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Abstract

Godsil showed that if Γ is a distance-regular graph with diameter D > 3
and valency k > 3, and θ is an eigenvalue of Γ with multiplicity m > 2, then
k 6 (m+2)(m−1)

2 .

In this paper we will give a refined statement of this result. We show that if Γ
is a distance-regular graph with diameter D > 3, valency k > 2 and an eigenvalue
θ with multiplicity m > 2, such that k is close to (m+2)(m−1)

2 , then θ must be a
tail. We also characterize the distance-regular graphs with diameter D > 3, valency
k > 3 and an eigenvalue θ with multiplicity m > 2 satisfying k = (m+2)(m−1)

2 .

1 Introduction

For definitions and preliminaries, see Sections 2 and 3. In [6], Godsil showed
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Theorem 1. Let Γ be a distance-regular graph with diameter D > 3 and valency k > 3.
Let θ be an eigenvalue of Γ with multiplicity m > 2. Then k 6 (m+2)(m−1)

2
.

In this paper we will give, in Theorem 13, a refined statement of this result. We show
that if Γ is a distance-regular graph with diameter D > 3, valency k > 2 and an eigenvalue
θ with multiplicity m > 2, such that k is close to (m+2)(m−1)

2
, then θ must be a so-called

tail. This, for example, implies that several Krein parameters vanish. Using the fact that
θ is a (light) tail, we are also able to characterize in Theorem 14 the distance-regular
graphs with diameter D > 3, valency k > 3 and an eigenvalue θ with multiplicity m > 2
satisfying k = (m+2)(m−1)

2
.

In Section 2 we give the necessary definitions, and in Section 3 some preliminary
results. In Section 4 we characterize the (non-bipartite) Taylor graphs as the non-bipartite
distance-regular graphs with diameter at least three, having a light tail such that its
accompanying eigenvalue equals −1 (Theorem 12). In Section 5 we state and prove
Theorem 13 and Theorem 14.

2 Definitions

All the graphs considered in this paper are finite, undirected and simple (for unexplained
terminology, examples and more details, see [4, 7]). Suppose that Γ is a connected graph
with vertex set V (Γ) and edge set E(Γ), where E(Γ) consists of unordered pairs of two
adjacent vertices. The distance dΓ(x, y) between any two vertices x and y in a graph Γ is
the length of a shortest path connecting x and y. If the graph Γ is clear from the context,
then we simply use d(x, y). We define the diameter D of Γ as the maximum distance in
Γ. For a vertex x ∈ V (Γ), define Γi(x) to be the set of vertices which are at distance
precisely i from x (0 6 i 6 D). In addition, define Γ−1(x) = ΓD+1(x) := ∅. We write
Γ(x) instead of Γ1(x).

A connected graph Γ with diameter D is called distance-regular if there are integers
bi, ci (0 6 i 6 D) such that for any two vertices x, y ∈ V (Γ) with d(x, y) = i, there are
precisely ci neighbors of y in Γi−1(x) and bi neighbors of y in Γi+1(x), where we define
bD = c0 = 0. A graph Γ is said to be strongly regular with parameters (v, k, λ, µ) whenever
Γ has v vertices and is regular with valency k, adjacent vertices of Γ have precisely λ
common neighbors, and distinct non-adjacent vertices of Γ have precisely µ common
neighbors. Note that distance-regular graphs of diameter two are strongly regular. We
define ai := k − bi − ci for notational convenience. Note that ai =| Γ(y) ∩ Γi(x) | holds
for any two vertices x, y with d(x, y) = i (0 6 i 6 D).

For a distance-regular graph Γ and a vertex x ∈ V (Γ), we denote ki := |Γi(x)| and
phij := |{w|w ∈ Γi(x) ∩ Γj(y)}| for any y ∈ Γh(x). It is easy to see that ki = b0b1···bi−1

c1c2···ci
and hence it does not depend on x. The numbers ai, bi−1 and ci (1 6 i 6 D) are
called the intersection numbers, and the array {b0, b1, · · · , bD−1; c1, c2, · · · , cD} is called
the intersection array of Γ.

Suppose that Γ is a distance-regular graph with diameter D > 2 and valency k > 2,
and let Ai be the matrix of Γ such that the rows and the columns of Ai are indexed by the
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vertices of Γ and the (x, y)-entry is 1 whenever x and y are at distance i and 0 otherwise.
We call Ai the ith distance matrix of Γ. We abbreviate A := A1 and call this the adjacency
matrix of Γ. The eigenvalues of the graph Γ are the eigenvalues of A.

We find that A0, A1, . . . , AD form a basis for a commutative subalgebra M of MatX(C).
We call M the Bose-Mesner algebra of Γ. It turns out that A generates M [1, p. 190].
By [4, p. 45], M has a second basis E0, E1, . . . , ED of the primitive idempotents of Γ, and
A can be written as A =

∑D
i=0 θiEi, where θi is the eigenvalue of Γ associated with Ei

(0 6 i 6 D). We denote by mi the multiplicity of θi. For an eigenvalue θ = θi we will
also write Eθ instead of Ei.

For an eigenvalue θ of Γ, the sequence (ωi)i=0,1,...,D = (ωi(θ))i=0,1,...,D satisfying ω0 =
ω0(θ) = 1, ω1 = ω1(θ) = θ/k, and

ciωi−1 + aiωi + biωi+1 = θωi (i = 1, 2, ..., D − 1)

is called the standard sequence corresponding to the eigenvalue θ ([4, p.128]). A sign
change of (ωi)i=0,1,...,D is a pair (i, j) with 0 6 i < j 6 D such that ωiωj < 0 and ωt = 0
for i < t < j.

Let ◦ denote the entrywise product in MatX(C). Observe that Ai ◦ Aj = δijAi for
0 6 i, j 6 D, so M is closed under ◦. Thus there exist complex scalars qhij (0 6 h, i, j 6 D)
such that

Ei ◦ Ej = |V (Γ)|−1

D∑
h=0

qhijEh (0 6 i, j 6 D).

By [2, p. 170], qhij is real and nonnegative for 0 6 h, i, j 6 D. The qhij are called the Krein
parameters. The graph Γ is said to be Q-polynomial (with respect to the given ordering
E0, E1, . . . , ED of the primitive idempotents) whenever qhij = 0 (resp. qhij 6= 0) whenever
one of h, i, j is greater than (resp. equal to) the sum of the other two (0 6 h, i, j 6 D)
[4, p. 59].

For each vertex x ∈ V (Γ), we let ∆(x) denote the subgraph of Γ induced on Γ(x). We
refer to ∆(x) as the local graph at vertex x. We observe that ∆(x) has k vertices, and is
regular with valency a1.

A graph Γ is called bipartite if it has no odd cycle. (A distance-regular graph Γ with
diameter D is bipartite if and only if a1 = a2 = . . . = aD = 0.) An antipodal graph
is a connected graph Γ with diameter D > 2 for which being at distance 0 or D is
an equivalence relation. If, moreover, all equivalence classes have the same size r, then
Γ is also called an antipodal r-cover. A distance-regular graph Γ with intersection array
{k, µ, 1; 1, µ, k} is called a Taylor graph. These are precisely the distance-regular antipodal
2-covers with diameter 3.

We define tails as follows: An eigenvalue θ of a distance-regular graph Γ with valency
k is called a tail if θ 6= k and Eθ ◦ Eθ = αJ + βEθ + γEθ′ for some eigenvalue θ′ 6= k, θ
and some α, β and γ 6= 0. We call θ′ the accompanying eigenvalue for the tail θ. We
call θ a light tail if β = 0 and heavy otherwise. Note that α > 0 and β > 0. (Note that
in [13], [10], they also allow γ = 0 for a tail and a light tail, respectively. Note that for
diameter D > 3 this case of γ = 0 only occurs if Γ is an antipodal distance-regular graph
of diameter D = 3 and θ = −1 ([10, Theorem 4.1(b)]).)
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3 Preliminaries

In this section we will give some preliminary results.

The following lemma is a special case of the Absolute Bound and we state it for
distance-regular graphs only.

Lemma 2. ([15]) Let Γ be a distance-regular graph with diameter D > 2.

Then
∑
qjii 6=0

mj 6
mi(mi + 1)

2
(0 6 j 6 D).

The next result relates the multiplicity of an eigenvalue and its number of vertices for
a strongly regular graph. A graph Γ is called coconnected if its complement is connected.

Lemma 3. Let Γ be a connected and coconnected strongly regular graph with v vertices
and distinct eigenvalues k > σ > τ with corresponding multiplicities 1, f, g. Then
(i) v 6 min{f(f+3)

2
, g(g+3)

2
}.

(ii) If v > g(g+1)
2

, then τ is a light tail, that is, µ = −(σ+1)τ(τ+σ2)
τ−σ(σ+2)

.

(iii) If v > f(f+1)
2

, then σ is a light tail, that is, µ = −(τ+1)σ(σ+τ2)
σ−τ(τ+2)

.

(iv) If v = g(g+3)
2

, then

µ = σ3(2σ + 3),

k = 2µ,

λ = σ(2σ3 + σ2 − 3σ + 1),

v = (2σ + 1)2(2σ2 + 2σ − 1),

τ = −σ2(2σ + 3),

and σ > 0 and τ < −1 are integers except for the case σ = −1+
√

5
2

,

τ = −1−
√

5
2

and Γ is the pentagon.

(v) If v = f(f+3)
2

, then

µ = τ 3(2τ + 3),

k = 2µ,

λ = τ(2τ 3 + τ 2 − 3τ + 1),

v = (2τ + 1)2(2τ 2 + 2τ − 1),

σ = −τ 2(2τ + 3),

and σ > 0 and τ < −1 are integers except for the case σ = −1+
√

5
2

,

τ = −1−
√

5
2

and Γ is the pentagon.

Proof: (i) This follows from the absolute bound, Lemma 2. See also [19, p.169].
(ii) It follows from [15, Theorem 2] and [5, Theorem 6.1].
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(iii) If we take the complement of Γ then it is a strongly regular graph satisfying (ii), and
the result follows easily.
(iv) See [14] (cf. [19, p.169–170]).
(v) If we take the complement of Γ then it is a strongly regular graph satisfying (iv), and
the result follows easily.

Next, we introduce the Fundamental Bound and tight distance-regular graphs.

Lemma 4. ([9, Theorem 6.2]) Let Γ be a distance-regular graph with diameter D > 3,
valency k and distinct eigenvalues k = θ0 > θ1 > . . . > θD. Then the following inequality
holds. (

θ1 +
k

a1 + 1

)(
θD +

k

a1 + 1

)
> − ka1b1

(a1 + 1)2
(1)

We refer to (1) as the Fundamental Bound. A distance-regular graph Γ is tight if Γ is
not bipartite and equality holds in (1).

The next lemma gives some known results on tight distance-regular graphs.

Lemma 5. Let Γ be a distance-regular graph with diameter D > 3, valency k and distinct
eigenvalues k = θ0 > θ1 > . . . > θD. Then
(i) ([9, Theorem 12.6]) Γ is tight if and only if for all x ∈ V (Γ), the local graph ∆(x) is
connected strongly regular with distinct eigenvalues a1, −1− b1

θD+1
, −1− b1

θ1+1
.

(ii) ([9, Theorem 11.7]) If Γ is tight, then the intersection number aD satisfies aD = 0.
(iii) ([18, Lemma 3.5], cf.[17]) If Γ is tight, then the Krein parameter qi1D satisfies qi1D = 0
unless i = D − 1 (0 6 i 6 D).

The next result is due to Terwilliger and concerns the eigenvalues of the local graph
∆(x) at a vertex x of a distance-regular graph Γ.

Proposition 6. ([4, Theorem 4.4.4]) Let Γ be a distance-regular graph with diameter
D > 3, valency k and distinct eigenvalues k = θ0 > θ1 > . . . > θD with corresponding
multiplicities 1 = m0,m1, . . . ,mD. If θi has multiplicity mi with 1 < mi < k, then
θi ∈ {θ1, θD}. Putting b = b1

θi+1
we have that each local graph ∆(x) has eigenvalue −1− b

with multiplicity at least k−mi; in case −1− b = a1 its multiplicity is at least k−mi + 1.

The following lemma is a consequence of Proposition 6.

Lemma 7. Let Γ be a distance-regular graph with diameter D > 3, valency k and distinct
eigenvalues k = θ0 > θ1 > . . . > θD with corresponding multiplicities 1 = m0,m1, . . . ,mD.
Then m1 +mD > k + 1.

Proof: As the sum of the multiplicities of −1− b1
θ1+1

and −1− b1
θD+1

as eigenvalues of the

local graph at vertex x is at most k− 1 if −1− b1
θD+1

6= a1 and at most k if equals a1, the
result follows.

In the next lemma we show that the accompanying eigenvalue of a light tail θ is the
third-largest eigenvalue, if θ is the second-largest eigenvalue.
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Lemma 8. Let Γ be a distance-regular graph with diameter D > 3, valency k and distinct
eigenvalues k = θ0 > θ1 > . . . > θD. If θ = θ1 is a light tail, then the accompanying
eigenvalue θ′ satisfies θ′ = θ2.

Proof: Let Ei be the primitive idempotent corresponding to θi. Now E1◦E1 = αE0 +βEi,
where α and β are positive numbers. As the standard sequence corresponding to θ1 is
strictly decreasing, this implies that the standard sequence corresponding to θi has at
most two sign changes ([10, Theorem 4.1(iii)]). But as i 6= 0, 1 it follows that i = 2.

4 Characterizations of Taylor graphs

In this section we will give some characterizations of the Taylor graphs. We start with
the following result, due to Taylor.

Lemma 9. ([4, Proposition 1.5.1, Theorem 1.5.3])
(i) If Γ is a Taylor graph with valency k, then for every x ∈ V (Γ), the local graph ∆(x)
is strongly regular with parameters (v′, k′, λ′, µ′) and satisfies a1 = k′ = 2µ′, and v′ = k.
(ii) If ∆ is a (non-complete) connected strongly regular graph with (v′, k′, λ′, µ′) such that
k′ = 2µ′, then there exists a Taylor graph Γ and a vertex x of Γ such that the local graph
∆(x) of Γ is isomorphic to ∆.

Remark: We denote by Tay(∆), the Taylor graph as in Lemma 9(ii), where ∆ is a (non-
complete) connected strongly regular graph with (v′, k′, λ′, µ′) satisfying k′ = 2µ′.

The next result gives some sufficient conditions for a distance-regular graph to be
tight.

Lemma 10. Let Γ be a distance-regular graph with diameter D > 3, valency k and distinct
eigenvalues k = θ0 > θ1 > . . . > θD with corresponding multiplicities 1 = m0,m1, . . . ,mD.
Then the following hold.
(i) If m1 +mD = k + 1, then Γ is an antipodal 2-cover, and Γ is tight or bipartite.
(ii) If for all vertices x the local graph ∆(x) is strongly regular and m1,mD < k, then Γ
is tight.

Proof: (i) If m1 +mD = k+ 1, then we need to consider two cases: mD = 1 and mD > 2.
If mD = 1, then Γ is bipartite and θD = −k by [4, Proposition 4.4.8(i)]. If mi = 1 and
i > 1, then i = D, θD = −k and Γ is bipartite. So from now we may assume m1 > 2 and
mD > 2. Now let mD > 2. Then m1 = k+ 1−mD < k. If θD = −1− b1

θ1+1
, then the local

graph ∆(x) at vertex x has eigenvalues a1 and −1− b1
θ1+1

with corresponding multiplicities
k −mD + 1 and k −m1 by Proposition 6. So this means that ∆(x) is a disjoint union of
cliques. Since θ1 > 0, we find that −1 − b1

θ1+1
< −1. But it is not possible. So we find

that θD 6= −1− b1
θ1+1

. Then again by Proposition 6 we find that for all vertices x the local

graph ∆(x) has eigenvalues a1, −1− b1
θD+1

, −1− b1
θ1+1

with corresponding multiplicities 1,
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k −mD, k −m1. So this means that ∆(x) is strongly regular by [7, Lemma 10.1.5], and
hence by Lemma 5(i), we find Γ is tight. So we have shown that Γ is tight or bipartite.
This means that aD = 0 by Lemma 5(ii). By [8] it follows that kD = 1 as otherwise
−1− b1

θ1+1
has multiplicity at least k + 1−m1 in ∆(x) for any vertex x. This shows (i).

(ii) Let x be a vertex of Γ and consider the local graph ∆(x). Proposition 6 implies that
−1 − b1

θ1+1
and −1 − b1

θD+1
are both eigenvalues of ∆(x). Now −1 − b1

θ1+1
6= −1, so that

means ∆(x) is not the disjoint union of cliques, and hence is connected. But this shows
that Γ is tight in similar fashion as in (i).

Remark: (i) The bipartite distance-regular graphs with an eigenvalue having multiplicity
k are determined by N. Yamazaki [21] and K. Nomura [16]. They found the following:
(a) 2d-gons,
(b) complete bipartite graphs,
(c) complements of 2× (k + 1)-grids,
(d) Hadamard graphs,
(e) antipodal 2-covers with the intersection array {k, k − 1, k − c, c, 1; 1, c,
k − c, k − 1, k}, where k = γ(γ2 + 3γ + 1), c = γ(γ + 1) and γ > 2,
(f) hypercubes.

For the fifth case, if γ = 2, then the graph is 2-cover of Higman-Sims graph, and for
γ > 3, no graph is known.

(ii) The Taylor graphs have m1 + m3 = k + 1. Besides them there are feasible inter-
section arrays known for diameter 4 with m1 +m4 = k + 1. These are

{56, 45, 12, 1; 1, 12, 45, 56},
{115, 96, 20, 1; 1, 20, 96, 115},
{204, 175, 30, 1; 1, 30, 175, 204} and,

{329, 288, 42, 1; 1, 42, 288, 329}.

For the first intersection array, it is known that there are no distance-regular graphs with
this intersection array([3, 11.4.6 Theorem]). There are no feasible intersection arrays
known for larger diameter.

In Theorem 12 below, we show that the (non-bipartite) Taylor graphs are the distance-
regular graphs with diameter D > 3, valency k and intersection number a1 6= 0 having a
light tail such that its accompanying eigenvalue equals −1. To show this result we first
need the following lemma.

Lemma 11. Let Γ be a distance-regular graph with diameter D > 3, valency k, intersec-
tion number a1 6= 0 and distinct eigenvalues k = θ0 > θ1 > . . . > θD. Let θ be a light tail
of Γ with standard sequence 1 = ω0, ω1, . . . , ωD and let θ′ be the accompanying eigenvalue
of θ. For all x ∈ V (Γ), let the local graph ∆(x) be a (non-complete) strongly regular graph
with parameters (v′ = k, k′ = a1, λ

′, µ′). Then the following statements are equivalent.
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(i) θ′ = −1.
(ii) θ is a root of x2 − (a1 − b1)x− k.
(iii) k′ = 2µ′.
(iv) ω2 = −ω1.

Proof: The equivalence (i)⇔(ii) follows from [10, Theorem 4.1(a)].
The equivalence (ii)⇔(iii) follows from [10, Corollary 6.3].
The equivalence (ii)⇔(iv) is straightforward.

In the next result we show that any of the 4 statements in Lemma 11 is equivalent
with Γ be a Taylor graph.

Theorem 12. Let Γ be a distance-regular graph with diameter D > 3, valency k, inter-
section number a1 6= 0 and distinct eigenvalues k = θ0 > θ1 > . . . > θD. Let θ 6= ±k be
an eigenvalue of Γ. Then the following statements are equivalent:
(i) θ is a light tail of Γ with standard sequence 1 = ω0, ω1, . . . , ωD such that its accompa-
nying eigenvalue θ′ equals −1.
(ii) Γ is a Taylor graph and θ ∈ {θ1, θ3}.

Proof: (i)⇒(ii) As a1 6= 0 and θ is a light tail it follows that θ ∈ {θ1, θD} by [10,
Remarks 3.3(iii)]. If θ = θ1, then θ2 = θ′ = −1 by Lemma 8. If D > 4, then
θ2 > min{0, a2, a4} > 0. This implies that D = 3. By [10, Theorem 5.1] and Lemma 11

we find c3 = k ω3(1−ω1)
ω3−ω2

= k ω3(1−ω1)
ω3+ω1

. This implies c3 = k and ω3 = −1 as ω1 > 0 and hence
Γ is an antipodal r-cover. By [4, p.142–143], ω3 = −1/(r − 1) and hence Γ is a Taylor
graph. Let us assume that θ = θD, then we need to consider two cases: D = 3 and D > 4.
If D = 3, then let α be the largest root of x2 − (a1 − b1)x− k. Let Tay(∆) be the Taylor
graph corresponding to ∆ = ∆(x) as in Lemma 9(ii). Here note that as θ is a light tail
the local graph ∆ = ∆(x) is a (non-complete) strongly regular graph with parameters
(v′ = k, k′ = a1, λ

′, µ′) and it satisfies k′ = 2µ′ by Lemma 11. Now ∆ has the smallest
eigenvalue −1 − b1

α+1
as α is an eigenvalue of Tay(∆) and Tay(∆) is tight. This implies

θ1 6 α ([4, Theorem 4.4.3]). But then a1 +a2 +a3 = k+θ1 +θ2 +θ3 6 k+α+θ2 +θ3 = 2a1

as Tay(∆) has eigenvalues k, α, θ2, θ3. Hence a1 > a2 + a3. But a2 + a3 > a1 by [11,
Proposition 4]. So a2 +a3 = a1 and this implies a3 = 0 and b2 = 1 and hence Γ is a Taylor

graph. If D > 4, then by [12, Theorem 3.1(iii)], θ1 >
a1+
√
a21+4k

2
> a1 + 1. But again from

the proof of D = 3 we have θ1 6 α, where α is the largest root of x2− (a1− b1)x− k. But
if we evaluate the polynomial x2 − (a1 − b1)x− k in point a1 + 1 we see that it is always
non-negative. This means that α 6 a1 + 1 and α > θ1 > a1 + 1, a contradiction. So this
case can not occur.
(ii)⇒(i) It is easily checked that if Γ is a Taylor graph then θ ∈ {θ1, θ3} is a light tail and
its accompanying eigenvalue θ′ equals −1.
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5 The refined bound

In this section, we will show the following refined version of Theorem 1.

Theorem 13. Let Γ be a distance-regular graph with diameter D > 3, valency k > 2
and distinct eigenvalues k = θ0 > θ1 > . . . , θD. Let θ 6= ±k be an eigenvalue of Γ with
multiplicity m > 2. Then k 6 (m+2)(m−1)

2
. More precisely, the following hold.

(i) If m = 2, then k = 2.

(ii) If θ is not a tail and m > 3, then k 6 (m−1)(m+4)
4

.

(iii) If θ is a heavy tail with θ′ 6∈ {θ1, θD} and m > 3, then k 6 (m+1)(m−2)
2

.

(iv) If θ is a heavy tail with θ′ ∈ {θ1, θD} and m > 3, then k 6 (m−2)(m+3)
2

.

(v) If θ is a light tail, then k 6 (m+2)(m−1)
2

.

Proof: Let θ = θi 6= ±k be an eigenvalue of Γ with multiplicity m = mi. [4, Proposition
4.4.8(ii)] shows k = 2 if and only if m = 2. This shows (i). So from now on we may assume
m > 3 and k > 3. We will first consider the case m < k and later we will consider m > k.
Let us first assume m < k. Then i ∈ {1, D} by Proposition 6, and a1 6= 0 by [10, Theorem
3.2]. If there are at least two distinct j1, j2 6∈ {0, i} satisfying qj1ii 6= 0 6= qj2ii , then by

Lemma 2 and Lemma 7 we have m(m+1)
2

> m0 +mj1 +mj2 > 1 + k+ k−m+ 1 and hence

k 6 (m−1)(m+4)
4

. If qjii = 0 for all j 6∈ {0, i}, then by [10, Theorem 4.1(b)], Γ is antipodal
with diameter 3 and θ = θ2 = −1. But then m = k. This shows (ii) if m < k. Now let us
assume θ is a tail and θ′ its accompanying eigenvalue. Let m′ be the multiplicity of θ′. If θ
is a heavy tail with θ′ 6∈ {θ1, θD}, then by Lemma 2 and Proposition 6, m(m+1)

2
> 1+m+k

and this shows (iii) if m < k. If θ is a heavy tail with θ′ ∈ {θ1, θD}, then by Lemma 2,

Proposition 6, and Lemma 7, m(m+1)
2

> 1 + m + m′ > 1 + m + k + 1 −m = k + 2. But

if m(m+1)
2

= k + 2, then m+m′ = k + 1 and it follows by Lemma 10 that Γ is tight. But

qj1D = 0 if j 6= D − 1 by Lemma 5(iii), so this give a contradiction. This shows (iv) when
m < k. Now if θ is a light tail, then for all vertices x the local graph ∆(x) is strongly
regular by [10, Corollary 6.3]. If m′ < k, then {θ, θ′} = {θ1, θD} and by Lemma 10(ii) Γ
is tight. But this is not possible by Lemma 5(iii). This means m′ > k. Now by Lemma

2, m(m+1)
2

> m0 + m′ > 1 + k. This shows (v). So we have shown the theorem if m < k.

As m 6 (m−1)(m+4)
4

, m 6 (m−2)(m+3)
2

, and m 6 (m+2)(m−1)
2

if m > 3, it follows that cases
(ii), (iv), and (v) also hold if m > k > 3. For case (iii) and m > k > 3 we see that

m 6 (m+1)(m−2)
2

unless m = 3. If m = 3 and m > k > 3, then we see that k = 3 and
a1 = 0 as D > 3. But then θ is a light tail, a contradiction with the assumption that θ is
a heavy tail.

In the following theorem, we characterize the distance-regular graphs with valency at
least three which attain the bound in Theorem 13.
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Theorem 14. Let Γ be a distance-regular graph with diameter D > 3, valency k > 3 and
an eigenvalue θ having multiplicity m > 2. Then the following statements are equivalent.
(i) k = (m+2)(m−1)

2
.

(ii) Γ is a Taylor graph with intersection array {(2α + 1)2(2α2 + 2α − 1), 2α3(2α +

3), 1; 1, 2α3(2α+3), (2α+1)2(2α2 +2α−1)} where α is an integer 6= 0,−1 or α = −1±
√

5
2

,
(and m = 4α2 + 4α− 1).

Proof: (i)⇒(ii) The only distance-regular graphs with an eigenvalue having multiplicity

2 are the polygons. So θ has multiplicity m > 3. As m < (m+2)(m−1)
2

if m > 3, we have
m < k and hence a1 6= 0. By Theorem 13, the eigenvalue θ is a light tail. To complete
the proof, we will show that for any vertex x of Γ, the local graph ∆(x) at the vertex
x is a strongly regular graph with parameters (v′, k′, λ′, µ′) satisfying k′ = 2µ′. Then by
Lemma 11 the accompanying eigenvalue θ′ of θ is equal to −1, and hence by Theorem 12
the graph Γ is a Taylor graph with the parameters as stated in the theorem.
Let x be a vertex of Γ. Then the local graph ∆(x) is a strongly regular graph. If ∆(x)
is not connected, then ∆(x) is the disjoint union of k

a1+1
complete graphs with a1 + 1

vertices. Then by [10, Corollary 6.3], we have

θ = θD = −1− b1

a1 + 1
=
−k

a1 + 1

and also by [10, Theorem 3.2] we have

m = k − b1

a1 + 1
>
k

2
+ 1.

As k = (m+2)(m−1)
2

> 2m − 1 if m > 3, we find that ∆(x) must be connected. By [10,

Corollary 6.3] we find that ∆(x) has an eigenvalue a1θ
θ+k

with multiplicity m − 1. Now
by parts (iv) and (v) in Lemma 3, we find that the local graph ∆(x) at the vertex x
is strongly regular with parameters (v′, k′, λ′, µ′) = ((2α + 1)2(2α2 + 2α − 1), 2α3(2α +
3), α(2α3 + α2 − 3α + 1), α3(2α + 3)) satisfying k′ = 2µ′, where α is an integer 6= 0,−1

or α = −1±
√

5
2

. This shows (i).
(ii)⇒(i) Trivial.
This finishes the proof.

Remark: Note that the distance-2 graph of a graph Γ = (V (Γ), E(Γ)) has as vertex set
V (Γ) and two vertices are adjacent if they have distance 2 in Γ. Then the distance-2
graph of a Taylor graph with intersection array

{(2α + 1)2(2α2 + 2α− 1), 2α3(2α + 3), 1; 1, 2α3(2α + 3), (2α + 1)2(2α2 + 2α− 1)},

where α is an integer 6= 0, 1 or α = −1±
√

5
2

, is again a Taylor graph with intersection array

{(2β + 1)2(2β2 + 2β − 1), 2β3(2β + 3), 1; 1, 2β3(2β + 3), (2β + 1)2(2β2 + 2β − 1)},

where β = −α− 1.
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Also, the following hold:
(i) Γ is the Icosahedron if α = −1±

√
5

2
,

(ii) Γ is the Gosset graph if α = 1,
(iii) Γ is the distance-2 graph of Gosset graph if α = −2,
(iv) Γ is the Tay(McLaughlin graph) (see [20]) if α = −3,
(v) Γ is the distance-2 graph of Tay(McLaughlin graph) if α = 2,
(vi) For the other α nothing is known.
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