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Abstract

In this paper we introduce a family of two-variable derivative polynomials for
tangent and secant. Generating functions for the coefficients of this family of polyno-
mials are studied. In particular, we establish a connection between these generating
functions and Eulerian polynomials.
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1 Introduction

Throughout this paper, denote by D the differential operator %. Let y = tan(x), and let
z =sec(z). Then D(y) = z? and D(z) = yz. An important tangent identity is given by

1+y2:z2.

In 1995, Hoffman [9] considered two sequences of derivative polynomials defined respec-
tively by

D*(y) = Fuly) and  D"(2) = 2Qn(y)
for n > 0. From the chain rule it follows that the polynomials P,(u) satisfy Py(u) = v and
P,i1(u) = (1+u?) P! (u), and similarly Qo(u) = 1 and Q11 (u) = (1+u?) Q! (u) +uQ,(u).
The first few of the polynomials P, (u) are

Pi(u) = 14+ u%, Py(u) = 2u + 2u®, Ps(u) = 2 + 8u® + 6u’.
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There is a wealth of literature on derivative polynomials (see [3, 4 &, [10], 111, [14], 15] for
instance).

Let [n] = {1,2,...,n}, and let &,, denote the the set of permutations of [n]. A
permutation 7 = 7(1)7(2) - - - w(n) € &, is alternating if 7(1) > w(2) < ---7(n). In other
words, 7(i) < w(i + 1) if i is even and 7(¢) > 7(i + 1) if 7 is odd. It is well known [I] that
the Fuler numbers E,, defined by

(0.) xn
nz% n!

count alternating permutations in G,,. The study of Euler numbers is a topic in combina-
torics (see [1§]). Since the tangent is an odd function and the secant is an even function,

we have
2n+1

o [o.¢] 2n
X X
=N Bt and 2= By
Y ;% 2o S 7; 2 2n)!

For this reason Fs, ., is called a tangent number and Es, is called a secant number.
Let S(x) =y + z. Clearly, S(0) = 1. It is easy to verify that

2D(S(2)) = 1+ S*(x). (1)
Differentiation of gives
22D*(S(z)) = 25(z) + 25%(z). (2)

A second differentiation gives 2°D*(S(z)) = 2 + 85%(x) + 6S*(x). Now we present a
connection between S(z) and P, (u)

Proposition 1. Forn > 0, we have 2"D"(S(x)) = P,(S(z)).

Proof. We proceed by induction on n. It suffices to consider the case n > 3. Assume that
the statement is true for n = k. Then

2 DM (S(2)) = 2D(Py(S(x)))
= 2P;(S(2))D(S(x))
= (1+ 8%(2)) P(S(2))
= D1 (S(2)).
Thus the statement is true for k£ + 1, as desired. O

Writing the derivative polynomials in terms of y and z as follows:

125+

Dn<y) _ Z Wndyn_Qk_IZQk_'_Q,

k=0
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3]
Dn(z) — Z Wé’kyn—kaﬂc—i—l’
k=0

we observed that the coefficients W), , and W, have simple combinatorial interpretations
(see [14]). The coefficient W, j is the number of permutations in &,, with k interior peaks,
where an interior peak of 7 is an index 2 < i < n—1 such that 7(i — 1) < w(i) > 7(i+1).
The coefficient Wék is the number of permutations in &,, with k left peaks, where a left
peak of 7 is either an interior peak or else the index 1 in the case m(1) > m(2) (see [6] for
instance).

This paper is organized as follows. In Section [2| we collect some notation, definitions
and results that will be needed in the rest of the paper. In Section [3] we establish a
connection between the Eulerian numbers and the expansion of (Dy)"(y). In Section [4]
we establish a connection between the Eulerian numbers of type B and the expansion of
(Dy)"(2). In Section [f, some polynomials related to (yD)"(y) and (yD)"(z) are studied.

2 Preliminaries

A descent of a permutation © € &,, is a position i such that 7(i) > m(i + 1). Denote by
des (7) the number of descents of m. Then the equations

A, (z) = Z gles(m+1 — ZA(n, k),
S(G2 k=1

define the Eulerian polynomials A, (x) and the Eulerian numbers A(n, k). Set Ay(z) = 1.
The exponential generating function for A, (z) is

t" 11—z
Az, t) = ZAn(l')m = 1 e (3)
n=0
The numbers A(n, k) satisfy the recurrence relation
An+1,k) = kA(n, k) + (n — k+ 2)A(n, k — 1) (4)

with the initial conditions A(0,0) = 1 and A(0,k) = 0 for k > 1 (see [17, A008292]). The
first few of the Eulerian polynomials A, (x) are

Ag(x) =1, A1(z) = 2, Ag () = o + 2%, As(2) = o + 42 + 2.

An explicit formula for A(n, k) is given as follows:

A(n, k) = i(-gi (”j 1> (k — i)™
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The hyperoctahedral group B, is the group of signed permutations of the set +[n] such
that m(—i) = —n (i) for all ¢, where £[n] = {+1,£2,...,£n}. Let

B, (z) = zn:B(n, k)ak = Z gdesB(m)
k=0

71'€Bn
where
desp=#{i€{0,1,2,...,n—1}x(i) > 7(i + 1)},
with 7(0) = 0. The polynomial B, (z) is called an Eulerian polynomial of type B, while
B(n, k) is called an Fulerian number of type B (see [I7, A060187]). The first few of the
polynomials B, (x) are
By(z) = 1,By(z) = 1 + 2, By(x) = 1+ 62 + 22, By(x) = 1 + 237 + 232 + 2°.

The numbers B(n, k) satisfy the recurrence relation

B(n+1,k) = (2k+1)B(n,k) + (2n — 2k + 3)B(n, k — 1), (5)

with the initial conditions B(0,0) =1 and B(0,k) = 0 for £ > 1. An explicit formula for
B(n, k) is given as follows:

B(n, k) = Zk:(_w' (” + 1) (2k — 20+ 1)"

i
i=0
for 0 < k < n (see [7] for details).
For n > 0, we always assume that

(Dy)" ! (y) = (Dy)(Dy)"(y) = D(y(Dy)"(y)),
(Dy)™*'(2) = (Dy)(Dy)"(z) = D(y(Dy)"(2)),
(yD)" ! (y) = (yD)(yD)"(y) = yD((yD)"(y)),
(yD)"1(2) = (yD)(yD)"(2) = yD((yD)"(2))-
Clearly, (Dy)"(y + z) = (Dy)"(y) + (Dy)™(z). For n > 1, we define
(Dy)"(y+2) =Y _ J(2n, k)y> M
k=0

In Section [3] and Section [, we respectively obtain that
J(2n,2k — 1) =2"A(n, k), 1<k<n,
and
J(2n,2k) = B(n, k), 0<k<
Let Ju(z) = 322", J(2n, k)a* for n > 1. Then zJ,(z) = 2"

from [14, Theorem 3], we have

v, (x) = (1 +2)"™A,(2). (6)

n.
A, (2?) + 2B, (2%). Therefore,

Using @, we get the following proposition.
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Proposition 2. Forn > 1, we have

n

(Dy)"(y + 2) = (y + 2)"** Z A(n, k)y" k2

k=1

3 On the expansion of (Dy)"(y)

For n > 1, we define
n

(Dy)"(y) = Y _ E(n, k)y*r =2+, (7)

Theorem 3. For 1 < k < n, we have E(n, k) = 2"A(n, k).
Proof. Note that D(y?) = 2y2z%. Then FE(1,1) = 2A(1,1). Since

n

D(y(Dy)"(y)) = 2> kE(n, k)y> #3225 423 “(n — k+ 1) E(n, k)y*" 12242,

k=1 k=1
there follows
En+1,k)=2kE(n, k) + (n—k+2)E(n,k—1)). (8)
By comparing with , we obtain the desired result. O]

Let
Fu(y) = (Dy)"(y) = > Fln, k)™
Then F,11(y) = D(yF,(y)). Hence
Fra(y) = 1+ y") Faly) +y(L+ ) EL(y) (9)

with initial value Fy(y) = y. Set F,(y) = 2"a,(y) and a,(y) = ZZ:O a(n,k)y%ﬂ. It
follows from Theorem [3] that

an(y) =D Aln, k)y*" (14 ). (10)

k=1

Equating the coefficients of y?"~2*1 on both sides of (10)), we obtain

It follows from @ that

a(n+1,k) = (k+ Da(n, k) + ka(n, k —1).

THE ELECTRONIC JOURNAL OF COMBINATORICS 20(1) (2013), #P11 5



Let W,(z) =Y p_,a(n, k)z**1. Tt is easy to verify that the polynomials W, (x) satisfy
Wari(@) = (2 +2%) W, (2), (11)

with initial value Wy(z) = z. The triangular array {a(n, k) },>00<k<n is called a Worpitzky
triangle (see [17, A028246]).

In view of , it is natural to consider the expansion of the operator ((z + x?)D)".
We define

((x 4+ 2*)D)" = Zn: Gi(z)(z 4+ 22D (12)
k=1
for n > 1. Applying the operator (z + 2%)D on the left of (12)), we get
Gniip(z) = k(1 +22)G i () + (2 4+ 2°)D(Grp(2)) + Grp—1(2). (13)
On the other hand, since
D*((z +2*)D) = (z + 2°) D" + k(1 + 22) D* + k(k — 1) D* 1,
applying the operator (z + 2%)D on the right of (12)), we get
Griip(z) = k(1 + 22)Go (@) + k(k + 1)(z + 22)Grpr (2) + Grpa(z). (14)

By comparing with (14), we obtain D(G,(x)) = k(k 4+ 1)Gy i1 (). Thus

1

Cn(®) = S0 =D

DFHGq ().

Thus deg Gy, () =n — k. Set G(x) = G,1(x). Then reduces to
Guri(2) = (14 22)Ga(2) + (z +2°) D(Ga(2))
with initial value Gy (x) = 1. Let G,(z) = >_,_, G(n, k)z*~1. It is easy to verify that
Gn+1,k) =kG(n, k) + kG(n,k —1) (15)

with initial value G(1,1) = 1. Recall that the Stirling numbers of the second kind S(n, k)
satisfy the recurrence relation

Sn+1,k) =kS(n,k)+ S(n,k—1) (16)

with initial conditions S(0,0) = 1 and S(n,0) = 0 for n > 1 (see [I7, A008277]). By
comparing with , we immediately get the following result.

Proposition 4. For 1 < k < n, we have G(n, k) = k!S(n, k).
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4 On the expansion of (Dy)"(z)

For n > 0, we define
n

(Dy)"(2) = Y H(n, k)y> 22+

k=0

Theorem 5. For 0 < k < n, we have H(n,k) = B(n, k).

Proof. Clearly, H(0,0) = 1. Note that D(yz) = y*2 + z3. Then H(1,0) = B(1,0) and
H(1,1) = B(1,1). Note that

n

(Dy)(Dy)"(2) = Y (1 + 2k)H(n, k)y*" 2222 £y (20 — 2k + 1) H (n, k)y*n—>F22+5,
k=0 k=0

Then
Hn+1,k)=(14+2k)H(n,k)+ (2n — 2k + 3)H(n, k — 1).

Hence the numbers H (n, k) satisfy the same recurrence relation and initial conditions as
B(n, k), so they agree. ]

Let (Dy)"(z) = zfa(y). Using (Dy)"™(z) = D(yzfu(y)), we get
Sor(y) = (L4 2% fuy) + y(1+4°) £ () (17)

with initial value fo(y) = 1.
Set fuly) = > i o f(n, k)y**. By , we obtain

fn+1,k)=(1+2k)f(n, k) +2kf(n,k—1)

for 0 < k < n, with initial conditions f(0,0) = 1, f(0,k) = 0 for & > 1. It should be
noted that

(f(,0), f(n, 1), f(n,n))

is the f-vector of the simplicial complex dual to the permutohedra of type B of rank n
(see [I7, A145901]).

5 Polynomials related to (yD)"(y) and (yD)"(z)

For n > 1, we define

(yD ZMTL]C 2k—1 2n 2k+2
k=1

(yD ZNTLk 2k Qn 2k+1
k=1
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Theorem 6. For 1 < k < n, we have
Mn+1,k)=2k—-1)M(n,k)+ 2n—2k+4)M(n,k — 1), (18)
N(n+1,k)=2kN(n,k) + (2n — 2k + 3)N(n, k — 1). (19)
Proof. Note that

(yD) (yD)”(y) _ Z(2k_ 1)]\4(717 k)ka_le”_2k+4+Z(2n—2k+2)M(n, k‘)y2k+12’2n_2k+2.

k=1 k=1

Thus we obtain . Similarly, we get . n
From ([18) and (19), we immediately get a connection between M (n, k) and N(n, k).

Corollary 7. For 1 < k < n, we have M(n,k) = N(n,n —k +1).
Let M, (z) =>",_, M(n,k)z*, and let N, (z) = > 7_, N(n,k)z*. Then we have

My(z) = 2" N, (i) | (20)
Set
Ru(y) = (yD)"(y) = >_ R(n, k)™, 2To(y) = (yD)"(2) = 2 Y T(n, k)y**
It is easy to verify that
Ru(y) = y(1+ )R, (y), (21)
Toii(y) = *Tu(y) +y(1+y*) T, (y). (22)

Equating the coefficient of y?*! on both sides of (21]), we get
R(n+1,k) = (2k + 1)R(n, k) + (2k — 1)R(n, k — 1).
Equating the coefficient of y?* on both sides of , we get
T(n+1,k)=2kT(n, k) + 2k — 1)T'(n, k —1).

Clearly, R(n,n) = T'(n,n) = (2n — 1)!I, where (2n — 1)!! is the double factorial number.
It should be noted that the triangular arrays {R(n,k)}n>10<k<n and {T'(n, k) }ns11<k<n
are both Galton triangles (see [17, A187075]), which has been studied by Neuwirth [16].
Now we present the following result.

Theorem 8. Forn > 1, we have

_ ,2n+1 _ 2\n
R.(y) =y N, ( 7 ) and T,(y) = (1 +y°)"N, <1 )
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Proof. Recall that 22 = y?> + 1. Then

n 2
B . B n y
Ru(y) =Y M(n, k)™ ' (y* + )" =y (142" M, <—1+y2),
k=1

and

— 3 n 2k (, 2 n—k _ 2\n ?J_2
To0) = 3N+ 17 = 0 ().

It follows from (20)) that
2 2
y iz (11Y
1+2”+1Mn< ): "+Nn< )
as desired. 0

From Theorem (8, we get R, (1) = N,(2) and T,,(1) = 2"N,(3). It follows from (19)
that

Npii(z) = (2n + 1)aN,(z) + 22(1 — 2)N, () (23)

with initial value Ny(z) = 1. The first few of the polynomials N, (z) are

Ni(7) = x, No(x) = 22 + 2°, N3(v) = dx + 102* + 2°.

In particular, N(n,1) = 2"1, N(n,n) = 1 and N,(1) = (2n — 1)!! for n
is a nice description of the polynomials N, (x) (see [17, A156919]): if ¢
r(z) = (1 —z)"2, then

There

> 1.
= 2zD and

9" (r(w)) = Na()r(z) .

In the following discussion, we consider some properties of the polynomials NV, (z).

The numbers N(n, k) arise often in combinatorics and other branches of mathematics
(see [12] for instance). A perfect matching of [2n] is a partition of [2n] into n blocks of
size 2. Analyzing the placement of 2n — 1 and 2n, it is easy to verify that the number
N(n, k) counts perfect matchings of [2n] with the restriction that only k& matching pairs
have odd smaller entries (see [1I7, A185411]).

For n > 1, an explicit formula for N, (z) is given as follows (see [17, A156919]):

n

N,(z) = Z on—2k (2:) k'S(n, k)z®(1 — z)"* (24)

k=1

where S(n, k) is the Stirling number of the second kind. It follows from that

N(n, k) = Xk:(—nk—izn—% (QO (Z B j)i!S(n, i).

Let
N(z,t) =Y Nu(z)=.
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Using , the formal power series N (z,t) satisfies the following partial differential equa-
tion:

ON (z,t) ON (z,t)
ot ox
By the method of characteristics [19], it is easy to derive an explicit formula:

11—z
_xt
Nt =y oo

11—z
1 — pe2t(i—a)°

Combining and , we get the following result.

(1 —2xt) —22(1 —x) = xN(z,t).

Hence

N?(x,t) = (25)

Theorem 9. Forn > 0, we have

3 (Z) Ni(2)No_p(x) = 2" A, ().
k=0

In the final part of this section, we present both central and local limit theorems for
the coefficients of NV,(z). As an application of a result [13, Theorem 2] on polynomials
with only real zeros, the recurrence relation enables us to show that the polynomials
{N,(x)}n>1 form a Sturm sequence.

Proposition 10. Forn > 2, the polynomial N, (x) has n distinct real zeros, separated by
the zeros of Ny_1(x).

Let {a(n, k) }o<k<n be a sequence of positive real numbers. It has no internal zeros if
there are no three indices ¢ < j < k such that a(n,7)a(n,k) # 0 and a(n,j) = 0. Let
A, = >0 _saln, k). We say that the sequence {a(n, k)} satisfies a central limit theorem
with mean s, and variance o2 provided

Pnt+Ton
k 1 r t2
> b L[ et
An 27’(’ )

k=0

=0.

lim sup
n—+o00,z€R

The sequence satisfies a local limit theorem on B C R if

ona(n, by, + xoy,) 1 _s2

e
An V 2T

lim sup = 0.

n—+o0,x€B

Recall the following Bender’s theorem.

Theorem 11. [2] Let {P,(z)}n>1 be a sequence of polynomials with only real zeros. The
sequence of the coefficients of the polynomial P,(x) satisfies a central limit theorem with

Pi(1) , PUL) PN (P
= %:am+am‘@m0’

provided that lim o2 = +oo. If the sequence of coefficients of the polynomial P,(x) has
n—oo

no internal zeros, then the sequence of coefficients satisfies a local limit theorem.
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Combining Proposition 10| and Theorem we obtain the following result.

Theorem 12. The sequence {N(n, k) }1<p<n satisfies a central and a local limit theorem
with i, = (2n+1)/4 and 02 = (2n +1)/24 for n > 4.

Proof. By differentiating (23)), we obtain the recurrence z, 11 = (2n + 1)!! + (2n — 1)z,
for z, = N},(1), and this has the solution z,, = (2n + 1)!1/4 for n > 2. By Theorem [11],
we have p,, = (2n + 1)/4. Another differentiation leads to the recurrence

2n + 1!
Yn+1 = %(471 —2)+ (2n = 3)y,

for y, = N”(1). Set y, = (2n — 1)!!(an® + bn + ¢) and solve for a, b, ¢ to get
Yn = (2n — D!(12n* — 8n — 7)/48

for n > 4. Hence 02 = (2n + 1)/24. Thus lim 02 = +oco as desired. O

n—oo

Let P(z) = >, ;2" be a polynomial. Let m be an index such that a,, = maxo<;<p a;.
Darroch [5] showed that if P(z) € RZ(—o0, 0], then

Aw) << R

So the following result is immediate.

Corollary 13. Ifi= |[(2n+1)|/4 ori=[(2n+ 1)]/4 then N(n,i) = maxi<rc, N(n, k).
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