The Ramsey number of loose paths in 3-uniform hypergraphs

Leila Maherani

Department of Mathematical Sciences Isfahan University of Technology Isfahan, 84156-83111, Iran

l.maherani@math.iut.ac.ir

Golam Reza Omidi¹

Department of Mathematical Sciences Isfahan University of Technology Isfahan, 84156-83111, Iran

and

School of Mathematics Institute for Research in Fundamental Sciences Tehran, 19395-5746, Iran

romidi@cc.iut.ac.ir

Ghaffar Raeisi²

Department of Mathematical Sciences Shahrekord University Shahrekord, P.O.Box 115, Iran

and

School of Mathematics Institute for Research in Fundamental Sciences Tehran, 19395-5746, Iran

g.raeisi@sci.sku.ac.ir

Submitted: Sep 18, 2012; Accepted: Jan 12, 2013; Published: Jan 21, 2013 Mathematics Subject Classifications: 05C15, 05C55, 05C65.

Abstract

Recently, asymptotic values of 2-color Ramsey numbers for loose cycles and also loose paths were determined. Here we determine the 2-color Ramsey number of 3-uniform loose paths when one of the paths is significantly larger than the other: for every $n \geqslant \left\lfloor \frac{5m}{4} \right\rfloor$ $\frac{m}{4}$, we show that

$$
R(\mathcal{P}_n^3, \mathcal{P}_m^3) = 2n + \left\lfloor \frac{m+1}{2} \right\rfloor.
$$

Keywords: Ramsey Number, Loose Path, Loose Cycle.

Maryam Shahsiah

Department of Mathematical Sciences Isfahan University of Technology Isfahan, 84156-83111, Iran

m.shahsiah@math.iut.ac.ir

¹This research is partially carried out in the IPM-Isfahan Branch and in part supported by a grant from IPM (No.91050416).

²This research was in part supported by a grant from IPM (No.91050018).

1 Introduction

A hypergraph H is a pair $\mathcal{H} = (V, E)$, where V is a finite nonempty set (the set of vertices) and E is a collection of distinct nonempty subsets of V (the set of edges). A k uniform hypergraph is a hypergraph such that all its edges have size k . For two k -uniform hypergraphs H and G, the Ramsey number $R(\mathcal{H}, \mathcal{G})$ is the smallest number N such that, in any red-blue coloring of the edges of the complete k-uniform hypergraph K_N^k on N vertices there is either a red copy of H or a blue copy of G . There are several natural definitions for a cycle and a path in a uniform hypergraph. Here we consider the one called loose. A k-uniform loose cycle \mathcal{C}_n^k (shortly, a cycle of length n), is a hypergraph with vertex set $\{v_1, v_2, \ldots, v_{n(k-1)}\}$ and with the set of n edges $e_i = \{v_1, v_2, \ldots, v_k\} + i(k-1),$ $i = 0, 1, \ldots, n - 1$, where we use mod $n(k - 1)$ arithmetic and adding a number t to a set $H = \{v_1, v_2, \ldots, v_k\}$ means a shift, i.e. the set obtained by adding t to subscripts of each element of H. Similarly, a k-uniform loose path \mathcal{P}_n^k (simply, a path of length n), is a hypergraph with vertex set $\{v_1, v_2, \ldots, v_{n(k-1)+1}\}\$ and with the set of n edges $e_i = \{v_1, v_2, \ldots, v_k\} + i(k-1), i = 0, 1, \ldots, n-1$ and we denote this path by $e_0e_1 \cdots e_{n-1}$. For $k = 2$ we get the usual definitions of a cycle and a path. In this case, a classical result in graph theory (see [\[1\]](#page-7-0)) states that $R(P_n, P_m) = n + \lfloor \frac{m+1}{2} \rfloor$, where $n \geq m \geq 1$. Moreover, the exact values of $R(P_n, C_m)$ and $R(C_n, C_m)$ for positive integers n and m are determined [\[5\]](#page-7-1). For $k = 3$ it was proved in [\[4\]](#page-7-2) that $R(C_n^3, C_n^3)$, and consequently $R(\mathcal{P}_n^3, \mathcal{P}_n^3)$ and $R(\mathcal{P}_n^3, \mathcal{C}_n^3)$, are asymptotically equal to $\frac{5n}{2}$. Subsequently, Gyárfás et. al. in [\[3\]](#page-7-3) extended this result to the k-uniform loose cycles and proved that $R(\mathcal{C}_n^k, \mathcal{C}_n^k)$, and consequently $R(\mathcal{P}_n^k, \mathcal{P}_n^k)$ and $R(\mathcal{P}_n^k, \mathcal{C}_n^k)$, are asymptotically equal to $\frac{1}{2}(2k-1)n$. For small cases, Gyárfás et. al. (see [\[2\]](#page-7-4)) proved that $R(\mathcal{P}_3^k, \mathcal{P}_3^k) = R(\mathcal{P}_3^k, \mathcal{C}_3^k) = R(\mathcal{C}_3^k, \mathcal{C}_3^k) + 1 = 3k - 1$ and $R(\mathcal{P}_4^k, \mathcal{P}_4^k) = R(\mathcal{P}_4^k, \mathcal{C}_4^k) = R(\mathcal{C}_4^k, \mathcal{C}_4^k) + 1 = 4k-2$. To see a survey on Ramsey numbers involving cycles see [\[6\]](#page-7-5).

It is easy to see that $N = (k-1)n + \lfloor \frac{m+1}{2} \rfloor$ $\frac{+1}{2}$ is a lower bound for the Ramsey number $R(\mathcal{P}_n^k, \mathcal{P}_m^k)$. To show this, partition the vertex set of \mathcal{K}_{N-1}^k into parts A and B, where $|A| = (k-1)n$ and $|B| = \lfloor \frac{m+1}{2} \rfloor$ $\frac{+1}{2}$ | – 1, color all edges that contain a vertex of B blue, and the rest red. Now, this coloring can not contain a red copy of \mathcal{P}_n^k , since such a copy has $(k-1)n+1$ vertices. Clearly the longest blue path has length at most $m-1$, which proves our claim. Using the same argument we can see that N and $N-1$ are the lower bounds for $R(\mathcal{P}_n^k, \mathcal{C}_m^k)$ and $R(\mathcal{C}_n^k, \mathcal{C}_m^k)$, respectively. In [\[2\]](#page-7-4), motivated by the above facts and some other results, the authors conjectured that these lower bounds give the exact values of the mentioned Ramsey numbers for $k = 3$. In this paper, we consider this problem and we prove that $R(\mathcal{P}_n^3, \mathcal{P}_m^3) = 2n + \lfloor \frac{m+1}{2} \rfloor$ for every $n \geq \lfloor \frac{5m}{4} \rfloor$ $\frac{m}{4}$. Throughout the paper, for a 2-edge coloring of a uniform hypergraph H , say red and blue, we denote by \mathcal{F}_{red} and \mathcal{F}_{blue} the induced hypergraph on edges of colors red and blue, respectively.

2 Preliminaries

In this section, we present some lemmas which are essential in the proof of the main results.

Lemma 1. Let $n \geqslant m \geqslant 3$ and $\mathcal{K}^k_{(k-1)n+\lfloor \frac{m+1}{2} \rfloor}$ be 2-edge colored red and blue. If $\mathcal{C}^k_n \subseteq \mathcal{F}_{red}$, then either $\mathcal{P}_n^k \subseteq \mathcal{F}_{red}$ or $\mathcal{P}_m^k \subseteq \mathcal{F}_{blue}$.

Proof. Let $e_i = \{v_1, v_2, \ldots, v_k\} + i(k-1) \pmod{n(k-1)}$, $i = 0, 1, \ldots, n-1$, be the edges of $\mathcal{C}_n^k \subseteq \mathcal{F}_{red}$ and $W = \{x_1, x_2, \ldots, x_{\lfloor \frac{m+1}{2} \rfloor}\}\$ be the set of the remaining vertices. Set $e'_0 = (e_0 \setminus \{v_1\}) \cup \{x_1\}$ and for $1 \leqslant i \leqslant m-1$ let

$$
e'_{i} = \begin{cases} (e_{i} \setminus \{v_{i(k-1)+1}\}) \cup \{x_{\frac{i+1}{2}}\} & \text{if } i \text{ is odd,} \\ (e_{i} \setminus \{v_{(i+1)(k-1)+1}\}) \cup \{x_{\frac{i+2}{2}}\} & \text{if } i \text{ is even.} \end{cases}
$$

If one of e'_i is red, we have a monochromatic $\mathcal{P}_n^k \subseteq \mathcal{F}_{red}$, otherwise $e'_0e'_1 \dots e'_{m-1}$ form a blue \mathcal{P}_m^k , which completes the proof.

Let P be a loose path and x, y be vertices which are not in P. By a $\varpi_{\{v_i,v_j,v_k\}}$ configuration, we mean a copy of \mathcal{P}_2^3 with edges $\{x, v_i, v_j\}$ and $\{v_j, v_k, y\}$ so that v_l 's, $l \in \{i, j, k\}$, belong to two consecutive edges of P . The vertices x and y are called the end vertices of this configuration. Using this notation, we have the following lemmas.

Lemma 2. Let $n \geq 10$, K_n^3 be 2-edge colored red and blue and P , say in \mathcal{F}_{red} , be a maximum path. Let A be the set of five consecutive vertices of P. If $W = \{x_1, x_2, x_3\}$ is disjoint from P, then we have a ϖ_S -configuration in \mathcal{F}_{blue} with two end vertices in W and $S \subseteq A$.

Proof. First let $A = e \cup e'$ for two edges $e = \{v_1, v_2, v_3\}$ and $e' = \{v_3, v_4, v_5\}$. Since $P \subseteq \mathcal{F}_{red}$ is maximal, at least one of the edges $e_1 = \{x_1, v_1, v_2\}$ and $e_2 = \{v_2, v_3, x_2\}$ must be blue. If both are blue, then e_1e_2 is such a configuration. So first let e_1 be blue and e_2 be red. Maximality of P implies that at least one of the edges $e_3 = \{x_2, v_1, v_4\}$ or $e_4 = \{x_3, v_2, v_5\}$ is blue (otherwise, replacing ee' by $e_3e_2e_4$ in P yields a red path greater than P , a contradiction), and clearly in each case we have a ϖ_S -configuration. Now, let e_1 be red and e_2 be blue. Clearly $e_5 = \{v_2, v_4, x_3\}$ is blue and e_2e_5 form a ϖ_S -configuration. Now let $A = \{v_1, v_2, \ldots, v_5\}$ where $e_1 = \{x, v_1, v_2\}$, $e_2 = \{v_2, v_3, v_4\}$ and $e_3 = \{v_4, v_5, y\}$ are three consecutive edges of P. If $\{x_i, v_2, v_3\}$ is a red edge for some $i \in \{1, 2, 3\}$, then $\{v_3, v_4, x_j\}$ and $\{v_3, v_5, x_j\}$ are blue for $j \neq i$ and so we are done. By the same argument the theorem is true if $\{x_i, v_3, v_4\}$ is red. Now we may assume $\{v_2, v_3, x_i\}$ and $\{v_3, v_4, x_i\}$ are blue for each $i \in \{1, 2, 3\}$ and so there is nothing to prove.

Lemma 3. Assume that $n \geqslant \left\lfloor \frac{5m}{4} \right\rfloor$ $\left\{\frac{m}{4}\right\}$ and $\mathcal{K}^3_{2n+\lfloor\frac{m+1}{2}\rfloor}$ is 2-edge colored red and blue. If $P \subseteq \mathcal{F}_{blue}$ is a maximum path and W, $|W| \geq 5$, is a set of the vertices which are not covered by P, then for every 4 consecutive edges e_1, e_2, e_3, e_4 of P either there is a $\mathcal{P}_5^3 \subseteq \mathcal{F}_{red}$, say Q, between $\{e_1, e_2, e_3, e_4\}$ and W with end vertices in W and with no the last vertex of e_4 as a vertex such that $|W \cap V(Q)| \leq 5$ or there is a $\mathcal{P}_4^3 \subseteq \mathcal{F}_{red}$, say Q , between $\{e_1, e_2, e_3\}$ and W with end vertices in W and with no the last vertex of e_3 as a vertex such that $|W \cap V(Q)| \leq 4$. In each of the above cases, each vertex of W except one vertex can be considered as the end vertex of Q.

Proof. Suppose that e_1, e_2, e_3, e_4 be four consecutive edges in \mathcal{P} . Let $e_i = \{v_{2i-1}, v_{2i}, v_{2i+1}\},$ $1 \leq i \leq 4$, and $W = \{x_1, \ldots, x_t\}$ and $T = \{1, 2, \cdots, t\}.$

Case 1. For every $1 \le i, j \le t, \{v_1, v_2, x_i\}$ and $\{v_2, v_3, x_j\}$ are red.

Subcase 1. For every $1 \leq k, l \leq t$, the edges $\{v_3, v_4, x_k\}$ and $\{v_4, v_5, x_l\}$ are red.

For each $\{i_1, i_2, i_3, i_4\} \in P_4(T)$, edges, $\{x_{i_1}, v_1, v_2\}$, $\{v_2, x_{i_2}, v_3\}$, $\{v_3, x_{i_3}, v_4\}$, $\{v_4, v_5, x_{i_4}\}$ make a red \mathcal{P}_4^3 with end vertices x_{i_1} and x_{i_4} .

Subcase 2. There exists $1 \leq k \leq t$, such that the edge $\{v_3, v_4, x_k\}$ is blue.

So for each $\{i_1, i_2, i_3, \} \in P_3(T)$ with $k \neq i_2, i_3, \{x_{i_1}, v_1, v_2\}, \{v_2, v_3, x_{i_2}\}, \{x_{i_2}, v_5, v_4\},\$ $\{v_4, v_6, x_{i_3}\}\$ are the edges of a red desired \mathcal{P}_4^3 with end vertices x_{i_1} and x_{i_3} .

Subcase 3. There exists $1 \leq k \leq t$, such that the edge $\{v_4, v_5, x_k\}$ is blue.

If for every $1 \leq i, j \leq t$, the edges $\{v_5, v_6, x_i\}$ and $\{v_6, v_7, x_j\}$ are red, then for every $\{i_1, i_2, i_3, i_4\} \in P_4(T)$ with $i_3 \neq k$, we can find a red copy of \mathcal{P}_5^3 with edges ${x_{i_1}, v_1, v_2}, {v_2, x_{i_2}, v_3}, {v_3, v_4, x_{i_3}}, {x_{i_3}, v_5, v_6}, {v_6, v_7, x_{i_4}}$ and end vertices x_{i_1} and x_{i_4} . Otherwise there exists $1 \leq l \leq t$, such that either $\{v_5, v_6, x_l\}$ or $\{v_6, v_7, x_l\}$ is blue. For the first one, for every $\{i_1, i_2, i_3, i_4\} \in P_4(T)$ with $i_3 \neq k, l$ and $i_4 \neq l$, ${x_{i_1}, v_1, v_2}, {v_2, x_{i_2}, v_3}, {v_3, v_4, x_{i_3}}, {x_{i_3}, v_7, v_6}, {v_6, v_8, x_{i_4}}$ make a red copy of \mathcal{P}_5^3 with end vertices x_{i_1} and x_{i_4} and for the second one, for every $\{i_1, i_2, i_3\} \in P_3(T)$ with $l \neq i_2, i_3$ the edges, $\{x_{i_1}, v_1, v_2, \}, \{v_2, v_3, x_{i_2}\}, \{x_{i_2}, v_6, v_5\}, \{v_5, x_{i_3}, x_l\}$ make a red \mathcal{P}_4^3 with end vertices x_{i_1} and y where $y \in \{x_{i_3}, x_l\}$.

Case 2. For some $1 \leq i \leq t$, $\{v_1, v_2, x_i\}$ is blue.

Subcase 1. For every $1 \leq k, l \leq t$, the edges $\{v_5, v_6, x_k\}$ and $\{v_6, v_7, x_l\}$ are red.

For each $\{i_1, i_2, i_3, i_4\} \in P_4(T)$ with $i_j \neq i, 1 \leq j \leq 4$, the edges, $\{x_{i_1}, x_i, v_3\}$, $\{v_3, x_{i_2}, v_2\}, \{v_2, v_4, x_{i_3}\}, \{x_{i_3}, v_5, v_6\}, \{v_6, v_7, x_{i_4}\}$ make a red \mathcal{P}_5^3 with end vertices y, $y \in \{x_{i_1}, x_i\}$, and x_{i_4} .

Subcase 2. For some $1 \leq k \leq t$, $\{v_5, v_6, x_k\}$ is blue.

In this case, for each $\{i_1, i_2, i_3, i_4\} \in P_4(T)$ with $i_j \neq i, 1 \leq j \leq 4$, and $i_3, i_4 \neq k$, the edges $\{x_{i_1}, x_i, v_3\}$, $\{v_3, x_{i_2}, v_2\}$, $\{v_2, v_4, x_{i_3}\}$, $\{x_{i_3}, v_7, v_6\}$, $\{v_6, v_8, x_{i_4}\}$ make a red \mathcal{P}_5^3 with end vertices $y, y \in \{x_{i_1}, x_i\}$, and x_{i_4} .

Subcase 3. For some $1 \leq k \leq t$, $\{v_6, v_7, x_k\}$ is blue.

In this case, for each $\{i_1, i_2, i_3\} \in P_3(T)$ with $i_j \neq i, 1 \leq j \leq 3$, and $i_2, i_3 \neq k$, the edges $\{x_{i_1}, x_i, v_3\}$, $\{v_3, v_2, x_{i_2}\}$, $\{x_{i_2}, v_4, v_6\}$, $\{v_6, v_5, x_{i_3}\}$ make a red \mathcal{P}_4^3 with end vertices y, $y \in \{x_{i_1}, x_i\}$, and x_{i_3} .

Case 3. For some $1 \leq i \leq t$, $\{v_2, v_3, x_i\}$ is blue.

Subcase 1. For every $1 \leq k, l \leq t$, the edges $\{v_3, v_4, x_k\}$ and $\{v_4, v_5, x_l\}$ are red.

For each $\{i_1, i_2, i_3\} \in P_3(T)$ with $i_j \neq i, 1 \leq j \leq 3, \{x_{i_1}, x_i, v_1\}, \{v_1, v_2, x_{i_2}\},\$ ${x_{i_2}, v_3, v_4}$, ${v_4, v_5, x_{i_3}}$ are the edges of a red \mathcal{P}_4^3 with end vertices $y, y \in \{x_{i_1}, x_i\}$, and x_{i_3} .

Subcase 2. For some $1 \leq k \leq t$, $\{v_3, v_4, x_k\}$ is blue.

In this case, for each $\{i_1, i_2, i_3\} \in P_3(T)$ with $i_j \neq i, 1 \leq j \leq 3$, and $i_2, i_3 \neq k$, the edges, $\{x_{i_1}, x_i, v_1\}$, $\{v_1, v_2, x_{i_2}\}$, $\{x_{i_2}, v_5, v_4\}$, $\{v_4, v_6, x_{i_3}\}$ make a red copy of \mathcal{P}_4^3 with end vertices $y, y \in \{x_{i_1}, x_i\}$, and x_{i_3} .

Subcase 3. For some $1 \leq k \leq t$, $\{v_4, v_5, x_k\}$ is blue.

If for every $1 \leq l, h \leq t$, the edges $\{v_5, v_6, x_l\}$ and $\{v_6, v_7, x_h\}$ are red, then for each $\{i_1, i_2, i_3, i_4\} \in P_4(T)$ with $i_j \neq i, 1 \leq j \leq 4$, and $i_3 \neq k$, the edges, ${x_{i_1}, x_i, v_1}, {v_1, x_{i_2}, v_2}, {v_2, v_4, x_{i_3}}, {x_{i_3}, v_5, v_6}, {v_6, v_7, x_{i_4}}$ make a red \mathcal{P}_5^3 with end vertices $y, y \in \{x_{i_1}, x_i\}$, and x_{i_4} . Otherwise there exists $1 \leq l \leq t$, such that either $\{v_5, v_6, x_l\}$ or $\{v_6, v_7, x_l\}$ is blue. For the first one, for each $\{i_1, i_2, i_3, i_4\} \in P_4(T)$ with $i_j \neq i, 1 \leq j \leq 4, i_3 \neq k, l$ and $i_4 \neq l$, the edges $\{x_{i_1}, x_i, v_1\}, \{v_1, x_{i_2}, v_2\}, \{v_2, v_4, x_{i_3}\},$ ${x_{i_3}, v_7, v_6}$, ${v_6, v_8, x_{i_4}}$ make a red copy of \mathcal{P}_5^3 with end vertices $y, y \in {x_{i_1}, x_i}$ and x_{i_4} . For the second one, for every $\{i_1, i_2, i_3\} \in P_3(T)$ with $i_j \neq i, 1 \leq j \leq 3$, and $i_2, i_3 \neq l$, $\{\{x_{i_1}, x_i, v_1\}, \{v_1, v_2, x_{i_2}\}, \{x_{i_2}, v_4, v_6\}, \{v_6, v_5, x_{i_3}\}\}\$ is the set of the edges of a red \mathcal{P}_4^3 with end vertices $y, y \in \{x_{i_1}, x_i\}$, and x_{i_3} . These observations complete the proof.

3 Main Results

In this section, we prove that $R(\mathcal{P}_n^3, \mathcal{P}_m^3) = 2n + \lfloor \frac{m+1}{2} \rfloor$ for every $n \geq \lfloor \frac{5m}{4} \rfloor$ $\frac{m}{4}$. First we present several lemmas which will be our main tools in establishing the main theorem.

Lemma 4. Assume that $n = \frac{5m}{4}$ $\frac{m}{4}$ and $\mathcal{K}^3_{2n+\lfloor\frac{m+1}{2}\rfloor}$ is 2-edge colored red and blue. If $P = P_{m-1}^3$ is a maximum blue path, then $P_{n-1}^3 \subseteq \overline{\mathcal{F}}_{red}$.

Proof. Let $t = 2n + \left\lfloor \frac{m+1}{2} \right\rfloor$ $\frac{+1}{2}$ and $\mathcal{P} = e_1e_2\dots e_{m-1}$ be a copy of $\mathcal{P}_{m-1}^3 ⊆ \mathcal{F}_{blue}$ with edges $e_i = \{v_1, v_2, v_3\} + 2(i - 1), i = 1, ..., m - 1$. Set $W = V(\mathcal{K}_t^3) \setminus V(\mathcal{P})$. Using Lemma [3](#page-2-0) there is a red path Q_1 with end vertices x_1 and y_1 in $W_1 = W$ between E'_1 and W_1 where $E_1 = \{e_i : i_1 = 1 \leq i \leq 4\}, \ \bar{E}_1 = E_1 \setminus \{e_4\}$ and $E'_1 \in \{E_1, \bar{E}_1\}.$ Set $i_2 = \min\{j : j \in \{i_1 + 3, i_1 + 4\}, e_j \notin E_1'\}, E_2 = \{e_i : i_2 \leqslant i \leqslant i_2 + 3\} \text{ and } \overline{E}_2 = E_2 \setminus \{e_{i_2+3}\}\$ and $W_2 = (W \setminus V(Q)) \cup \{x_1, y_1\}$. Again using Lemma [3](#page-2-0) there is a red path Q_2 between E'_2 and W_2 such that $Q_1 \cup Q_2$ is a red path with end vertices x_2, y_2 in W_2 where $E_2' \in \{E_2, E_2\}$ and again set $i_3 = \min\{j : j \in \{i_2 + 3, i_2 + 4\}, e_j \notin E_2'\}, E_3 = \{e_i : i_3 \leqslant i \leqslant i_3 + 3\},\$ $\bar{E}_3 = E_3 \setminus \{e_{i_3+3}\}\$ and $W_3 = (W \setminus V(Q_1 \cup Q_2)) \cup \{x_2, y_2\}$. Since $|W| \geq m$, using Lemma [3](#page-2-0) by continuing the above process we can partition $E(\mathcal{P}) \setminus \{e_{m-1}\}\$ into classes E_i' th, $|E'_i| \in \{3, 4\}$ and at most one class of size $r \leq 3$ of the last edges such that for each i, there is a red $Q_i = \mathcal{P}_5^3$ (resp. $Q_i = \mathcal{P}_4^3$) between E'_i and W with the properties in Lemma [3](#page-2-0) if $|E'_i| = 4$ (resp. $|E'_i| = 3$) and $\mathcal{P}' = \cup Q_i$ is a red path with end vertices x, y in W. Let $l_1 = |\{i : | E'_i | = 4\}|$ and $l_2 = |\{i : | E'_i | = 3\}|$. So $m - 2 = 4l_1 + 3l_2 + r$, $0 \le r \le 3$ and \mathcal{P}' has $5l_1 + 4l_2$ edges. One can easily check that $5l_1 + 4l_2 \geq \frac{5}{4}$ $\frac{5}{4}(m-2-r)$. Also we have

$$
|W \cap V(\mathcal{P}')| \le 4l_1 + 3l_2 + 1 = m - 1 - r.
$$

Let $T = V(\mathcal{K}^3_t) \setminus (V(\mathcal{P}) \cup V(\mathcal{P}'))$ and suppose that $m = 4k + p$ for some $p, 0 \leqslant p \leqslant 4$. Therefore $|T| \ge r+2$ if $p=0,1$ and $|T| \ge r+1$ if $p=2,3$. Now we consider the following cases.

Case 1. $r = 0$.

Clearly $|T| \geq 1$ and it is easy to see that P' contains at least $n-2$ edges. Let $\{u\} \subseteq T$. The maximality of P implies that the edge $e = \{v_{2m-1}, x, u\}$ is red and hence $\mathcal{P}' \cup \{e\}$ is a red copy of \mathcal{P}_{n-1}^3 .

Case 2. $r = 1$.

In this case, $|T| \geq 2$ and it is easy to see that \mathcal{P}' contains at least $n-3$ edges. Let $\{u, v\} \subseteq T$. Clearly $\mathcal{P}' \cup \{\{v_{2m-2}, x, u\}, \{v_{2m-1}, u, v\}\}\$ is a red copy of \mathcal{P}_{n-1}^3 .

Case 3. $r = 2$.

It is easily seen that $|T| \geq 3$ and P' contains at least $n-5$ edges. Let $T' = \{u, v, w\} \subseteq$ T. Since $V(\mathcal{P}') \cap V(e_{m-3} \cup e_{m-2}) = \emptyset$ $V(\mathcal{P}') \cap V(e_{m-3} \cup e_{m-2}) = \emptyset$ $V(\mathcal{P}') \cap V(e_{m-3} \cup e_{m-2}) = \emptyset$ by Lemma 2 there is a red ϖ_{S} -configuration with $S \subset e_{m-3} \cup e_{m-2}$ and its end vertices in T', say u and v. The maximality of P implies that the edges $\{v_{2m-2}, x, u\}$ and $\{v_{2m-1}, v, w\}$ are red and clearly we have a red \mathcal{P}_{n-1}^3 .

Case 4. $r = 3$.

In this case, for $p \in \{2,3\}$ we have $|T| \geq 4$ and \mathcal{P}' contains at least $n-5$ edges. Using an argument similar to case 3 we can complete the proof. Now let $p \in \{0, 1\}$. Then $|T| \geq 5$ and P' contains at least $n-6$ edges. Set $T' = \{u, v, w, z, t\} \subseteq T$. By Lemma [2,](#page-2-1) there is a ϖ_S -configuration C with $S \subseteq V(e_{m-3} \cup e_{m-2})$ and end vertices in T', say u and v. Clearly $\mathcal{P}' \cup \{\{y, w, v_{2m-2}\}, \{v_{2m-2}, z, t\}, \{v_{2m-1}, t, u\}\} \cup C$ is a red \mathcal{P}_{n-1}^3 . These observations complete the proof.

Lemma 5. Let $n \geqslant \left\lfloor \frac{5m}{4} \right\rfloor$ $\left[\begin{smallmatrix} \frac{m}{4} \end{smallmatrix}\right]$ and $\mathcal{K}^3_{2n+\lfloor \frac{m+1}{2} \rfloor}$ be 2-edge colored red and blue. If $\mathcal{P}^3_{n-1} \subseteq \mathcal{F}_{red}$ be a maximum path, then $\mathcal{P}_m^3 \subseteq \mathcal{F}_{blue}$.

Proof. Let $t = 2n + \left\lfloor \frac{m+1}{2} \right\rfloor$ $\frac{+1}{2}$ and $\mathcal{P} = e_1 e_2 \dots e_{n-1}$ be a copy of $\mathcal{P}_{n-1}^3 \subseteq \mathcal{F}_{red}$ with end edges $e_1 = \{v_1, v_2, v_3\}$ $e_1 = \{v_1, v_2, v_3\}$ $e_1 = \{v_1, v_2, v_3\}$ and $e_{n-1} = \{v_{2n-3}, v_{2n-2}, v_{2n-1}\}.$ By Lemma 1, we may assume that the subhypergraph induced by $V(\mathcal{P})$ does not have a red copy of \mathcal{C}_n^3 . Let $W = V(\mathcal{K}_t^3) \setminus V(\mathcal{P})$ and let $2n - 2 = 5q + h$ where $0 \le h < 5$. Partition the set $V(\mathcal{P}) \setminus \{v_1\}$ into q classes A_1, A_2, \ldots, A_q of size five and one class $A_{q+1} = \{v_{2n-h}, \ldots, v_{2n-2}, v_{2n-1}\}$ of size h if $h > 0$, so that each class contains consecutive vertices of P . Using Lemma [2,](#page-2-1) there is a blue $\overline{\omega}_{S_1}$ -configuration, \overline{c}_1 , with the set of end vertices $E_1 \subseteq W$ and $S_1 \subseteq A_1$. Let $x_1 \in E_1$ and B_1 be a 2-subset of $W \backslash E_1$. Again by Lemma [2,](#page-2-1) there is a blue ϖ_{S_2} -configuration, \bar{c}_2 , with the set of end vertices $E_2 \subseteq (B_1 \cup \{x_1\})$ and $S_2 \subseteq A_2$. If $x_1 \notin E_2$, then let \bar{c}_3 be a blue $\overline{\omega}_{S_3}$ -configuration with the set of end vertices $E_3 \subseteq \{x_1, y, z\}$ and $S_3 \subseteq A_3$ where $y \in B_1$ and $z \in W \setminus (E_1 \cup E_2)$. If $x_1 \in E_2$, then let \bar{c}_3 be a blue ϖ_{S_3} -configuration with the set of end vertices $E_3 \subseteq \{x_2, y, z\}$ and $S_3 \subseteq A_3$ where $x_2 \in E_2 \setminus \{x_1\}$ and $\{y, z\} \subseteq W \setminus (E_1 \cup E_2)$. We continue this process to find the set of $\{\bar{c}_1, \bar{c}_2, \ldots, \bar{c}_{q'}\}$ of configurations. When this process terminate, we have the paths $\mathcal{P}_{l'}$ and $\mathcal{P}_{l'}$ where $l'' \geq l' \geq 0$ and $l'' + l' = 2q'$. Let x'', y'' (resp. x', y' if $l' > 0$) be the end vertices of $\mathcal{P}_{l''}$ (resp. $\mathcal{P}_{l'}$) in W. Let $T = V(\mathcal{K}_t^3) \setminus (V(\mathcal{P}) \cup V(\mathcal{P}_{l'})) \cup V(\mathcal{P}_{l'}))$. Clearly $|T| = \lfloor \frac{m+1}{2} \rfloor$ $\frac{+1}{2}$ | + 1 – $(q' + i)$ where $i = 1$ if $l' = 0$ and $i = 2$ if $l' > 0$. Assume $m = 4k + r$ for some $r, 0 \le r \le 3$. We have the following cases.

Case 1. $r = 0$.

Since $q \ge 2k - 1$, we have $2q' \ge m - 2$. On the other hand, $|W| = \lfloor \frac{m+1}{2} \rfloor$ $\frac{+1}{2}$ | + 1 and so $2q' \leq m$. If $2q' = m$, then $l' = 0$ and so $\mathcal{P}_{l''=m}$ is a blue path. Now we may assume that $2q' = m - 2$, and one can easily check that the vertices $\{v_{2n-3}, v_{2n-2}, v_{2n-1}\}\$ are not used in $\mathcal{P}_{l'} \cup \mathcal{P}_{l'}$. First let $l' = 0$. Then $|T| = 1$ and we may assume $T = \{u\}$. Now using the maximality of P and the fact that $C_n^3 \nsubseteq \mathcal{F}_{red}$, $\mathcal{P}_{l''} \cup \{\{v_{2n-2}, y'', u\}, \{v_{2n-1}, u, v_1\}\}\$ is a blue \mathcal{P}_m^3 . For $l' > 0$, $\mathcal{P}_{l''} \cup \{\{v_{2n-2}, y'', x'\}\} \cup \mathcal{P}_{l'} \cup \{\{v_{2n-1}, y', v_1\}\}\$ is a blue \mathcal{P}_m^3 .

Case 2. $r = 1$.

Since $|W| = \frac{m+1}{2}$ $\frac{+1}{2}$ + 1, 2q' \leqslant m + 1 and if the equality holds, then $l' = 0$. On the other hand, $q \geq 2k$ and so $2q' \geq m-1$. Hence $2q' \in \{m+1, m-1\}$. If $2q' = m+1$, then $l' = 0$ and there is a blue \mathcal{P}_{m+1}^3 . Now let $2q' = m - 1$. If $l' = 0$, then $|T| = 1$, so $T = \{u\}$ and hence $\mathcal{P}_{l''}\cup \{\{v_1, u, y''\}\}\$ is a blue \mathcal{P}_m^3 . If $l' > 0$, then $\mathcal{P}_{l''}\cup \{\{v_1, y'', x'\}\}\cup \mathcal{P}_{l'}\$ is a blue \mathcal{P}_m^3 .

Case 3. $r = 2$.

Using an argument similar to the case 1, we have $2q' \in \{m, m-2\}$ and if $2q' = m$, then $l' = 0$ and we have a blue $\mathcal{P}_{l''=m}$. Again by an argument similar to the case 1 we have a blue \mathcal{P}_m^3 .

Case 4. $r = 3$.

In this case, partition $V(\mathcal{P}) \setminus \{v_1, v_2\}$ into $\lfloor \frac{2n-3}{5} \rfloor$ $\frac{c-3}{5}$ classes of size five and possibly one class of size at most four. Then we repeat the mentioned process in the first of the proof to find blue paths $\mathcal{P}_{l'}$ and $\mathcal{P}_{l'}$ with $l'' \geq l' \geq 0$ and $l'' + l' = 2q'$. Again using a similar argument in case 1, we have $2q' \in \{m+1, m-1, m-3\}$. If $2q' = m+1$, then we have $l' = 0$ and so there is a blue \mathcal{P}_{m+1}^3 . For $2q' = m - 1$, the assertion holds by an argument similar to the case 2. Now let $2q' = m - 3$. If $l' = 0$, then $|T| = 2$, so $T = \{u, v\}$ and hence $\mathcal{P}_{l''} \cup \{\{v_{2n-2}, v_2, y''\}, \{v_{2n-2}, v, u\}, \{u, v_1, v_{2n-1}\}\}\$ is a blue \mathcal{P}_m^3 (note that $\{v_{2n-3}, v_{2n-2}, v_{2n-1}\} \cap V(\mathcal{P}_{l''}) = \emptyset$. If $l' > 0$, then $|T| = 1$, so $T = \{u\}$ and hence $\mathcal{P}_{l''}\cup \{\{v_{2n-2}, v_2, y''\}, \{v_{2n-2}, x', u\}\}\cup \mathcal{P}_{l'}\cup \{\{y', v_1, v_{2n-1}\}\}\$ is a blue \mathcal{P}_m^3 and the proof is completed. **Theorem 6.** For every $n \geqslant \left\lfloor \frac{5m}{4} \right\rfloor$ $\frac{m}{4}$,

$$
R(\mathcal{P}_n^3, \mathcal{P}_m^3) = 2n + \left\lfloor \frac{m+1}{2} \right\rfloor.
$$

Proof. We prove the theorem by induction on $m + n$. The proof of the case $m = n = 1$ is trivial. Suppose that for $m' + n' < m + n$ with $n' \geqslant \lfloor \frac{5m'}{4} \rfloor$ $\frac{m'}{4}$], $R(\mathcal{P}_{n'}^3, \mathcal{P}_{m'}^3) = 2n' + \lfloor \frac{m'+1}{2} \rfloor$. Now, let $n \geqslant |\frac{5m}{4}|$ $\frac{m}{4}$ and let $\mathcal{K}^3_{2n+\lfloor \frac{m+1}{2} \rfloor}$ be 2-edge colored red and blue. We may assume there is no red copy of \mathcal{P}_n^3 and no blue copy of \mathcal{P}_m^3 . Consider the following cases.

Case 1. $n = \left\lfloor \frac{5m}{4} \right\rfloor$ $\frac{m}{4}$.

Since $R(\mathcal{P}_{n-1}^3, \mathcal{P}_{m-1}^3) = 2(n-1) + \lfloor \frac{m}{2} \rfloor < 2n + \lfloor \frac{m+1}{2} \rfloor$ by induction hypothesis, then either there is a $\mathcal{P}_{n-1}^3 \subseteq \mathcal{F}_{red}$ or a $\mathcal{P}_{m-1}^3 \subseteq \mathcal{F}_{blue}$. If we have a red copy of \mathcal{P}_{n-1}^3 , then by Lemma [5](#page-5-0) we have a $\mathcal{P}_m^3 \subseteq \mathcal{F}_{blue}$. Now assume that there is a blue copy of \mathcal{P}_{m-1}^3 . Lemma [4](#page-4-0) implies that $\mathcal{P}_{n-1}^3 \subseteq \mathcal{F}_{red}$ and using Lemma [5](#page-5-0) we have $\mathcal{P}_m^3 \subseteq \mathcal{F}_{blue}$, a contradiction.

Case 2. $n > \left\lfloor \frac{5m}{4} \right\rfloor$ $\frac{m}{4}$.

In this case, $n-1 \geqslant \left\lfloor \frac{5m}{4} \right\rfloor$ $\left[\frac{m}{4}\right]$ and since $R(\mathcal{P}_{n-1}^3, \mathcal{P}_m^3) = 2(n-1) + \left[\frac{m+1}{2}\right] < 2n + \left[\frac{m+1}{2}\right],$ by induction hypothesis we have a $\mathcal{P}_{n-1}^3 \subseteq \mathcal{F}_{red}$. Using Lemma [5](#page-5-0) we have a $\mathcal{P}_m^3 \subseteq \mathcal{F}_{blue}$ and it completes the proof.

Acknowledgments

The authors appreciate the discussions on the subject of this paper with A. Gyárfás. Also the third author would like to thanks Shahrekord University for its support.

References

- [1] L. Gerencsér, A. Gyárfás, On Ramsey-type problems, Ann. Univ. Sci. Budapest, $Eötvös Sect. Math. 10 (1967), 167-170.$
- [2] A. Gyárfás, G. Raeisi, The Ramsey number of loose triangles and quadrangles in hypergraphs, *Electron. J. Combin.* **19** (2012), no. 2, $\#\text{R30}$.
- [3] A. Gyárfás, G. Sárközy, E. Szemerédi, The Ramsey number of diamond-matchings and loose cycles in hypergraphs, *Electron. J. Combin.* **15** (2008), no. 1, $\#R126$.
- [4] P. Haxell, T. Luczak, Y. Peng, V. Rödl, A. Ruciński, M. Simonovits, J. Skokan, The Ramsey number for hypergraph cycles I, J. Combin. Theory, Ser. A, 113 (2006), 67-83.
- [5] S. P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. 1 (1994), Dynamic Surveys, DS1.13 (August 22, 2011).
- [6] S. P. Radziszowski, Ramsey numbers involving cycles, in Ramsey Theory, Yesterday, Today and Tomorrow, A. Soifer ed., Progress in Mathematics 285.