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Abstract
Recently, asymptotic values of 2-color Ramsey numbers for loose cycles and also
loose paths were determined. Here we determine the 2-color Ramsey number of

3-uniform loose paths when one of the paths is significantly larger than the other:

for every n > L%’LJ, we show that

R(P3,P3) = 2n + LmTHJ
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1 Introduction

A hypergraph H is a pair H = (V, E), where V is a finite nonempty set (the set of
vertices) and E is a collection of distinct nonempty subsets of V' (the set of edges). A k-
uniform hypergraph is a hypergraph such that all its edges have size k. For two k-uniform
hypergraphs H and G, the Ramsey number R(H,G) is the smallest number N such that,
in any red-blue coloring of the edges of the complete k-uniform hypergraph K% on N
vertices there is either a red copy of H or a blue copy of G. There are several natural
definitions for a cycle and a path in a uniform hypergraph. Here we consider the one
called loose. A k-uniform loose cycle CF (shortly, a cycle of length n), is a hypergraph with
vertex set {v1,vs, ..., Unk-1)} and with the set of n edges e; = {v1,vo, ..., v} +i(k — 1),
i=20,1,...,n — 1, where we use mod n(k — 1) arithmetic and adding a number ¢ to a
set H = {vy,vq,...,v,} means a shift, i.e. the set obtained by adding ¢ to subscripts
of each element of H. Similarly, a k-uniform loose path P* (simply, a path of length
n), is a hypergraph with vertex set {vi,vs,...,Upk-1)41} and with the set of n edges
e; = {v, v, ... ,up}+i(k—1),i=0,1,...,n—1 and we denote this path by ege; - - - €,_1.
For k = 2 we get the usual definitions of a cycle and a path. In this case, a classical
result in graph theory (see [1]) states that R(P,, P,) = n+ ||, where n > m > 1.
Moreover, the exact values of R(P,,C,,) and R(C,,C,,) for positive integers n and m
are determined [5]. For k = 3 it was proved in [4] that R(C3,C2), and consequently

n’n

R(P3,P3) and R(P2,C3), are asymptotically equal to 2. Subsequently, Gyérfds et. al.

n’=n

in [3] extended this result to the k-uniform loose cycles and proved that R(CF,CF), and

consequently R(P¥, P¥) and R(PEF,CE), are asymptotically equal to 5(2k —1)n. For small
cases, Gydrfds et. al. (see [2]) proved that R(P¥, PY) = R(P§,C5) = R(CY,C5)+1 = 3k—1
and R(PF,Pr) = R(P¥,CF) = R(C},CF)+1 = 4k—2. To see a survey on Ramsey numbers

involving cycles see [6].

It is easy to see that N = (k — 1)n + ™ ] is a lower bound for the Ramsey number
R(P¥,PF). To show this, partition the vertex set of K& | into parts A and B, where
|Al = (k—1)n and |B| = || — 1, color all edges that contain a vertex of B blue, and
the rest red. Now, this coloring can not contain a red copy of P¥, since such a copy has
(k—1)n+1 vertices. Clearly the longest blue path has length at most m — 1, which proves
our claim. Using the same argument we can see that N and N — 1 are the lower bounds
for R(P%,C) and R(CF,CF), respectively. In [2], motivated by the above facts and some
other results, the authors conjectured that these lower bounds give the exact values of
the mentioned Ramsey numbers for £ = 3. In this paper, we consider this problem and
we prove that R(P3,P3) = 2n + |25 for every n > [22]. Throughout the paper, for
a 2-edge coloring of a uniform hypergraph H, say red and blue, we denote by F,.; and

Fiiwe the induced hypergraph on edges of colors red and blue, respectively.

2 Preliminaries

In this section, we present some lemmas which are essential in the proof of the main
results.
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Lemma 1. Letn > m > 3 and ICI(ckfl)nﬂm—“J be 2-edge colored red and blue. IfC* C Feq,
2

then either P* C Frea or P C Fiye.

Proof. Let ¢; = {vy,vq,..., 0} +i(k — 1) (mod n(k — 1)), i =0,1,...,n — 1, be the
edges of Cr’j C Freaand W = {xq, 29, . .. ,meTHJ} be the set of the remaining vertices. Set
ey = (eo \ {v1}) U{z1} and for 1 <i<m —1 let

(€ \ {vigp—1)41}) U{zis } if i is odd,

(e \ {vit1)(k-1)41}) U {x%} if ¢ is even.

If one of €] is red, we have a monochromatic P¥ C F,.4, otherwise epe] ...el, ; form a
blue P* , which completes the proof. [ |

Let P be a loose path and z,y be vertices which are not in P. By a @, v, u,}-
configuration, we mean a copy of Py with edges {z,v;,v;} and {v;, vy, y} so that v’s,
[ € {i,j,k}, belong to two consecutive edges of P. The vertices x and y are called the
end vertices of this configuration. Using this notation, we have the following lemmas.

Lemma 2. Let n > 10, K3 be 2-edge colored red and blue and P, say in Freq, be a
mazximum path. Let A be the set of five consecutive vertices of P. If W = {xy,x9, 23} is
disjoint from P, then we have a wg-configuration in Fye with two end vertices in W and

S C A.

Proof. First let A = e U ¢’ for two edges e = {v1,v9,v3} and € = {v3,vy4,v5}. Since
P C Freq is maximal, at least one of the edges e; = {x1,v1,v2} and ey = {vy, v3, o} must
be blue. If both are blue, then eje, is such a configuration. So first let e; be blue and
ey be red. Maximality of P implies that at least one of the edges e; = {3, v1,v4} or
eq = {x3,v9,v5} is blue (otherwise, replacing ee’ by egeqey in P yields a red path greater
than P, a contradiction), and clearly in each case we have a wg-configuration. Now, let e;
be red and ey be blue. Clearly e5 = {vy, vy, 23} is blue and eyes form a wg-configuration.
Now let A = {vy,vg,...,v5} where e; = {z,v1,v2}, ea = {v9,v3,v4} and ez = {v4,v5,y}
are three consecutive edges of P. If {z;, v, v3} is a red edge for some i € {1,2,3}, then
{vs,vq, z;} and {vs,vs, z;} are blue for j # ¢ and so we are done. By the same argument
the theorem is true if {z;,vs,vs4} is red. Now we may assume {vq, v3, x;} and {vs, vy, 2;}

are blue for each ¢ € {1,2,3} and so there is nothing to prove. |
Lemma 3. Assume that n > {%"J and ]anﬂm—“j 1s 2-edge colored red and blue. If
2

P C Foe is a mazximum path and W, |W| > 5, is a set of the vertices which are
not covered by P, then for every 4 consecutive edges ey, es,es,eq of P either there is a
Pg C Fred, say Q, between {eq, e, e3,e4} and W with end vertices in W and with no the
last vertex of eq as a vertex such that |[W NV (Q)| < 5 or there is a P C Frea, say Q,
between {ey, ea,e3} and W with end vertices in W and with no the last vertex of e3 as a
vertez such that [W NV (Q)| < 4. In each of the above cases, each vertex of W except one
vertex can be considered as the end vertex of Q).
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Proof. Suppose that ey,es,e3,e4 be four consecutive edges in P. Let e; = {vg;_1, Ui, U2i11},
1 <Z<4, and W:{l‘l,...,,fft} andT:{l’Q’... ’t}

Case 1. For every 1 <1, <t, {v1,ve,2;} and {vy,v3,x;} are red.

Subcase 1. For every 1 < k,l < t, the edges {vs, vq, 21} and {vy, vs, x;} are red.

For each {ila 2.27 i3a Z4} € P4(T)7 edgesa {xip V1, U?}a{v% Tiy, 1}3}){,037 Tig, /U4}7{’U47 Us, xi4}
make a red P; with end vertices z;, and wx;,.

Subcase 2. There exists 1 < k < ¢, such that the edge {vs, v4, z1} is blue.

So for each {il, iz, ig, } € Pg(T) with & # ’ig, ig, {xil,vl, UQ},{’UQ, U3, LEZ'Q},{%Z‘Q, Vs, ’U4},
{vy,v6, z;, } are the edges of a red desired P} with end vertices x;, and ;.

Subcase 3. There exists 1 < k < ¢, such that the edge {vy, vs, z1} is blue.

If for every 1 < 4,5 < t, the edges {vs,vs,7;} and {ve,v7,z;} are red, then
for every {iy,is, 13,94} € P,(T) with i3 # k, we can find a red copy of P with
edges {x;,, v1, va },{va, iy, v3},{v3, V4, i3}, {Xis, V5, v6 },{v6, V7, T4, } and end vertices x;, and
x;,. Otherwise there exists 1 < [ < ¢, such that either {vsuvg,x;} or {ve,v7,2;} is
blue. For the first one, for every {iy,is,i3,i4} € Py(T) with i3 # k,l and iy # I,
{zi,, v1,va},{va, Ty, v3},{v3, V4, Tiy }{Ti5, v7, V6 }, {6, Vs, T4, } make a red copy of PP with
end vertices z;, and x;, and for the second one, for every {iy,1s,i3} € P3(T) with [ # is, i3
the edges, {zi,, v1,v2, }, {ve, v3, Zi, }, {@iy, V6, Vs }, {5, iy, 71} make a red ’Pzif with end ver-
tices x;, and y where y € {x;,, x;}.

Case 2. For some 1 < i < t, {vy,vq,2;} is blue.

Subcase 1. For every 1 < k,l < t, the edges {vs, vs, 21} and {vg, v7, 2;} are red.

For each {iy,ia,13,i4} € Py(T) with ¢; # i, 1 < j < 4, the edges, {z;,, %, vs},
{vs, iy, va}, {vo,v4, i3}, {Tis, Vs, 06}, {ve,v7, 25} make a red P2 with end vertices y,
y € {x;, x;}, and x4,

Subcase 2. For some 1 < k < t, {vs,vg, 2} is blue.

In this case, for each {iy,i2,43,94} € Py(T) with i; # i, 1 < j < 4, and 43,44 # k,
the edges {xh y Liy 03}7{1}37 Tiy, U2}7{U27 Uy, xis}a{xiga U7, UG}? {U67 Ug, .]31'4} make a red ,PE? with
end vertices y, y € {z;,, x;}, and x;,.

Subcase 3. For some 1 < k < t, {vg, v7, 11} is blue.

In this case, for each {i1,42,i3} € P3(T) with ¢; # 4, 1 < j < 3, and io,i3 # k, the
edges {z;,, x;, v3},{vs, va, T, } { iy, V4, v6 },{Vs, V5, Ti, } make a red P with end vertices v,
y € {x;y, x;}, and x4,.
Case 3. For some 1 < i <¢t, {vg,v3.2;} is blue.

Subcase 1. For every 1 < k,l < t, the edges {vs, vy, 21} and {vy, vs, 2;} are red.
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For each {ij, 15,93} € P3(T) with i; # i, 1 < j < 3, {&i, i, v1},{v1,v2, 24},
{xiy,v3,v4},{vs, V5,7, } are the edges of a red P; with end vertices y, y € {z;,,x;}, and
Lig -

Subcase 2. For some 1 < k < t, {vs, vy, 11} is blue.

In this case, for each {i1,i2,i3} € P3(T) with 4; # 4, 1 < j < 3, and is,i3 # k, the
edges, {‘ril?xi;Ul}?{vhU27xi2}7{$i27v5av4}7{v47U67xi3} make a red copy of Pj with end
vertices y, y € {z;,, x;}, and x,.

Subcase 3. For some 1 < k < t, {vy, vs, 1} is blue.

If for every 1 < [,h < t, the edges {vs,vs,;} and {vg,v7, x,} are red, then
for each {iy,i2,43,i4} € Py(T) with i; # i, 1 < j < 4, and i3 # k, the edges,
{xi,, T, v1 },{v1, Ty, U2 },{V2, V4, T4, o { @iy, U5, V6 }, {V6, V7, 4, } make a red P2 with end ver-
tices y, y € {x;,2;}, and x;,. Otherwise there exists 1 < [ < ¢, such that either
{vsve, z1} or {vg,v7, 21} is blue. For the first one, for each {iy,is,13,i4} € Py(T) with
i; #14, 1 < j <4, i3 # k,l and ig # [, the edges {z;,, x;, v1},{v1, 2y, v2},{v2, va, T4y },
{zi,,v7,v6},{ve, vs, T;,} make a red copy of P2 with end vertices y, y € {z;,, z;} and z,.
For the second one, for every {iy,is,13} € P5(T") with i; # 4, 1 < j < 3, and is,13 # [,
iy, w01}, {v1, vo, iy by {4y, va, U6}, {6, Us, T4y } } is the set of the edges of a red P3 with
end vertices y, y € {x;,,z;}, and z;,. These observations complete the proof. [ |

3 Main Results

In this section, we prove that R(P3, P3) = 2n + || for every n > [22]|. First we

present several lemmas which will be our main tools in establishing the main theorem.

Lemma 4. Assume that n = [2] and ]anﬂL“J is 2-edge colored red and blue. If
2

P =P3 | is a mazimum blue path, then P3| C Freq.

Proof. Let t = 2n + LmTHJ and P = ejey...€,_1 be a copy of P3| C Fyye with
edges e; = {v,v9,v3} +2(3i —1), i =1,....m—1. Set W = V(K?) \ V(P). Using
Lemma 3 there is a red path () with end vertices z; and y; in Wi, = W between Ej
and Wy where Fy = {e; 14, = 1 < i < 4}, By = FE; \ {e4} and E; € {E,,E;}. Set
ip =min{j: j € {i1+3,i1+4},e; € E1}, Eo = {e; 1 i < i <ig+3} and By = Ey\{ei,43}
and Wy = (W\V(Q))U{z1,y1}. Again using Lemma 3 there is a red path )2 between FY,
and Wy such that ()1 UQs is a red path with end vertices x5, yo in Wo where E} € {F», EQ}
and again set i3 = min{j : j € {io + 3,ia + 4}, ¢; € B}, By = {e; 1 i3 < @ < i3 + 3},
E3 = FE3\ {ei,13} and Wy = (W \ V(Q1 U @Q5)) U {xa,}. Since |W| > m, using Lemma
3 by continuing the above process we can partition E(P) \ {e,_1} into classes Elth,
|EX| € {3,4} and at most one class of size r < 3 of the last edges such that for each ¢,
there is a red Q; = P2 (resp. Q; = P3) between E! and W with the properties in Lemma
3if |El| =4 (resp. |E}| =3) and P’ = UQ); is a red path with end vertices =,y in W. Let
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Lh=H{i:|El|=4} and ly = [{i:| Bl |=3}]. Som —2=4l; + 3l + 7,0 <r <3 and P’
has 5l; + 4l edges. One can easily check that 5, + 41y > %(m — 2 —r). Also we have

|WﬁV(7D/)| <4l1+3l2+1:m—1—7’.

Let T = V(K?)\ (V(P)U V(P')) and suppose that m = 4k + p for some p, 0 < p < 4.
Therefore |[T'| > r+2if p=0,1and |T| > r+1if p = 2,3. Now we consider the following
cases.

Case 1. r = 0.

Clearly |T'| > 1 and it is easy to see that P’ contains at least n—2 edges. Let {u} C T.
The maximality of P implies that the edge e = {von,—1,z,u} is red and hence P’ U {e} is
a red copy of P3_,.

Case 2. r = 1.

In this case, |T'| > 2 and it is easy to see that P’ contains at least n — 3 edges. Let
{u,v} CT. Clearly P’ U {{vam_2,z,u}, {vom_1,u,v}} is a red copy of P3_,.

Case 3. r = 2.

It is easily seen that |T'| > 3 and P’ contains at least n—5 edges. Let 7" = {u,v,w} C
T. Since V(P)NV(em—3Uem—2) = 0 by Lemma 2 there is a red wg-configuration with
S C en_3Ue,_o and its end vertices in 7", say u and v. The maximality of P implies
that the edges {voy,_2,7,u} and {ve,,_1,v,w} are red and clearly we have a red P3_,.

Case 4. r = 3.

In this case, for p € {2,3} we have |T| > 4 and P’ contains at least n — 5 edges.
Using an argument similar to case 3 we can complete the proof. Now let p € {0,1}. Then
|T| > 5 and P’ contains at least n — 6 edges. Set T" = {u,v,w, z,t} C T. By Lemma
2, there is a wg-configuration C' with S C V'(e,,_3 U e,,_2) and end vertices in 7", say u
and v. Clearly P' U {{y, w, vam_2}, {vom_2,2,t}, {vam_1,t,u}} UC is a red P>_,. These
observations complete the proof. [

Lemma 5. Let n > {%”J and ’anﬂm—“j be 2-edge colored red and blue. If P3| C Frea
2

be a mazimum path, then P2 C Fiue.

Proof. Let t =2n+|™H | and P = ejes ... €,-1 be a copy of P3_; C F,.q with end edges
er = {v1,v9,v3} and e,_1 = {Vop_3, Vap_2,V2,—1}. By Lemma 1, we may assume that the
subhypergraph induced by V(P) does not have a red copy of C3. Let W = V(K3) \ V(P)
and let 2n — 2 = 5¢ + h where 0 < h < 5. Partition the set V(P) \ {v1} into ¢ classes
Ay, Ay, ... A, of size five and one class Agy1 = {von—_n, ..., Van_2,Vay_1} of size h if h > 0,
so that each class contains consecutive vertices of P. Using Lemma 2, there is a blue
wg,-configuration, ¢, with the set of end vertices £y C W and S; C A;. Let x; € E; and
By be a 2-subset of W\ E;. Again by Lemma 2, there is a blue wg,-configuration, ¢,, with
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the set of end vertices Fy C (By U{x1}) and Sy C A,. If 21 & Ey, then let &3 be a blue
wg,-configuration with the set of end vertices F3 C {z;,y, 2z} and S3 C A3 where y € By
and z € W\ (E1 U Es). If 2y € Es, then let ¢; be a blue wg,-configuration with the set of
end vertices F3 C {xq,y, 2} and S3 C Az where xo € Fy\ {21} and {y, 2z} C W\ (E1UE,).
We continue this process to find the set of {¢1,¢é,...,¢y} of configurations. When this
process terminate, we have the paths P and Py where [” > 1’ > 0 and " + 1" = 2¢.
Let 2”,y" (resp. «',y" if ' > 0) be the end vertices of Py (resp. Py) in W. Let
T =V(KH\ (V(P)UV(Pw) UV (Py)). Clearly |T| = [ ] + 1 — (¢’ + i) where i = 1
if '’ =0and i =2if I’ > 0. Assume m = 4k + r for some r, 0 < r < 3. We have the
following cases.

Case 1. r = 0.

Since ¢ > 2k — 1, we have 2¢' > m — 2. On the other hand, [W| = [™] 4+ 1 and
so 2¢" < m. If 2¢ = m, then I’ = 0 and so Pj—,, is a blue path. Now we may assume
that 2¢' = m — 2, and one can easily check that the vertices {vo,_3, Von—2, v2,—1} are not
used in P UPyp. First let I’ = 0. Then |T'| = 1 and we may assume 7' = {u}. Now using
the maximality of P and the fact that C2 € Frea, P U {{van-2,9", u}, {van_1,u,v1 }} is a
blue P3. For I > 0, Py U {{van_2,9",2'}} UPp U {{van_1,¥',v1}} is a blue P3 .

Case 2. r = 1.

Since | W |= [ ]| + 1, 2¢' < m + 1 and if the equality holds, then I = 0. On the
other hand, ¢ > 2k and so 2¢' > m — 1. Hence 2¢' € {m+1,m —1}. If 2¢' = m + 1, then
I’ =0 and there is a blue P, ;. Now let 2¢/ =m — 1. If I’ = 0, then |T| =1, so T = {u}
and hence Py U {{vy,u,y"}} is a blue P3. If I’ > 0, then P U {{vy,y",2'}} U Py is a
blue P3..

Case 3. r = 2.

Using an argument similar to the case 1, we have 2¢' € {m, m — 2} and if 2¢' = m,
then I = 0 and we have a blue Py—,,. Again by an argument similar to the case 1 we
have a blue P3.

Case 4. r = 3.

In this case, partition V(P) \ {vi,v2} into |2=2] classes of size five and possibly
one class of size at most four. Then we repeat the mentioned process in the first of the
proof to find blue paths Py and Py with I” > 1" > 0 and I” + 1" = 2¢’. Again using a
similar argument in case 1, we have 2¢' € {m + 1,m — 1,m — 3}. If 2¢ = m + 1, then
we have I’ = 0 and so there is a blue P3_,. For 2¢ = m — 1, the assertion holds by
an argument similar to the case 2. Now let 2¢' = m — 3. If I’ = 0, then |T| = 2, so
T = {u,v} and hence Py U{{van_2,v2, 4"}, {von_2,v,u}, {u,v1,v2,_1}} is a blue P2, (note
that {va,—3,van—2,V2n-1} NV (Pp) = 0). If I’ > 0, then |T| = 1, so T' = {u} and hence
P U {{van_2, 02,y }, {van_o, 2", u}} U Py U{{y,v1,v9,_1}} is a blue P3 and the proof is
completed. [ |
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Theorem 6. For everyn > LE’TmJ p

R(P?,P%) =2n + {mT“J

Proof. We prove the theorem by induction on m + n. The proof of the case m =n =1

is trivial. Suppose that for m'+n’ < m+n with n’ > L%”"J, R(P3,,P3,) =2n'+ L#J .

Now, let n > LE’T’"J and let IC;’n L be 2-edge colored red and blue. We may assume
2

there is no red copy of P3 and no blue copy of P3. Consider the following cases.

Casel. n= L%”J

Since R(P3_,,P3_)) =2(n—1)+ | %] < 2n+ |™| by induction hypothesis, then
either there is a P3| C Freqg or a P3| C Fue. If we have a red copy of P3_,, then by
Lemma 5 we have a P2 C Fy.. Now assume that there is a blue copy of P3 . Lemma

4 implies that P3| C F,.q and using Lemma 5 we have P3 C Fyye, a contradiction.

Case 2. n > LE’T’"J

In this case, n — 1 > | 22| and since R(P3_,P3) =2(n— 1)+ || <2n+ |2H |,

by induction hypothesis we have a P3| C F,.4. Using Lemma 5 we have a P3 C Fye
and it completes the proof. [ |
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