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Abstract

We investigate some repetition problems for a very special class S of strings
called the standard Sturmian words, which have very compact representations in
terms of sequences of integers. Usually the size of this word is exponential with
respect to the size of its integer sequence, hence we are dealing with repetition
problems in compressed strings. An explicit formula is given for the number ρ(w)

of runs in a standard word w. We show that ρ(w)
|w| 6 4

5 for each w ∈ S, and there is

an infinite sequence of strictly growing words wk ∈ S such that limk→∞
ρ(wk)
|wk| = 4

5 .
Moreover, we show how to compute the number of runs in a standard Sturmian
word in linear time with respect to the size of its compressed representation.

1 Introduction

A run (a maximal repetition) is a non-extendable (with the same period) periodic segment
in a string, in which the period repeats at least twice. Runs are important in combinatorics
on words and many practical applications: data compression, computational biology,
pattern-matching and so on. The structure of repetitions is almost completely understood
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for the class of Fibonacci words, see [11], [17], [9]. In this paper we investigate the
structure of runs in class S of standard Sturmian words and give an exact formula and a
tight asymptotic bound for the number of maximal repetitions.

We continue here the work of [6], where it was shown how to compute the number of runs
for block-complete Sturmian words (not all standard Sturmian words have this property)
in linear time with respect to the size of the whole word. We show also the algorithm,
which computes the number of runs in any standard word in linear time with respect to
the size of its compressed representation (the directive sequence), hence in logarithmic
time with respect to the length of the word.

Throughout the paper we use the standard notions of combinatorics on words. In parti-
cular, words are finite sequences over a finite set Σ of letters, called the alphabet. For a
word w = w1w2 . . . wn, by w[i] we denote its i-th letter (namely wi), by w[i..j] the subword
wiwi+1 . . . wj, by |w| its length and by |w|a the number of letters a occurring in w.

The number i is a period of the word w if w[j] = w[i + j] for all i with i+ j 6 |w|. The
minimal period of w will be denoted by period(w). We say that a word w is periodic if

period(w) 6 |w|
2

. A word w is said to be primitive if w is not of the form zk, where z is a
nonempty word and k > 2 is a natural number.

A maximal repetition (a run, in short) in a word w is an interval α = [i..j], such that
w[i..j] = ukv (k > 2) is a nonempty periodic subword of w, where u is of the minimal
length and v is a proper prefix (possibly empty) of u, that can not be extended (neither
w[i− 1..j] nor w[i..j + 1] is a run with the period |u|).

A run α can be properly included as an interval in another run β, but in this case
period(α) < period(β). The value of the run α = [i...j] is the factor val(α) = w[i...j].
When it makes no ambiguity we identify sometimes run with its value and the period
of the run α = [i...j] with the subword w[i..period(w)], called also the generator of the
repetition. The meaning will always be clear from the context. Observe that two different
runs could correspond to the identical subwords, if we disregard their positions. Hence
runs are also called the maximal positioned repetitions.

Example 1. Let w = ababaabababaabababaabababaababaab.
There are 5 runs with the period a:

w[5..6] = a2, w[12..13] = a2, w[19..20] = a2, w[26..27] = a2, w[31..32] = a2,

5 runs with the period ab:

w[1..5] = (ab)2a, w[6..12] = (ab)3a, w[13..19] = (ab)3a,

w[20..26] = (ab)3a, w[27..31] = (ab)2a,

4 runs with the period aba:

w[3..8] = (aba)2, w[10..15] = (aba)2, w[17..22] = (aba)2, w[24..29] = (aba)2,
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4 runs with the period ababa:

w[1..10] = (ababa)2, w[8..17] = (ababa)2,

w[15..24] = (ababa)2, w[22..33] = (ababa)2ab,

and 1 run with the period ababaab: w[1..31] = (ababaab)4aba. Alltogether we have 19
runs, see Figure 1 for comparison.

ba a b a a b a b a b a a b a b a b a a b a b a b a a b a b a a b

baababaababaa babababaabababaababa

a b a b a a b a b a b a a b a b a b a a b a b a b a a b a b a a b

baababaabababaabababaabababaababa

Figure 1: The structure of maximal repetitions for the example binary word.

Denote by ρ(w) the number of runs in the word w and by ρ(n) the maximal number of
runs in the words of length n. The most interesting related open conjecture is:

ρ(n) < n.

In 1999 Kolpakov and Kucherov (see [10]) showed that the number ρ(w) of runs in a
string w is O

(
|w|
)
, but the exact multiplicative constant coefficient is still unknown. The

best known results related to the value of ρ(n) are

0.944542 n 6 ρ(n) 6 1.048 n.

The upper bound is by [3], [4] and the lower bound is by [7], [8], [12]. Table 1 (at the end
of this paper) shows the maximal number of runs and the repetition ratio in all binary
words compared to standard words (to be defined in the next section) for small n.

2 Standard words

A directive sequence is an integer sequence: γ = (γ0, γ1, . . . , γn), where γ0 > 0 and γi > 0
for i = 1, 2, . . . , n. The standard word corresponding to γ, denoted by xn+1 = Sw(γ), is
described by the recurrences of the form:

x−1 = b, x0 = a, . . . , xn = (xn−1)
γn−1xn−2, xn+1 = (xn)γnxn−1. (1)
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The sequence of words {xi}n+1
i=0 is called a standard sequence. Every word occurring in a

standard sequence is a standard word, and every standard word occurs in some standard
sequence. We assume that the standard word given by the empty directive sequence is
the single letter a and Sw(0) = b. The class of all standard words is denoted by S.

Example 2. Consider the directive sequence γ = (1, 2, 1, 3, 1). Then Sw(1, 2, 1, 3, 1) = x5,
where:

x−1 = b; x0 = a;

x1 = (x0)
1 · x−1 = a · b;

x2 = (x1)
2 · x0 = ab · ab · a;

x3 = (x2)
1 · x1 = ababa · ab;

x4 = (x3)
3 · x2 = ababaab · ababaab · ababaab · ababa;

x5 = (x4)
1 · x3 = ababaabababaabababaabababa · ababaab.

For γ0 > 0 we have standard words starting with the letter a and for γ0 = 0 we have
standard words starting with the letter b. In fact the word Sw(0, γ1, . . . , γn) can be
obtained from Sw(γ1, . . . , γn) by switching the letters a and b.

Observe that for even n > 0 the standard word xn has the suffix ba, and for odd n > 0 it
has the suffix ab. Moreover, every standard word consists either of repeated occurrences
of the letter a separated by single occurrences of the letter b or repeated occurrences
of the letter b separated by single occurrences of the letter a. Those letters are called
respectively the repeating letter and the single letter. If the repeating letter is a (letter
b respectively), the word is called the Sturmian word of the type a (type b respectively),
see Definition 6.1.4 in [16] for comparison.

Without loss of generality we consider in this paper the standard Sturmian words of the
type a, therefore we assume that γ0 > 0. The words of the type b can be considered
similarly and all the results hold. For more interesting facts related to combinatorial
structure of standard words see for instance in [1], [2], [13], [14] and [15].

Remark 3. Standard words are a generalization of Fibonacci words, the well known family
of strings. By definition, Fibonacci words are standard words given by directive sequences
of the form γ = (1, 1, . . . , 1).

3 Morphic reduction of standard words

The recurrent definition of standard words from the previous section leads to a simple
characterization by a composition of morphisms. Let γ = (γ0, γ1, . . . , γn) be a directive
sequence. We associate with γ a sequence of morphisms {hi}ni=0, defined as:

hi :

{
a −→ aγib

b −→ a
for 0 6 i 6 n. (2)
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Lemma 4.
For 0 6 i 6 n the morphism hi transforms a standard word into another standard word,
and we have:

Sw(γn) = hn(a),

Sw(γi, γi+1, . . . , γn) = hi
(
Sw(γi+1, γi+2, . . . , γn)

)
.

Proof. We prove the lemma by the induction on the length of the directive sequence.

Recall that the standard word given by the empty directive sequence is a. For |γ| = 1 we
have, by definition of standard words and the morphism hn,

Sw(γn) = aγnb = hn(a).

Assume now that |γ| = k > 2 and for directive sequences shorter than k the statement
holds. Then we have:

Sw(γi, . . . , γn) =
[
Sw(γi, . . . , γn−1)

]γn · Sw(γi, . . . , γn−2)

ind.
=

[
hi

(
Sw(γi+1, . . . , γn−1)

)]γn
· hi
(

Sw(γi+1, . . . , γn−2)
)

= hi

([
Sw(γi+1, . . . , γn−1)

]γn · Sw(γi+1, . . . , γn−2)
)

= hi

(
Sw(γi+1, . . . , γn)

)
,

and this concludes the proof.

Remark 5. As a direct corollary to Lemma 4 we have that for the directive sequence
γ = (γ0, γ1, . . . , γn):

Sw(γ0, γ1, . . . , γn) = h0 ◦ h1 ◦ . . . ◦ hn(a).

Example 6. Consider the directive sequence γ = (1, 2, 1, 3, 1).
We have (compare with Example 2):

Sw(1) = h4(a) = ab

Sw(3, 1) = h3
(
Sw(1)

)
= aaaba

Sw(1, 3, 1) = h2
(
Sw(3, 1)

)
= abababaab

Sw(2, 1, 3, 1) = h1
(
Sw(1, 3, 1)

)
= aabaaabaaabaaabaaba

Sw(1, 2, 1, 3, 1) = h0
(
Sw(2, 1, 3, 1)

)
= ababaabababaabababaabababaababaab.
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Reduction sequence

Observe that the inverse morphism h−1i can be seen as a reduction of the word
wi = Sw(γi, . . . , γn) to wi+1 = Sw(γi+1, . . . , γn). We utilise this approach to reduce the
computation of runs in wi to the same computation in wi+1. Our concept is similar to the
one shown in [6], but is more closely related to the combinatorial structure of standard
words.

Recall that |w|a denotes the number of occurrences of the letters a in the word w. In the
rest of this paper we use the following notation:

Nγ(k) =
∣∣Sw(γk, γk+1, . . . , γn)

∣∣
a
,

Mγ(k) =
∣∣Sw(γk, γk+1, . . . , γn)

∣∣
b
,

(3)

which enables us to simplify the formulas for the number of runs.

Remark 7. The above definition, together with equations (1) and (2), implies:

Nγ(k) = γk Nγ(k + 1) +Nγ(k + 2),

Mγ(k) = Nγ(k + 1).
(4)

Remark 8. Observe that for Fibonacci word Fn the number of the letters a in Fn equals
the length of the word Fn−1, and therefore

Nγ(k) = |Fn−k−1| and Mγ(k) = |Fn−k−2|.

Example 9. Let γ = (1, 2, 1, 3, 1) be a directive sequence. Then we have:

γ Sw(γ) |Sw(γ)|a |Sw(γ)|b
(1) ab Nγ(4) = 1 Mγ(4) = 1

(3, 1) aaaba Nγ(3) = 4 Mγ(3) = 1

(1, 3, 1) abababaab Nγ(2) = 5 Mγ(2) = 4

(2, 1, 3, 1) aabaaabaaabaaabaaba Nγ(1) = 14 Mγ(1) = 5

(1, 2, 1, 3, 1) ababaabababaabababaabababaababaab Nγ(0) = 19 Mγ(0) = 14

The following lemma enables to express the length of any standard word in terms of the
numbers Nγ(k) and Mγ(k).

Lemma 10.
Let w = Sw(γ0, γ1, . . . , γn), A = Nγ(2) and B = Nγ(3). Then

|w| =
(
(γ0 + 1) γ1 + 1

)
A + (γ0 + 1) B.
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Proof. By the definition of Nγ(k) and Mγ(k) we have

|w| = Nγ(0) +Mγ(0) and Mγ(0) = Nγ(1).

By repeated application of the formulas from Equation (3) we obtain:

|w| = Nγ(0) +Nγ(1)

= (γ0 + 1) Nγ(1) +Nγ(2)

=
(
(γ0 + 1) γ1 + 1) Nγ(2) + (γ0 + 1) Nγ(3)

=
(
(γ0 + 1) γ1 + 1) A+ (γ0 + 1) B

and the proof is complete.

4 The formula and the algorithm

In this section we present the formula for the number of runs. The proof of its correctness
is presented later in Section 6. We begin with the definition of some useful zero-one
functions for testing the parity of a nonnegative integer i:

even(i) =

{
1 for even i
0 for odd i

and odd(i) =

{
1 for odd i
0 for even i

,

and for testing if a positive integer i equals 1:

unary(i) =

{
1 for i = 1
0 for i > 1

.

Theorem 11 (Formula for the number of runs in standard words).
Let γ = (γ0, . . . , γn) be a directive sequence and n > 3. The number of runs in a standard
word w = Sw(γ0, . . . , γn) is given by the following formula:

ρ(w) =


2A+ 2B + ∆(γ)− 1 for γ0 = γ1 = 1

(γ1 + 2)A+B + ∆(γ)− odd(n) for γ0 = 1; γ1 > 1

2A+ 3B + ∆(γ)− even(n) for γ0 > 1; γ1 = 1

(2γ1 + 1)A+ 2B + ∆(γ) for γ0 > 1; γ1 > 1

, (5)

where: A = Nγ(2), B = Nγ(3) and ∆(γ) = n− 1− (γ1 + . . .+ γn)− unary(γn).
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The detailed proof of the above theorem is shown in Section 6. The formula presented in
Theorem 11 leads to a simple and fast algorithm for computation of the number of runs
in standard words.

Theorem 12.
We can count the number of runs in any standard word Sw(γ0, . . . , γn) in linear time with
respect to the length of the directive sequence |γ|.

Proof. The formula for the number of runs in standard words from Theorem 11 depends
directly on the components of the directive sequence γ = (γ0, . . . , γn) and the numbers
Nγ(2) and Nγ(3). It is sufficient to prove that we can compute the numbers Nγ(k) for
k = 1, 2, 3 in time O(n). For this purpose we can iterate Equation (1):

Algorithm 1: ComputeNγ(k)

Input: γ = (γ0, . . . , γn)
Output: Nγ(k)

numa := 11

numb := 02

for i := n downto k do3

tmp := numa4

numa := γi ·numa+numb5

numb := tmp6

return numa7

The correctness of the algorithm follows from the following invariant which holds after
each iteration of the main for-loop:

numa equals Nγ(i) (namely the number of letters a in Sw(γi, . . . , γn));

numb equals Mγ(i) = Nγ(i+ 1) (namely the number of letters b in Sw(γi, . . . , γn)).

We start the algorithm with the empty directive sequence describing the word Sw(∅) = a,
hence the initial values of the variables are: numa = 1 and numb = 0.

In each iteration of the for-loop values of Nγ(i) and Mγ(i) are computed from Nγ(i + 1)
and Mγ(i + 1) by a direct application of Equation (4). Therefore, the loop computes
consecutively values:

(
Nγ(n), Mγ(n)

)
,
(
Nγ(n − 1), Mγ(n − 1)

)
, . . . ,

(
Nγ(k), Mγ(k)

)
.

The algorithm performs n− k + 1 iterations of the for loop to compute Nγ(k), hence its
time complexity is O(n), where n denotes the length of the directive sequence γ.

Using Algorithm 1 and applying the formula from Equation (5) we can count the number
of runs in any standard word in linear time with respect to the size of the directive
sequence (logarithmic with respect to the length of the whole word).
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Now we can use the formula from Equation (5) to compute the number of runs in some
example standard words.

Example 13. Let γ = (1, 2, 1, 3, 1) be a directive sequence. We have n = 4 and

Sw(γ) = ababaabababaabababaabababaababaab.

In this case

A = Nγ(2) = 5, B = Nγ(3) = 4, ∆ = (4− 1)− 7− 1 = −5, odd(4) = 0.

Theorem 11 implies:

ρ(w) = (γ1 + 2) A+B + ∆− odd(4)

= 4 A+B − 5

= 19,

see Figure 1 and Example 1 for comparison.

It is known that the number of runs in the n-th Fibonacci word Fn is given by the formula

ρ(Fn) = 2 Fn−2 + 3,

see [11] for the proof. As the next example we derive this formula using Theorem 11.

Example 14. Recall that Fn = Sw(1, 1, . . . 1) (n ones) and in this case Nγ(k) = Fn−k−1.
According to the formula from Theorem 11 we have:

ρ(Fn) = 2 Nγ(2) + 2 Nγ(3) + n− 1− n− 1− 1

= 2 Fn−3 + 2 Fn−4 − 3

= 2 Fn−2 − 3.

5 Asympthotic behaviour of the number of runs

The following lemma gives the bound for the number of runs in standard words described
by the directive sequences of the length at most 2.

Lemma 15 (Estimation for short γ).
Let γ = (γ0, . . . , γn) be a directive sequence, w = Sw(γ) and n 6 2. Then ρ(w) < 4

5
|w|.

Proof. Recall that the standard word given by the empty directive sequence is a and does
not include any repetition. Therefore, we have to consider two cases: |γ| = 1 and |γ| = 2.
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Case 1: First assume that |γ| = 1. Then, γ = (γ0) and

w = Sw(γ0) = aγ0b and |w| = γ0 + 1.

There is one run for γ0 > 1, no run for γ0 = 1 and obviously ρ(w) < 4
5
|w|.

Case 2: Assume now that |γ| = 2. We have γ = (γ0, γ1) and

w = Sw(γ0, γ1) =
(
aγ0b

)γ1a and |w| = (γ0 + 1)γ1 + 1.

The number of runs in w depends on the values of γ0 and γ1 as follows:

ρ(w) =


0 for γ0 = 1, γ1 = 1

1 for γ0 > 1, γ1 = 1

1 for γ0 = 1, γ1 > 1

γ1 + 1 for γ0 > 1, γ1 > 1

.

In each case we have

ρ(w) <
4

5

(
(γ0 + 1)γ1 + 1

)
=

4

5
|w|

and the proof is complete.

Now we are ready to estimate the asymptotic bound for the number of runs in all standard
Sturmian words.

Theorem 16 (Upper bound).
For each standard word w we have ρ(w) 6 4

5
|w|.

Proof. Let γ = (γ0, . . . , γn) be a directive sequence and w = Sw(γ0, ..., γn) be a standard
word. Recall the formula (5) from Theorem 11 and observe that ∆(γ) 6 0.

The case of n 6 2 follows from Lemma 15. It is sufficient to prove the statement for
n > 3. We consider four cases depending on the values of γ0 and γ1.

Case 1: γ0 = γ1 = 1.
We have, due to Lemma 10 and equation (5):

|w| = 3A+ 2B and ρ(w) 6 2 A+ 2 B.

Hence
ρ(w)

|w|
6

2A+ 2B

3A+ 2B
6

4

5
,

due to inequalities A > B > 1. This completes the proof of this case.

Case 2: γ0 = 1; γ1 > 1.
We have, due to Lemma 10 and equation (5):

|w| = (2 γ1 + 1) A+ 2B and ρ(w) 6 (γ1 + 2) A+B.
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Consequently:
ρ(w)

|w|
6

(γ1 + 2) A+B

(2 γ1 + 1) A+ 2B
6

4

5
,

because γ1 > 2 and γ1+2
2 γ1+1

6 4
5
.

Case 3: γ0 > 1; γ1 = 1.
Due to equation (5) and Lemma 10, we have:

ρ(w) 6 2A+ 3B,

|w| =
(

(γ0 + 2) A+ (γ0 + 1) B
)

> 4A+ 3B,

and consequently:

ρ(w)

|w|
6

2A+ 3B

4A+ 3B
6

3A+ 2B

4A+ 3B
6

3

4
<

4

5
.

Case 4: γ0 > 1; γ1 > 1.
In this case, due to equation (5) and Lemma 10, we have:

ρ(w) 6 (2 γ1 + 1) A + 2 B,

|w| =
(
(γ0 + 1) γ1 + 1

)
A + (γ0 + 1) B,

and consequently

ρ(w)

|w|
6

(2 γ1 + 1) A + 2 B(
(γ0 + 1) γ1 + 1

)
A + (γ0 + 1) B

6
(2 γ1 + 1) A + 2 B

(3 γ1 + 1) A + 3 B
6

4

5
,

because
2 γ1 + 1

3 γ1 + 1
6

4

5
.

This completes the proof of the theorem.

The above results give an asymptotic bound for the number of runs in standard words.
Below we construct a strictly growing sequence of standard words to show that this
estimation is tight.

Theorem 17.
For the class S of standard words we have:

sup

{
ρ(w)

|w|
: w ∈ S

}
= 0.8.
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Proof. Let γ = (1, 2, k, k) and wk = Sw(1, 2, k, k). By definition we have

wk =
(

(ababa)k ab
)k
ababa and |wk| = 5k2 + 2k + 5,

and due to Equation (5): ∣∣ρ(wk)
∣∣ = 4k2 − k + 3,

see Figure 2 for the case k = 3. Consequently

lim
k→∞

ρ(wk)

|wk|
= lim

k→∞

4k2 − k + 3

5k2 + 2k + 5
= 0.8,

and this completes the proof.

a b a b a a b a b a a b a b a a b a b a b a a b a b a a b a b a a b a b a b a

a b a b a a b a b a a b a b a a b a b a b a a b a b a a b a b a a b a b a b a a b a

aba

abaabababaababaababaabababaababaababaababa

a b a b a a b a b a a b a b a a b a b a b a a b a b a a b a b a a b a b a b a a b a

abaabababaababaababaabababaababaababaababa

b a a b a b a a b a b a b a

ababaa bababaab

b a a b a b a a b a b a b a

abababaababaab

b a a b a b a a b a b a b a

Figure 2: The structure of runs in the standard word Sw(1, 2, k, k) for k = 3. There are
4k2 − k + 3 = 36 runs.

6 The proof of Theorem 11 (the formula)

This section is devoted to the proof of Theorem 11. We begin with a characterization
of the structure of possible periods of maximal repetitions in standard words. Recall the
recurrent definition given by equation (1) and the words xi defined there.

The following lemma is a version of Theorem 1 in [5] using slightly different notation.

Lemma 18 (Structural Lemma).
The period of each maximal repetition in the standard word Sw(γ0, γ1, . . . , γn) is of the
form (xi)

jxi−1, where 0 6 j < γi.
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To prove the above lemma it is sufficient to show that no factor of the word Sw(γ0, . . . , γn)
that does not satisfy the condition given there could be the generator of some repetition,
see the proof of Theorem 1 in [5] for more details.

The main idea of the proof of Theorem 11 is a partition of the set of all maximal
repetitions in the word Sw(γ0, . . . , γn) into three separate categories depending on the
length of their periods. We say that a run is:

short – if the length of its period does not exceed |x1|,

large – if the length of its period exceeds |x2|,

medium – otherwise.

Denote by ρS(w), ρM(w) and ρL(w) the number of short, medium and large runs in the
word w. respectively.

Example 19. Recall the word w = Sw(1, 2, 1, 3, 1) from Example 1 and the set of its
maximal repetitions. In this case we have:

• 10 short runs (the periods are a and ab),

• 8 medium runs (the periods are aba and ababa),

• 1 large run (the period is ababaab),

see Figure 1 for comparison.

Counting short runs

We start with the computation of the number of short runs. These are runs with the
periods of the form a or a+b. Their number depends on the value of γ0 and γ1.

Lemma 20 (Short Runs).
Let w = Sw(γ0, . . . , γn) be a standard word. The number of short runs in w is given by
the formula:

ρS(w) =


Nγ(2) +Nγ(3)− 1 for γ0 = 1, γ1 = 1

2Nγ(2)− odd(n) for γ0 = 1, γ1 > 1

Nγ(1) +Nγ(3)− even(n) for γ0 > 1, γ1 = 1

Nγ(1) +Nγ(2) for γ0 > 1, γ1 > 1

.

Proof. Short runs are maximal repetitions with periods of the form a or akb. We estimate
the number of runs with periods of each type separately.

the electronic journal of combinatorics 20(1) (2013), #P13 13



Case 1: runs with periods of the form a.

First assume that γ0 > 0. Every run with the period a in Sw(γ0, . . . , γn) equals aγ0 or aγ0+1

and is followed by the single letter b. Due to Lemma 4, every such run in Sw(γ0, . . . , γn)
corresponds to the letter a in Sw(γ1, . . . , γn). Hence in this case we have Nγ(1) runs with
the period a.

Assume now that γ0 = 1. In this case the word Sw(γ0, . . . , γn) consists of the blocks of
two types: ab or aab and only the blocks of the second type include the runs with the
period a. Due to Lemma 4 every such run in Sw(γ0, . . . , γn) corresponds to the letter
b followed by the letter a in Sw(γ1, . . . , γn), hence the number of such runs equals the
number of blocks ba in Sw(γ1, . . . , γn).

Recall that for an even length of the directive sequence |(γ1, . . . , γn)| (n is even) the word
Sw(γ1, . . . , γn) ends with ba and in this case the number of runs with the period a in in
Sw(γ1, . . . , γn) equals the number of the letters b in Sw(γ1, . . . , γn), which is Nγ(2). For
an odd length of the directive sequence |(γ1, . . . , γn)| (n is odd) the word Sw(γ1, . . . , γn)
ends with ab and the last letter b does not correspond to a run in Sw(γ0, . . . , γn). In this
case, the number of runs with the period a in Sw(γ0, . . . , γn) is one less than the number
of the letters b in Sw(γ1, . . . , γn), which is Nγ(2)− 1. Finally, the above reasoning can be
summarized as: {

Nγ(2)− odd(n) for γ0 = 1

Nγ(1) for γ0 > 1
.

Case 2: runs with periods of the form akb.

Notice that, due to Equation (2) and Lemma 4, the runs with the periods aγ0b and
aγ0+1b in the word Sw(γ0, . . . , γn) correspond to the runs with the periods a in the word
Sw(γ1, . . . , γn). Similar argumentation as above shows that the number of such runs in
the word Sw(γ0, . . . , γn) equals:{

Nγ(3)− even(n) for γ1 = 1

Nγ(2) for γ1 > 1
.

Combining the results from the two above cases we conclude the proof of the lemma.

Counting medium runs

Recall that medium runs are maximal repetitions with periods (x1)
kx0 for 0 < k < γ1

and x2, where xi are as in Equation (1). Observe that medium runs appear in standard
words generated by directive sequences of the length at least 3. We have to consider two
cases: the directive sequences of the length 3 and the longer ones. The value of γ0 does
not affect the number of medium runs, hence to simplify calculations we assume in further
proofs that γ0 = 1. We start with counting medium runs in standard words generated by
directive sequences of the length greater than 3.
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Lemma 21 (Medium runs, n > 3).
Let w = Sw(γ0, . . . , γn) be a standard word and n > 3. The number of medium runs in
w is given by the formula:

ρM(w) = Nγ(1)−Nγ(2)− γ1 + 1.

The statement of Lemma 21 is corollary to the following stronger claim:

Claim 22. Let w = Sw(γ0, . . . , γn) be a standard word. There are:

(1) Nγ(2)− 1 runs with the period (x1)
ix0 for each 0 < i < γ1.

(2) Nγ(3) runs with the period x2.

Proof. Point (1)
The word Sw(γ0, . . . , γn) has the form:

(ab)α1a(ab)α2a . . . (ab)αsa ab or (ab)α1a(ab)α2a . . . (ab)αsa,

where 0 < αi 6 (γ1 + 1) and s = Nγ(2), because (due to Lemma 4) every factor (ab)αia in
Sw(γ0, . . . , γn) corresponds to the letter a in Sw(γ2, . . . , γn). For example, see Figure 3,
the word Sw(1, 4, 2, 2) has the form

Sw(1, 4, 2, 2) = (ab)4a(ab)4a(ab)5a(ab)4a(ab)5a.

Each pair of neighboring factors: (ab)αia · (ab)αi+1a produces γ1 − 1 runs with the period
(ab)ka for each 0 < k < γ1. In the word Sw(γ0, . . . , γn) we have Nγ(2)− 1 such pairs and
therefore (Nγ(2)− 1)(γ1 − 1) medium runs with the periods (x1)

kx0 for 0 < k < γ1.

2 2 1 2 2

1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1

1 2

01111101

a b a b

a

a b a b a a b a b a b a b a a b a b a b a b a babababaab

a b a a

a b a b a b a b a a b a b a b a b a a b a b a b a b a b a a b a b a b a

b a

a a b a b a b a b a b a

abababababab a

xxxxx

xxxxxxxxxxxxxxx

xx

x x x x x x x x x x x x

Figure 3: The structure of runs with the periods |x1| < p < |x2| for the word Sw(1, 4, 2, 2)
and its decomposition into words x1, x2 and x0, x1.
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Point (2)
The word Sw(γ0, . . . , γn) can be represented as a sequence of concatenated words x1 and
x2 and has the form:

(a) : xα1
2 x1x

α2
2 x1 . . . x

αs
2 x1x2 or (b) : xβ12 x1x

β2
2 x1 . . . x

βs
2 x1.

For example the word Sw(1, 4, 2, 2) has the decomposition x22x1x
2
2x1x2, see Figure 3.

First assume the case (a). Each run with the period x2 has the form (x2)
kx1. By the

definition of standard words, the factor x1x2 has x2 as a prefix. Therefore, the number
of such runs in Sw(γ0, . . . , γn) equals the number of factors x1 in the decomposition
mentioned above, which (due to Lemma 4) corresponds to the number of the letters b in
Sw(γ2, . . . , γn), namely Nγ(3).

Assume now the case (b). The word Sw(γ0, . . . , γn) has the suffix x1 but in this case we
have βs > 2. Hence the number of runs with the period x2 is the same as in the previous
case.

Proof of Lemma 21. Summing up the formulas from the points (1) and (2) of Claim 22
we obtain:

ρM =
(
Nγ(2)− 1

)
(γ1 − 1) +Nγ(3)

=
(
γ1Nγ(2) +Nγ(3)

)
− Nγ(2)− γ1 + 1

= Nγ(1)−Nγ(2)− γ1 + 1

and this completes the proof of the lemma.

The structure of the medium runs in standard words defined by directive sequences of the
length 3 is slightly different.

Lemma 23 (Medium runs, n=2).
Let w = Sw(γ0, γ1, γ2) be a standard word. The number of medium runs in w is given by
the formula:

ρM(w) = Nγ(1)−Nγ(2)− γ1 + 1− unary(γ2)

Proof. The proof of the case γ2 > 1 uses the same argumentation as the proof of
Lemma 21.

In the case γ2 = 1, the word Sw(γ0, γ1, γ2) has the decomposition

Sw(γ0, γ1, γ2) =
(
aγ0b

)
a · aγ0b = x2 · x1.

There is no run with the period x2, and we have to subtract 1 from the number of the
factors x1 in this case.
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The recurrence for large runs

Recall that the run is called large if it has the period of the length greater than |x2|,
where x2 is as in Equation (1). We reduce the problem of counting large runs to counting
medium runs, using the morphic representation of standard words.

Let h be a morphism and let v = a1a2 . . . ak be the word of the length k. The morphism h
defines the partition of the word w = h(v) into segments h(a1), h(a2),. . . , h(at). These
segments are called the h-blocks. We say that a factor x of the word w is synchronized
with the morphism h in w if and only if each occurrence of x in w starts at the beginning
of some h-block and ends at the end of some h-block. Observe that every factor in w that
is synchronized with h corresponds to some factor in v, hence the morphism h preserves
the structure of the factors that are synchronized with it.

0
h

a a b a a a b a a a b a a a b a a b

aa b a

baababaababaaba

a b a b a a b a b a b a a b a b a b a a b a b a b a a b a b a a b

a

Figure 4: The periods of the medium runs x1x0 = aba and x2 = ababa do not synchro-
nize with the morphism h0 in the word Sw(1, 2, 1, 3, 1), while the period of the large run
x3 = ababaab is synchronized with h0 and corresponds to the medium run with the period
x1x0 = aaba in the word Sw(2, 1, 3, 1).

Example 24. Let w = Sw(1, 2, 1, 3, 1) and v = Sw(2, 1, 3, 1) be standard words and h0
be the morphism defined as:

h0 :

{
a −→ ab

b −→ a
.

Recall that

Sw(1, 2, 1, 3, 1) = h0
(
Sw(2, 1, 3, 1)

)
,

Sw(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab,

Sw(2, 1, 3, 1) = aabaaabaaabaaabaaba.

The factors w[6..8] = aba and w[13..17] = abaab are not synchronized with the mor-
phism h0, because both of them ends in the middle some h0-block. The factor w[22..28]
starts at the beginning of some h0-block and ends at the end of some h0-block, hence is syn-
chronized with the morphism h0. Moreover it corresponds to the factor v[13..16] = aaba,
see Figure 4 for comparison.
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Lemma 25 (Synchronization Lemma).
The periods of large runs in the word Sw(γ0, . . . , γn) are synchronized with the mor-
phism h0.

Proof. Let h0 be the morphism defined as

h0 :

{
a −→ aγ0b

b −→ a
.

Due to Lemma 4 we have

Sw(γ0, . . . , γn) = h0
(
Sw(γ1, . . . , γn)

)
.

Moreover, h0 determines the partition of Sw(γ0, . . . , γn) into h0-blocks of the form aγ0b
and a, see Figure 4 for the partition of Sw(1, 2, 1, 3, 1).

Recall that the period of each large run in the word Sw(γ0, . . . , γn) is of the form (xi)
kxi−1,

where 0 6 k < γi and i > 2. By the definition of standard words the factor (xi)
kxi−1

starts with aγ0b, hence at the beginning of some h0-block.

For even i > 2, the subword (xi)
kxi−1 ends with x1 = aγ0b, hence at the end of some

h0-block, and is obviously synchronized with h0.

For odd i > 2 the factor (xi)
kxi−1 ends with

x3 · x2 = xγ22 x1 · x
γ1
1 x0 = xγ22 · (aγ0b)γ1+1a.

First assume that (xi)
kxi−1 is followed by the block aγ0b. The single letter a at the end of

(xi)
kxi−1 is then the whole h0-block and (xi)

kxi−1 is synchronized with the morphism h0.

Assume now that (xi)
kxi−1 ends with (aγ0b)γ1+1a and is followed by (aγ0−1b), namely it

ends in the middle of some h0-block. In this case we have the occurrence of the factor
(aγ0b)γ1+2 in Sw(γ0, . . . , γn), which is reduced by the morphism h−10 to the factor aγ1+2b in
Sw(γ1, . . . , γn). By the definition standard words, Sw(γ1, . . . , γn) can include only blocks
of two types: the short block – aγ1b and the long block – aγ1+1b, hence we have the
contradiction and the proof is complete.

The following lemma, which is a direct corollary to Synchronization lemma, allows to
reduce the problem of counting the large runs in the word Sw(γ0, . . . , γn) to those in
Sw(γ1, . . . , γn).

Lemma 26 (Recurrence Lemma).
Let w = Sw(γ0, . . . , γn) and v = Sw(γ1, . . . , γn) be standard words. The number of large
runs in w is given by the recurrence

ρL(w) = ρL(v) + ρM(v).
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Proof. The synchronization lemma implies that the morphism defined as in Equation (2)
preserve the structure of long runs in standard words. Recall that Sw(γ0, . . . , γn) is re-
duced by h−10 to Sw(γ1, . . . , γn). Therefore, every large run α in Sw(γ0, . . . , γn) corresponds
to some run β in Sw(γ1, . . . , γn).

Due to Lemma 18, the period of the run α is of the form (xi)
kx−1, where 0 < k 6 γi

and i > 2. The corresponding run β is either large (for i = 2) or medium (for i = 2).
Hence, to compute all large runs in Sw(γ0, . . . , γn) it is sufficient to compute all large and
medium runs in Sw(γ1, . . . , γn).

The statement of the next lemma gives the compact formula for the number of the medium
and the large runs in standard words.

Lemma 27 (Large Runs).
Let w = Sw(γ0, . . . , γn) be a standard word. We have

ρL(w) + ρM(w) = Nγ(1) + n− 1 − (γ1 + . . .+ γn) − unary(γn).

Proof. Due to the formulas from Lemma 21 and Lemma 23 and the recurrence from
Lemma 26 we have

ρL(w) + ρM(w) =
n−2∑
i=0

ρM
(
Sw(γi, . . . , γn)

)
=

(
Nγ(1)−Nγ(2)− γ1 + 1

)
+

...(
Nγ(n− 2)−Nγ(n− 1)− γn−2 + 1

)
+(

Nγ(n− 1)−Nγ(n)− γn−1 + 1− unary(γn)
)
.

Taking into account that Nγ(n) = γn the above formula can be written as

ρL(w) + ρM(w) = Nγ(1) + (n− 1) − (γ1 + . . .+ γn) − unary(γn),

and this concludes the proof.

Now we are ready to prove the formula for the number of runs in standard words given
by Equation (5).

Proof of Theorem 11. Let w = Sw(γ0, . . . , γn) be a standard word. Recall that we divide
the set of all runs in w into three disjoint subsets of short, medium and large runs,
depending on the length of their periods. The number ρ(w) of runs in w equals:

ρ(w) = ρS(w) + ρM(w) + ρL(w),

where ρS(w), ρM(w) and ρL(w) denote the number of short, medium and large runs in w.
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Due to Lemma 20, the number of short runs in w is given by the formula:

ρS(w) =


Nγ(2) +Nγ(3)− 1 for γ0 = 1, γ1 = 1

2Nγ(2)− odd(n) for γ0 = 1, γ1 > 1

Nγ(1) +Nγ(3)− even(n) for γ0 > 1, γ1 = 1

Nγ(1) +Nγ(2) for γ0 > 1, γ1 > 1

.

Moreover, due to Lemma 27, the number of large and medium runs in w is given as:

ρL(w) + ρM(w) = Nγ(1) + n− 1 − (γ1 + . . .+ γn) − unary(γn).

Finally, combining the above formulas, we have:

ρ(w) =


2A+ 2B + ∆(γ)− 1 for γ0 = γ1 = 1

(γ1 + 2)A+B + ∆(γ)− odd(n) for γ0 = 1; γ1 > 1

2A+ 3B + ∆(γ)− even(n) for γ0 > 1; γ1 = 1

(2γ1 + 1)A+ 2B + ∆(γ) for γ0 > 1; γ1 > 1

,

where:
A = Nγ(2) = |Sw(γ2, γ3, . . . , γn)|a,
B = Nγ(3) = |Sw(γ3, γ4, . . . , γn)|a,

∆(γ) = n− 1− (γ1 + . . .+ γn)− unary(γn).

This completes the proof of the theorem.

7 Final remarks

The aim of this paper was to study problems related to maximal repetitions for one of the
most thoroughly investigated class of strings in combinatorics on words – the standard
Sturmian words. We have presented formulas for the numbers of runs along with the
detailed analysis of their asymptotic behaviour. The complete understanding of their
combinatorial structure for a large class of complicated words is a step towards a better
understanding of this problem in general.

The maximal repetition ratio 0.8 for standard words has been first discovered by us
during computer experiments with very long strings. Similarly, we were tuning many
intermediate formulas with the assistance of the computer. Our algorithm for computing
the number of runs in standard words is an example of a very fast computation on highly
compressed texts in linear time with respect to the size of their compressed representation.
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n
All binary words Standard words

ρ(n) ρ(n)/n Example word ρ(n) ρ(n)/n Example word

5 2 0.4 aaabb 1 0.2 ababa
6 3 0.5 aabaab 1 0.1667 aaaaba
7 4 0.5714 aabaabb 3 0.4286 aabaaba
8 5 0.625 aabbaabb 3 0.375 abaababa
9 5 0.5555 aaabbaabb 3 0.3333 aaabaaaba

10 6 0.6 aabaabbaab 4 0.4 aabaabaaba
11 7 0.6364 aabaabbaabb 5 0.4545 aabaaabaaba
12 8 0.6667 aabaabbaabaa 6 0.5 ababaababaab
13 8 0.6154 aaabaabbaabaa 7 0.5385 abaababaababa
14 10 0,7143 aabaabbaabaabb 5 0.3571 abaabaabaababa
15 10 0.6667 aaabaabbaabaabb 6 0.4 aabaaabaaabaaba
16 11 0.6875 aabaabbaabaabbaa 7 0.4375 abababaabababaab
17 12 0.7059 aabaababbabaababb 9 0.5294 ababaababaababaab
18 13 0.7222 aabaabbaabaabbaabb 10 0.5556 aabaaabaabaaabaaba
19 14 0.7368 aabaabbaabaabbaabaa 11 0.5789 ababaabababaababaab
20 15 0.75 aababaababbabaababaa 8 0.4 ababababaababababaab
21 15 0.7143 aaababaababbabaababaa 13 0.619 abaababaabaababaababa
22 16 0.7273 aabaababaababbabaababb 12 0.5454 ababaababaababaababaab
23 17 0.7391 aabaababaababbabaababaa 13 0.5652 abaababaababaababaabaab
24 18 0.75 aabaabbaabaabbabbaabbabb 13 0.5417 aabaabaaabaabaaabaabaaba
25 19 0.76 aabaabbaabaaabaabbaabaabb 14 0.56 aabaaabaabaaabaabaaabaaba
26 20 0.7692 aababaababbabaababaababbab 15 0.5769 ababaabababaabababaababaab
27 21 0.7778 aabaababaababbabaababaababb 16 0.5926 aabaabaaabaabaabaaabaabaaba
28 22 0.7857 aababaababbabaababaababbabaa 16 0.5714 abaababaababaababaababaabaab
29 23 0.7931 aababaababbabaababaababbababb 18 0.6207 ababaababaabababaababaababaab
30 24 0.8 aababbabaababbababbabaababbaba 18 0.6 abaabaababaabaabaababaabaabaab
31 25 0.8065 aababaababbabaababaababbabaabab 20 0.6452 ababaabababaababaabababaababaab

Table 1: The comparison of the maximal number of runs and the repetition ratio for the
class of all binary words and the class of standard words of a given length.
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[15] M. Piątkowski and W. Rytter. The number of cubes in Sturmian words. In Pro-
ceedings of the 17-th Prague Stringology Conference, pages 89–102. Czech Technical
University, 2012.

[16] N. Pytheas Fogg. Substitutions in Dynamics, Arithmetics and Combinatorics, volume
1794 of Lecture Notes in Mathematics. Springer, 2002.

[17] W. Rytter. The structure of subword graphs and suffix trees of Fibonacci words.
Theoretical Computer Science, 363(2):211–223, 2006.

the electronic journal of combinatorics 20(1) (2013), #P13 22


