of order g and let H be a subgroup of G of
order h, where g − h is even. A frame starter in G\H is a set of unordered pairs
S = {{si, ti} : 1 ≤ i ≤ (g − h)/2} which satisfies the following two properties:

1. {si : 1 ≤ i ≤ (g − h)/2} ∪ {ti : 1 ≤ i ≤ (g − h)/2} = G\H

2. {±(si − ti) : 1 ≤ i ≤ (g − h)/2} = G\H.

An adder for S is an injection A : S → G\H such that

{si +A(si, ti) : 1 ≤ i ≤ (g − h)/2} ∪ {ti +A(si, ti) : 1 ≤ i ≤ (g − h)/2} = G\H.

It is well-known that a frame starter and adder in G\H can be used to construct
a frame of type hg/h. The following lemma states that the resulting frame contains
many disjoint CO transversals.

Lemma 2.1 Suppose there exists a frame starter and adder in G\H, where |G| = g
and |H | = h. Then there exists a frame of type hg/h having (g − h)/2 disjoint CO
transversals.

Proof. Each of the (g− h)/2 pairs in the frame starter gives rise to a CO transversal
in the resulting frame.

In the case where H = {0}, a frame starter S is termed a starter. If the mapping
A defined by A(si, ti) = −(si + ti) is an adder, then S is called a strong (frame)
starter.

As mentioned above, a frame starter and adder produces a uniform frame. Frames
in which all but one hole are the same size can be produced by the method of intran-
sitive starter-adders described in [16]. Here is the definition: Let G be an abelian



the electronic journal of combinatorics 1 (1994), #R7 10

group of order g and let H be a subgroup of order h, where g and h are both even.
Let k be a positive integer. A 2k−intransitive frame starter-adder (or IFSA) in G\H
is a quadruple (S,C,R,A), where

S = {{si, ti} : 1 ≤ i ≤ (g − h)/2− 2k} ∪ {ui : 1 ≤ i ≤ 2k}

C = {{pi, qi} : 1 ≤ i ≤ k}

R = {{p′i, q′i} : 1 ≤ i ≤ k}

A : S → G\H is an injection that satisfies the following properties:

(i) {si} ∪ {ti} ∪ {pi} ∪ {qi} = G\H
(ii) {si +A(si, ti)} ∪ {ti +A(si, ti)} ∪ {pi +A(ui)} ∪ {p′i} ∪ {q′i} = G\H
(ii) {±(si − ti)} ∪ {±(pi − qi)} ∪ {±(p′i − q′i)} = G\H
(iv) Any element pi − qi or p′i − q′i has even order, 1 ≤ i ≤ k.

By [16, Lemma 3.3], a 2k−IFSA in G\H can be used to construct a frame of type
hg/h(2k)1. For each {ui} ∈ S, we create a pair {∞i, ui}, and the final frame contains
a hole of size 2k on the infinite elements.

We refer to set (i) as the starter and set (ii) as the orthogonal starter. A is called
the adder. Also, note that each pair {si, ti} ∈ S gives rise to an HO transversal with
respect to the hole of size 2k.

3 Uniform Frames

In this section we investigate frames of type t4. Recall that a frame of type 24 does
not exist; and for t ≥ 4, a frame of type t4 exists if t is even, t 6= 14, 22, 26, 34, 38, 46,
62, 74, 82, 86, 98, 122, 134, or 146. Actually, we will present a self-contained proof
of the existence of frames of type t4 for t ≡ 2 mod 4, t ≥ 6, t 6= 14.

Here is the main recursive construction.

Theorem 3.1 Suppose there is a frame of type {s1, . . . , sn}, and for 1 ≤ i ≤ n,
suppose there is a frame of type si4. Then there is a frame of type t4, where t =

∑n
i=1 si.

Proof. From the frame of type {s1, . . . , sn}, we obtain a double frame using Con-
struction 2.7 with m = 4. Then use Construction 2.4, filling in frames of types si4,
1 ≤ i ≤ n. We obtain a frame of type t4.

Lemma 3.2 Suppose t ≡ 2 mod 4, 6 ≤ t ≤ 46, t 6= 14. Then there is a frame of type
t4.
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Proof. Frames of types 64 and 104 were constructed in [7]. These two frames then
give rise to frames of types 184 and 304 using Construction 2.6 with m = 3.

Next, from frames of types 4461 [16], 4561, 4165, and 4265 [7], we obtain frames
of types 224, 264, 344 and 384 by applying Theorem 3.1. From a frame of type 67

(Theorem 1.2) we likewise obtain a frame of type 424.
This leaves the case t = 46 to do. We begin with a frame starter and adder in

Z10\{0, 5} (see [18]). The resulting frame of type 25 has four disjoint CO transversals.
Apply Construction 2.9 with ` = 3, m = 4, and ui = 1 (i = 1, 2, 3). We get a frame
of type 8561. Then apply Theorem 3.1 to get a frame of type 464.

Lemma 3.3 Suppose t ≡ 2 mod 4, 50 ≤ t ≤ 206. Then there is a frame of type t4.

Proof. For 11 ≤ g ≤ 49, g odd, there is a starter and adder in Zg. So for these values
of g, there is a frame of type 1g having 3 or 4 disjoint CO transversals (Lemma 2.1).
Then apply Construction 2.9 with ` = 3 or ` = 4, m = 4, and ui = 1 (1 ≤ i ≤ `). We
obtain frames of type 4g61 and 4g101 for these values of g. Then apply Theorem 3.1.

We now prove the main result of this section.

Theorem 3.4 Suppose t ≡ 2 mod 4, t ≥ 6, t 6= 14. Then there is a frame of type t4.

Proof. The cases t ≤ 206 have already been done, so we can assume t ≥ 210. We
can write t = 4g + a, where a ∈ {6, 10, 18, 22, 26, 38}, g ≡ 1 mod 6, g ≥ 43. For
such g, there is a starter and adder in Zg (see [13]). This starter has a/2 disjoint CO
transversals (Lemma 2.1). Apply Construction 2.9 with ` = a/2, m = 4, and ui = 1
(1 ≤ i ≤ `), and then apply Theorem 3.1.

Theorem 1.5 is now an immediate consequence of Theorems 1.2 and 3.4.

4 Incomplete Room Squares

In this section, we construct all but one of the incomplete Room squares listed as
unknown in Theorem 1.3. The following IRS are obtained using the hill-climbing
algorithm described in [7]. They are presented in the research report [8].

Lemma 4.1 There exists an (n, s)−IRS if

(n, s) ∈ {(55, 17), (59, 17), (61, 17), (63, 17), (63, 19), (65, 19), (83, 25)}.

The following lemma was given in [19, Lemma 4.4].

Lemma 4.2 Suppose there exists a starter and adder in Zg. Suppose 0 ≤ u ≤
3(g − 1)/2 and 0 ≤ k ≤ 7((g − 1)/2 − d(u/3)e). Further, suppose there is a (6u +
2k + 11, 2u+ 3)−IRS. Then there is a (24g + 6u+ 2k + 11, 8g + 2u+ 3)−IRS.
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Table 1: Construction of IRS

g u k (6u+ 2k + 11, 2u+ 3) (24g + 6u+ 2k + 11, 8g + 2u+ 3)
9 7 1 (55, 17) (271, 89)
9 7 3 (59, 17) (275, 89)
9 7 4 (61, 17) (277, 89)

11 7 1 (55, 17) (319, 105)
11 7 4 (61, 17) (325, 105)
11 7 5 (63, 17) (327, 105)
13 7 1 (55, 17) (367, 121)

Lemma 4.3 There exists an (n, s)−IRS if

(n, s) ∈ {(271, 89), (275, 89), (277, 89), (319, 105), (325, 105), (327, 105), (367, 121)}.

Proof. These IRS are constructed by using Lemma 4.2. The details are given in Table
1. These applications make use of the IRS constructed in Lemma 4.1.

Our next construction is obtained by combining Inflation and Filling in Holes
Constructions.

Lemma 4.4 Suppose there is a frame of type t1
gt2

1 having ` disjoint HOP transver-
sals with respect to the hole of size t2, where t1 ≥ 6 is even, t1 6= 14. Let 0 ≤ u ≤ `.
Suppose also that there is a (3t2 + t1 + 2u + 1, t2 + 1)−IRS. Then there exists a
(3v + t1 + 2u− 2, v)−IRS, where v = t1g + t2 + 1.

Proof. Start with the frame of type t1
gt2

1 and apply Construction 2.11 with m = 3
and ui = 0 or 1, 1 ≤ i ≤ `. We obtain an I−frame of type (3t1, t1)g(3t2 + 2u, t2)1,
where u =

∑`
i=1 ui. Now adjoin t1 new points and apply Construction 2.3 with a = t1,

m = 3 and s = 3t2 + 2u, filling in holes with frames of type t14. We get an I−frame
of type (t1, t1)g(t1, 0)2g(3t2 + t1 + 2u, t2)1. Then apply Construction 2.2 with a = 1.

Corollary 4.5 (i) Suppose there is a frame of type 6gt1 having ` disjoint HOP
transversals with respect to the hole of size t. Suppose also that there is a
(3t + 2u + 7, t + 1)−IRS, where 0 ≤ u ≤ `. Then there exists a (3v + 2u +
4, v)−IRS, where v = 6g + t+ 1.

(ii) Suppose there is a frame of type 8gt1 having ` disjoint HOP transversals with
respect to the hole of size t. Suppose also that there is a (3t+2u+9, t+1)−IRS,
where 0 ≤ u ≤ `. Then there exists a (3v+2u+6, v)−IRS, where v = 8g+ t+1.

Here is a further specialization of Corollary 4.5.

Corollary 4.6 (i) Suppose there is a frame of type 6g. Then there exists a (3v +
4, v)−IRS, where v = 6g + 1.
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(ii) Suppose there is a frame of type 8g. Then there exists a (3v + 6, v)−IRS, where
v = 8g + 1.

Proof. Take t = 0 in Corollary 4.5; then ` = 0 and u = 0.

Lemma 4.7 There exists an (n, s)−IRS if

(n, s) ∈ {(79, 25), (97, 31), (115, 37), (151, 49), (169, 55)}.

Proof. Apply Corollary 4.6 (i) with g = 4, 5, 6, 8 and 9.

Lemma 4.8 There exists an (n, s)−IRS if (n, s) ∈ {(129, 41), (153, 49)}.

Proof. Apply Corollary 4.6 (ii) with g = 5 and 6.

Lemma 4.9 There exists an (n, s)−IRS if (n, s) ∈ {(109, 35), (127, 41)}.

Proof. Apply Corollary 4.5 (i) with g ∈ {5, 6}, t = 4 and ` = u = 0. Frames of types
6541 and 6641 are constructed in [7].

Lemma 4.10 Suppose 1 ≤ k ≤ 3. Then there exists a frame of type 64(2k)1 having
9− 2k disjoint HOP transversals with respect to the hole of size 2k.

Proof. The frames are obtained from intransitive starter-adders presented in the
Appendix.

Lemma 4.11 There exists an (n, s)−IRS if

(n, s) ∈ {(85, 27), (89, 27), (93, 27), (95, 27), (91, 29), (95, 29), (97, 29), (99, 31)}.

Proof. Apply Corollary 4.5 (i) with g = 4 and ` = 9− t, where the values of t and u
are given in Table 2. The required input frames of type 64t1 come from Lemma 4.10.

Lemma 4.12 There exists a (111, 35)−IRS.

Proof. Apply Corollary 4.5 (ii) with g = 4, t = 2 and ` = 0. We use a frame of type
8421, which is obtained from an intransitive starter-adder presented in the Appendix.

Lemma 4.13 There exists a (171, 55)−IRS and a (173, 55)−IRS.

Proof. Apply Corollary 4.5 (ii) with g = 6, t = 6 and ` = 12. We use a frame of type
8661 with 12 HOP transversals with respect to the hole of size 6, which is obtained
from an intransitive starter-adder presented in the Appendix.
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Table 2: Construction of IRS

t u (3t+ 2u+ 7, t+ 1) (3t+ 2u+ 79, t+ 25)
2 0 (13, 3) (85, 27)
2 2 (17, 3) (89, 27)
2 4 (21, 3) (93, 27)
2 5 (23, 3) (95, 27)
4 0 (19, 5) (91, 29)
4 2 (23, 5) (95, 29)
4 3 (25, 5) (97, 29)
6 1 (27, 7) (99, 31)

Lemma 4.14 There exists an (n, s)−IRS if (n, s) ∈ {(149, 47), (151, 47), (153, 47)}.

Proof. We first apply Construction 2.12 with t = 2, g = 5, ` = 4, ui = 1 for 1 ≤ i ≤ 4,
m = 4. The ingredients required are as follows: a frame of type 25 having four CO
transversals (see the proof of Lemma 3.2); a SOLSSOM(4) in which the SOM is
unipotent (Figure 2); and a partitionable ISOLS(5; 1) (Figure 1). The result is a
frame of type 8561 having three HOP transversals with respect to the hole of size six.

Then apply Corollary 4.5 (ii) with g = 5, t = 6 and ` = 3 to obtain the desired
IRS.

Lemma 4.15 There exists an (n, s)−IRS if (n, s) ∈ {(139, 45), (157, 51), (175, 57)}.

Proof. These IRS are obtained by apllication of Corollary 4.5 (i).
To construct a (139, 45)−IRS, we begin with a frame of type 27 that has an HOP

transversal [17, Figure 1]. Then apply Construction 2.10 with t1 = t2 = 2, g = 6,
` = 1, ui = 1 and m = 3. We obtain a frame of type 6681. Finally, apply Corollary
4.5 (i) with g = 6, t = 8, u = ` = 0.

The (157, 51)− and (175, 57)−IRS are constructed as follows. Start with a frame
of type 28 (29, resp.) having one COP transversal (such frames can be obtained from
frame starters and adders [17, 18]). Apply Construction 2.8 with ` = 1, u1 = 1 and
m = 3. This yields a frame of type 6821 (6921, resp.). Finally, apply Corollary 4.5 (i)
with g = 8 (g = 9, resp.), t = 2, and u = ` = 0.

Lemma 4.16 There exists an (n, s)−IRS if

(n, s) ∈ {(61, 19), (81, 25), (143, 45), (145, 47)}.

Proof. We begin with a frame of type 2761, which is given in [8]. Apply Construction
2.6 with m = 3, 4 and 7, obtaining frames of types 67181, 87241 and 147421. Then
apply Construction 2.1 to the first two frames with a = 1, and apply it to the last
frame with a = 3, 5, producing the desired IRS.

Theorem 1.6 is now an immediate consequence of Theorem 1.3 and Lemmas 4.1,
4.3, 4.7–4.9, and 4.11–4.16.
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Table 3: Types 2ut1 for which a frame has not been constructed

t u
6 7 – 29
8 9 – 29

10 11 – 34
12 13 – 34
14 15 – 39
16 17 – 39
18 19 – 44

5 Frames of Type 2ut1

In this section, we study the spectrum of frames of type 2ut1. Recall that t must be
even and u ≥ t + 1 for such a frame to exist. In view of Theorem 1.4, we need only
consider the cases where 6 ≤ t ≤ 18. For these values of u, there exist frames of type
2ut1 if u ≥ 5

⌈
t
4

⌉
+ 20.

We begin by listing in Table 3 the pairs (t, u) that we need to eliminate.

Lemma 5.1 There exists a frame of type 2ut1 for all pairs (t, u) such that t is even,
10 ≤ t ≤ 18 and 25 ≤ u ≤ 44.

Proof. Give weight 2 or 4 to every point in a transversal design TD(6, 5) so that the
sum of the weights of the points in one of the groups is t, and the sum of the weights
of all the points is 2u+ t. Apply Construction 2.5, filling in frames of type 2a46−b [5].
The resulting frame has order 2u+t and has a hole of size t. Then apply Construction
2.1 with a = 0. Other than the size t hole, the holes have (even) size at least 10 and
at most 18, so they can be filled in with frames of type 2n (5 ≤ n ≤ 9).

Lemma 5.2 There exist frames of type 22861 and 22961.

Proof. Start with frames of types 221201 and 222201 and fill in the size 20 hole with
a frame of type 2761, which is given in the research report [8].

Lemma 5.3 There exist frames of types 212101, 216101, 215121, 215141, 220101, 220121,
220141, 218121, 218141, 218161 and 224181.

Proof. In each case, we start with a frame of type tu, and adjoin a new points,
applying Construction 2.1. We fill in frames of types 2t/2a1 into all but one hole.
This yields a frame of type 2t(u−1)/2(t+ a)1. The applications of this construction are
presented in Table 4.
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Table 4: Frames of type 2ut1

t u a 2t/2a1 2t(u−1)/2(t+ a)1

8 4 2 25 212101

8 5 2 25 216101

10 4 2 26 215121

10 4 4 2541 215141

10 5 0 25 220101

10 5 2 26 220121

10 5 4 2541 220141

12 4 0 26 218121

12 4 2 27 218141

12 4 4 2641 218161

16 4 2 29 224181

Lemma 5.4 There exists a frame of type 224t1 for t even, 6 ≤ t ≤ 16.

Proof. Give weight three to every point in a TD(5, 4), except for b points in the
last group which get weight one. Apply Construction 2.5, filling in frames of type 35

and 3411 [7]. The resulting frame has type 124(12 − 2b)1, 0 ≤ b ≤ 4. Then apply
Construction 2.1 with a = 0, 2 or 4. The holes can be filled in with frames of type
26a1, producing a frame of type 224(12− 2b + a)1. This yields frames of the desired
types.

Lemma 5.5 There exist frames of types 22561 and 22581.

Proof. Delete one or two points from a group of a TD(6, 5), and give weight two to
each point of the resulting design. Apply Construction 2.5, filling in frames of type
25 and 26. We get frames of types 10561 and 10581. Then apply Construction 2.1
with a = 0, filling in the size 10 holes with frames of type 25.

Lemma 5.6 There exist frames of types 221101 and 222101.

Proof. Give weight two to every point of a TD(5, 5). Apply Construction 2.5, filling
in frames of type 25, to produce a frame of type 105. Note that any block of the TD
gives rise to a sub-frame of type 25.

Now adjoin a = 2 or 4 points, filling in frames of type 25a1 into four holes. This
gives a frame of type 220(10 + a)1 having a subframe of type 25. Now fill in the
size 10 + a hole with a frame of type 25+a/2. We get a frame of type 225+a/2 that
has a sub-frame of type 25. Finally, deleting the subframe produces a frame of type
220+a/2101.
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Lemma 5.7 There exist frames of types 2u161 for u = 17, 21, 22 and 23.

Proof. There is a frame starter and adder in (Z4 × Z4) \{(0, 0), (0, 2), (2, 0), (2, 2)}
(see [16, Lemma 5.1]). This gives rise to a frame of type 44 having six disjoint COP
transversals. Apply Construction 2.11 with t1 = 4, t2 = 0, g = 4, ` = 6, ui = 0 or 1
(1 ≤ i ≤ 6) and m = 3. We get an I−frame of type (12, 4)4(2u, 0)1, where 0 ≤ u ≤ 6.

Now, for u = 0, 4, 5, 6 we will fill in holes of this I−frame. Adjoin two new points
and fill in the size 12 holes with frames of type 2541. The size 2u hole is filled in with
a frame of type 2u+1. This yields the four desired frames.

Lemma 5.8 There exist frames of types 2u181 for 20 ≤ u ≤ 23.

Proof. There is a frame starter and adder in ((Z4 × Z4) \{(0, 0), (0, 2), (2, 0), (2, 2)})∪
{∞1,∞2} (see [16, Figure 5.2]). This gives rise to a frame of type 4421 having four
disjoint HOP transversals with respect to the hole of size 2. Apply Construction 2.11
with t1 = 4, t2 = 2, g = 4, ` = 4, ui = 0 or 1 (1 ≤ i ≤ 4) and m = 3. We get an
I−frame of type (12, 4)4(2u+ 6, 2)1, where 0 ≤ u ≤ 4.

Now, for u = 1, 2, 3, 4 we will fill in holes of this I−frame. Adjoin two new points
and fill in the size 12 holes with frames of type 2541. The size 2u+ 6 hole is filled in
with a frame of type 2u+4. This yields the four desired frames.

The following was shown in [10, Example 2.3].

Lemma 5.9 There exists a frame of type 2861.

The remaining frames of type 2ut1, except type 219181, are presented in the re-
search report [8].

6 Comments

We have nearly completed three different spectra of Room frames, leaving one possible
exception in each case. The three exceptions are too “small” to be handled by our
recursive contructions. On the other hand, they are too “big” to be easily found by
direct methods (in particular, by the hill-climbing algorithm [4, 7]), though we have
expended condsiderable computer time searching for them.
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Appendix: Some Intransitive Starter-adders

In this Appendix, we construct some new frames using the method of intransitive
starter-adders described in Section 2.4. In each case, we list the type of the frame,
together with the starter, the adder and the orthogonal starter. (In our presentation,
we also include the “infinite elements”.) We construct a frame of type t1

ut2 from a
t2−IFSA in

(Zt1u\{iu : 0 ≤ i ≤ t1 − 1}) ∪ {∞j : 1 ≤ j ≤ t2}.

type 6421

starter adder starter
{7,∞1} 10 {17,∞1}
{23,∞2} 11 {10,∞2}
{1, 2} 17 {18, 19}
{3, 5} 22 {1, 3}
{6, 11} 3 {9, 14}
{14, 17} 9 {23, 2}
{13, 19} 18 {7, 13}
{15, 22} 7 {22, 5}
{9, 18} 21 {6, 15}
{10, 21}

{11, 21}

type 6441

starter adder starter
{15,∞1} 23 {14,∞1}
{5,∞2} 21 {2,∞2}
{6,∞3} 17 {23,∞3}
{10,∞4} 15 {1,∞4}
{17, 19} 22 {15, 17}
{18, 23} 19 {13, 18}
{1, 11} 18 {19, 5}
{13, 7} 14 {3, 21}
{21, 22} 13 {10, 11}
{3, 14}
{2, 9}

{6, 9}
{7, 22}

type 6461

starter adder starter
{2,∞1} 1 {3,∞1}
{9,∞2} 2 {11,∞2}
{18,∞3} 5 {23,∞3}
{1,∞4} 13 {14,∞4}
{19,∞5} 18 {13,∞5}
{11,∞6} 19 {6,∞6}
{10, 13} 21 {7, 10}
{7, 17} 22 {5, 15}
{3, 22} 23 {2, 21}
{5, 23}
{6, 21}
{14, 15}

{1, 18}
{9, 22}
{17, 19}

type 8421

starter adder starter
{9,∞1} 9 {18,∞1}
{31,∞2} 10 {9,∞2}
{1, 2} 5 {6, 7}
{3, 5} 18 {21, 23}
{27, 30} 3 {30, 1}
{6, 11} 23 {29, 2}
{17, 23} 2 {19, 25}
{14, 21} 21 {3, 10}
{10, 19} 7 {17, 26}
{15, 25} 22 {5, 15}
{18, 29} 25 {11, 22}
{13, 26} 1 {14, 27}
{7, 22}

{13, 31}
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type 8661

starter adder starter
{2,∞1} 5 {7,∞1}
{8,∞2} 13 {21,∞2}
{15,∞3} 29 {44,∞3}
{26,∞4} 7 {33,∞4}
{35,∞5} 3 {38,∞5}
{41,∞6} 8 {1,∞6}
{5, 9} 47 {4, 8}
{43, 45} 46 {41, 43}
{32, 40} 45 {29, 37}
{44, 23} 44 {40, 19}
{10, 19} 43 {5, 14}
{46, 29} 41 {39, 22}
{28, 39} 40 {20, 31}
{20, 34} 39 {11, 25}
{21, 37} 37 {10, 26}
{47, 22} 35 {34, 9}
{27, 17} 34 {13, 3}
{38, 31} 33 {23, 16}
{11, 16} 16 {27, 32}
{33, 13} 2 {35, 15}
{14, 1}
{4, 7}
{25, 3}

{2, 17}
{45, 46}
{47, 28}


