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Abstract

In this paper, we show that one can associate a pseudoregulus with every scat-
tered linear set of rank 3n in PG(2n − 1, q3). We construct a scattered linear set
having a given pseudoregulus as associated pseudoregulus and prove that there are
q − 1 different scattered linear sets that have the same associated pseudoregulus.
Finally, we give a characterisation of reguli and pseudoreguli in PG(3, q3).

1 Motivation and preliminaries

1.1 Motivation

Linear sets in projective spaces have gained attention in recent years because of their
connection with other geometrical structures (e.g. blocking sets, translation ovoids, . . .).
For an overview of the use of linear sets in these topics, we refer to [15]. The motivation
for the study of the particular linear sets studied in this paper arose from the relation
between linear sets and finite semifields.

In [6] it was shown that to any semifield S of order qnt, with left nucleus containing Fqt

and center containing Fq, there corresponds an Fq-linear set of rank nt in the projective
space PG(n2 − 1, q), disjoint from the (n − 2)-nd secant variety of a Segre variety, and
conversely. This result was previously proved for n = 2 by Lunardon [12], and is crucial
in the classification of semifields with n = 2, t = 2 obtained in [3]. It was applied again in
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[14], where the case n = 2, t = 3 is considered, and the authors prove that there exist eight
non-isotopic families of such semifields, according to the different configurations of the
associated linear sets of PG(3, q3). Also, they prove that to any scattered semifield, there
is associated an Fq-pseudoregulus of PG(3, q3) and they characterise the known examples
of scattered semifields in terms of the associated Fq-pseudoregulus. In this paper, we
show that one can associate an Fq-pseudoregulus to any scattered linear set of rank 3n in
PG(2n− 1, q3). In the case that n = 3, this provides a tool to study symplectic scattered
semifields of order q9, with left nucleus containing Fq3 and center containing Fq. (See
[7], for a study of such semifields when n = 2.) For more applications of the connection
between linear sets and semifields we refer to [8] and the references contained therein.

1.2 Preliminaries

If V is a vector space, then we denote by PG(V ) the corresponding projective space. If V
has dimension n over the finite field Fq with q elements, then we also write PG(n− 1, q).

Let V be an r-dimensional vector space over a finite field F. A set L of points of PG(V )
is called a linear set (of rank t) if there exists a subset U of V that forms a (t-dimensional)
Fq-vector space for some Fq ⊂ F, such that L = B(U), where

B(U) := {〈u〉F : u ∈ U \ {0}}.

If we want to specify the subfield we call L an Fq-linear set.
In other words, if F = Fqn , we have the following diagram

Fr
qn ←→ Frn

q ⊇ U

l l l

B(U) ⊆ PG(r − 1, qn) ←→ PG(rn− 1, q) ⊇ PG(U)

We also use the notation B(π) for the set of points of PG(r − 1, qn) induced by π =
PG(U). Since the points of PG(r − 1, qn) correspond to 1-dimensional subspaces of Fr

qn ,
and by field reduction to n-dimensional subspaces of Frn

q , they correspond to a set D of
(n−1)-dimensional subspaces of PG(rn−1, q), which partitions the point set of PG(rn−
1, q). The set D is called a Desarguesian spread, and we have a one-to-one correspondence
between the points of PG(r−1, qn) and the elements of D. This gives us a more geometric
perspective on the notion of a linear set; namely, an Fq-linear set is a set L of points of
PG(r − 1, qn) for which there exists a subspace π in PG(rn − 1, q) such that the points
of L correspond to the elements of D that have a non-empty intersection with π. Also in
what follows, we will often identify the elements of D with the points of PG(r − 1, qn),
which allows us to view B(π) as a subset of D. To avoid confusion, we denote subspaces
of PG(r− 1, qn) by capital letter and subspaces of PG(rn− 1, q) by lowercase letters. For
more on this approach to linear sets, we refer to [5] and [9].

If the subspace π intersects each spread element in at most a point, then π is called
scattered with respect to D (see [5], [2]). In this case we also call the associated linear set
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B(π) scattered. Note that if π is (t − 1)-dimensional and scattered, then the associated

Fq-linear set B(π) has rank t and has exactly qt−1
q−1 points, and conversely.

In this paper, we will make use of the following bound on the rank of a scattered linear
set, which follows from [2, Theorem 4.3].

Theorem 1. A scattered Fq-linear set in PG(r − 1, qt) has rank 6 rt/2.

Proof. Immediate from the definition and [2, Theorem 4.3].

In this paper, we focus on scattered Fq-linear sets of rank 3n in PG(2n − 1, q3). By
Theorem 1, these scattered linear sets are maximum scattered.

2 Projectively equivalent scattered linear sets

In this section, we show that all scattered Fq-linear sets of rank 3n in PG(2n− 1, q3) are
projectively equivalent.

Desarguesian spreads, introduced in the previous section, are well-known and fre-
quently used in finite geometry. We recall another classic construction of a Desarguesian
spread based on the following lemma (see e.g. [11, Lemma 1]).

Lemma 2. A subspace of PG(hn− 1, qh) of dimension d is fixed by the mapping x 7→ xq

if and only if it intersects the subgeometry PG(hn− 1, q) in a subspace of dimension d.

Now, let Π be an (n − 1)-space, disjoint from the subgeometry ρ = PG(hn − 1, q) of
PG(hn − 1, qh), such that dim〈Π,Πq, . . . ,Πqh−1〉 is maximal, i.e. spans PG(hn − 1, qh).
Let P be a point of Π and let τ(P ) denote the (h− 1)-dimensional subspace generated by
the conjugates of P , i.e., τ(P ) = 〈P, P q, ..., P qh−1〉. Then τ(P ) is fixed by x 7→ xq and so,
by Lemma 2, it intersects PG(hn − 1, q) in an (h − 1)-dimensional subspace over Fq. If
we do this for every point of Π we obtain a Desarguesian (h− 1)-spread of PG(hn− 1, q)
(see Segre [16]). For future reference, we denote this spread by D(Π). Moreover, every
Desarguesian spread can be constructed this way ([16]), and all Desarguesian (h − 1)-
spreads in PG(hn− 1, q) are projectively equivalent (see e.g. [1]).

In order to prove that the Desarguesian spread D(Π) determines the subspace Π up
to conjugacy, we need to introduce the following terminology. A set R of q + 1 mutually
disjoint (n−1)-dimensional subspaces of PG(2n−1, q), such that a line meeting 3 elements
of R, meets all elements of R, is called a regulus (or (n− 1)-regulus). A line meeting each
element of a regulus R is called a transversal of R.

The following theorem is considered as folklore, but, by lack of a reference, we include
a proof.

Theorem 3. If D(Π1) = D(Π2), then Π1 and Π2 are conjugate.

Proof. Let Π1 and Π2 be two different (n − 1)-spaces determining the spread D, and
suppose Π2 is not conjugated to Π1. Then there exist lines L in Π1 and M in Π2 such
that L and M are not conjugated and they determine the same (h−1)-subspread D1 ⊂ D
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in a (2h − 1)-space τ . Let X̄ denote the extension of X ∈ D1 to a subspace over Fqh .

Let m be minimal such that M ⊂ 〈L,Lq, . . . , Lqm−1〉, and choose an X ∈ D1 such that
{xi : i = 0, . . . ,m} is a frame where

xi := X̄ ∩ Lqi , i = 0, . . . ,m− 1 and xm := X̄ ∩M.

Observe that xi = xq
i

0 , for i > 0, and U := 〈x0, . . . , xm〉 is the unique (m − 1)-space
through xm which intersects all lines L,Lq, . . . , Lqm−1

. Now choose a line ` in τ disjoint
from X̄, and let R denote the associated regulus induced by the elements R0, R1, . . . , Rq

of D1 that intersect `. Since x 7→ xq preserves the regulus R, it follows that for each
R ∈ R we have Rq = R (when R ∩ ` 6= ∅) or Rq ∩ R = ∅ (when R ∩ ` = ∅). Also, the
lines L,Lq, . . . , Lqm−1

,M are transversals to the regulus, since each such line intersects the
elements R0, . . . , Rq. The uniqueness of U implies that U ⊂ R for some R ∈ R. But then
x1 = xq0 ∈ R ∩ Rq and R = Rq. This implies that R ∩ ` 6= ∅, and hence R = Rj for some
j ∈ {0, . . . , q}. Since U ⊂ Rj ∩ X̄, this implies that R̄j = X̄, contradicting `∩ X̄ = ∅.

The next theorem generalises Proposition 2.7 from [14], where the theorem is proved
for n = 2.

Theorem 4. All scattered Fq-linear sets of rank 3n in PG(2n−1, q3), spanning the whole
space, are PΓL-equivalent.

Proof. Let L1, L2 be two scattered Fq-linear sets of rank 3n in PG(2n−1, q3), spanning the
whole space. By [9, Theorem 2], for i = 1, 2, there exist a subgeometry ρi ∼= PG(3n−1, q)
of PG(3n− 1, q3), and an (n− 1)-space Πi in PG(3n− 1, q3), with Πi ∩ ρi = ∅, such that

αi(Li) = {〈x,Πi〉/Πi : x ∈ ρi},

for some collineation αi from PG(2n− 1, q3) to PG(3n− 1, q3)/Πi. Suppose 〈Πi,Π
q
i ,Π

q2

i 〉
is a space of dimension d. Then projecting the d-dimensional subspace ρi ∩ 〈Πi,Π

q
i ,Π

q2

i 〉
from Πi gives rise to a scattered linear set of rank d + 1 contained in a projective space
∼= PG(d− n, q3), and hence d > 3n− 1 by Theorem 1.

Since all (3n− 1)-dimensional Fq-subgeometries of PG(3n− 1, q3) are PGL-equivalent
to the canonical subgeometry ρ = {〈(x0, x1, . . . , x3n−1)〉|xj ∈ Fq}, there is, for i = 1, 2 an
element φi of PGL(3n, q3) such that φi(ρi) = ρ. The set

{〈P, P q, P q2〉 ∩ ρ|P ∈ φi(Πi)}, i = 1, 2,

is a Desarguesian 2-spread Di of ρ. Since all Desarguesian 2-spreads of PG(3n − 1, q)

are projectively equivalent, and, by Theorem 3, the spaces Πi,Π
q
i ,Π

q2

i determining Di are
uniquely determined up to conjugacy, this implies that there is an element ψ of PΓL(3n, q3)
such that ψ(D1) = D2 and ψ(φ1(Π1)) = φ2(Π2). Now ξ = φ−12 ◦ ψ ◦ φ1 is an element of
PΓL(3n, q3), and

ξ(ρ1) = (φ−12 ◦ ψ ◦ φ1)(ρ1)

= (φ−12 ◦ ψ)(ρ)

= φ−12 (ρ) = ρ2;
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ξ(Π1) = (φ−12 ◦ ψ ◦ φ1)(Π1)

= φ−12 (φ2(Π1)) = Π2.

Now ξ induces a collineation τ from PG(3n− 1, q3)/Π1 to PG(3n− 1, q3)/Π2 defined
by

τ : 〈x,Π1〉/Π1 7→ 〈ξ(x), ξ(Π1)〉/ξ(Π1) = 〈ξ(x),Π2〉/Π2,

and

τ(α1(L1)) = {〈ξ(x),Π2〉/Π2 : x ∈ ρ1} = {〈y,Π2〉/Π2 : y ∈ ρ2} = α2(L2).

This shows that L1 and L2 are PΓL-equivalent.

3 Scattered linear sets of rank 3n in PG(2n−1, q3) and

the associated pseudoregulus

In this section, we show that we can associate a pseudoregulus to a scattered linear set
of rank 3n in PG(2n − 1, q3) and that there exist exactly two transversal spaces to this
pseudoregulus.

3.1 The (q2 + q + 1)-secants to a scattered linear set

Lemma 5. Let L be a scattered Fq-linear set of rank 3n in PG(2n−1, q3), i.e. L = B(µ),
with µ a (3n− 1)-space of PG(6n− 1, q).

(i) A line of PG(2n− 1, q3) meets L in 0, 1, q + 1 or q2 + q + 1 points.

(ii) Every point of L lies on exactly one (q2 + q + 1)-secant to L and two different
(q2 + q + 1)-secants to L are disjoint.

(iii) If |L∩L| = q2+q+1 for some line L, then L = B(π), for a unique plane π contained
in µ.

Proof. (i) Immediate, since by Theorem 1 every line of PG(2n− 1, q3) meets a scattered
Fq-linear set in a scattered Fq-linear set of rank at most 3.

(ii) By Theorem 1, µ is a maximum scattered space. This implies that if ν is a 3n-
space of PG(6n − 1, q) through µ, then there is at least one line, say `1, contained in ν
such that `1 ⊂ B(p1), for some p1 ∈ µ. Now if there is a second line, say `2, contained in
ν and B(p2) with p2 ∈ µ, then the 3-space 〈`1, `2〉 is contained in ν and meets µ in a plane
π. Hence, by part (i), 〈B(`1),B(`2)〉 meets B(µ) in exactly q2 + q+ 1 points, the set B(π).
If we count the number of pairs (`, ν), where ` is a line contained in an element of B(µ)
and ν is a 3n-space through µ containing `, we get that, on average, such a 3n-space ν
contains q + 1 such lines `.

Now suppose that there is a 3n-space ν containing a set S of more than q + 1 such
lines, say S = {`1, `2, . . . , `s}. If the lines of S span a subspace of dimension at least 5,
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then this subspace meets µ in a scattered space of dimension at least 4 with respect to a
plane-spread in PG(8, q). By Theorem 1, this is a contradiction. If the lines of S span a 4-
dimensional space, then each line of S intersects 〈l1, l2〉, and hence 〈B(`1),B(`2), . . . ,B(`s)〉
corresponds to a line over Fq3 with q3 + q2 + q+ 1 points of L, a contradiction. Hence, all
the lines of S are contained in the 3-space 〈`1, `2〉. But then by [9, Lemma 10], there are
q2 + 1 lines contained in 〈`1, `2〉 inducing an Fq2-subline of 〈B(`1),B(`2)〉, and we get that
2|3, again a contradiction. This implies that every 3n-space through µ contains exactly
q + 1 lines `i with `i ∈ B(pi) for some pi ∈ µ, i = 1 . . . q + 1.

Now let P = B(r) be a point of L = B(µ), where r ∈ µ. Let `1 be a line through r
in B(r), then the 3n-space 〈µ, `1〉 contains q + 1 lines `i with `i ∈ B(pi), pi in µ. As seen
before, this implies that there is a plane through r, contained in 〈B(`1),B(`2)〉 ∩ µ, hence
〈B(`1),B(`2)〉 is a (q2 + q + 1)-secant to L through P . This shows that every point of L
lies on at least one (q2 + q + 1)-secant.

Suppose that two (q2 + q + 1)-secants, M and N , intersect. Then the plane 〈M,N〉
meets L in a scattered linear set of rank at least 5, contradicting Theorem 1. This
concludes the proof of part (ii).

(iii) This follows from the proof of part (ii) where we have shown that every point of µ
lies on a unique plane π ⊂ µ such that B(π) = L∩L, where L is a (q2 + q+ 1)-secant.

Definition 6. Let L be a scattered linear set of rank 3n in PG(2n− 1, q3). In the spirit
of the pseudoregulus defined by Freeman in [4], and extending the definition in [14], we

define the pseudoregulus P associated with L as the set P of q3n−1
q3−1 lines meeting L in

q2 + q + 1 points. The set of points lying on the lines of P is denoted by P̃ .

3.2 The transversal spaces to a pseudoregulus

Let P denote the pseudoregulus associated to a scattered linear set L = B(µ) of rank 3n
in PG(2n− 1, q3).

A subspace whose point set is contained in P̃ and which intersects all lines of P
in at most a point, is called a transversal space to the pseudoregulus P . In this section
(Theorem 10) we prove that there exist exactly two (n−1)-dimensional transversal spaces
to P .

Lemma 7. There exist two disjoint transversal (n− 1)-spaces to P.

Proof. Since L is a scattered linear set of rank 3n in PG(2n − 1, q3), it can be obtained
in the quotient geometry over an (n − 1)-space Π of PG(3n − 1, q3) by considering an
appropriate subgeometry Σ = PG(3n−1, q) disjoint from Π (see [9, Theorem 2]). Since L
is scattered, the space 〈Π,Πq,Πq2〉 is (3n−1)-dimensional, as seen in the proof of Theorem
4. For every P ∈ Π, the plane 〈P, P q, P q2〉 meets Σ in a subplane ∼= PG(2, q). This implies
that the lines 〈P, P q, P q2 ,Π〉/Π are exactly the (q2 + q + 1)-secants to L. Moreover,
Π1 := 〈Πq,Π〉/Π and Π2 := 〈Πq2 ,Π〉/Π are two disjoint (n − 1)-spaces intersecting each
of these (q2 + q + 1)-secants to L, whose point sets are contained in P̃ .

In what follows, Π1 and Π2 denote the transversal spaces constructed in Lemma 7.
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Lemma 8. If P1, P2, P3 are three collinear points in Π1, then the intersection points Qi of
the lines of P through Pi, i = 1, 2, 3, with Π2 are collinear. Moreover, the only points of P̃,
contained in 〈P1, P2, Q1, Q2〉, are the (q3 + 1)2 points on the lines of P in 〈P1, P2, Q1, Q2〉.

Proof. Let Si denote the line of P through Pi, i = 1, 2, and put T1 := 〈P1, P2〉 and
T2 := 〈Q1, Q2〉. By Lemma 5(iii), the point Pi corresponds to a spread element lying
in 〈B(πi)〉, with πi a plane of µ, where L = B(µ). Since the subspace 〈S1, S2, S3〉 has
dimension at most 4 and intersects L in a scattered linear set, it follows from the upper
bound on the dimension of the subspace 〈π1, π2, π3〉 (Theorem 1), that there exists a line
` in µ, meeting π1, π2 and π3. Hence the line L := 〈B(`)〉 meets S1, S2, and S3, and these
lines are contained in the 3-space 〈T1, L〉. Since Π1 and Π2 are disjoint, 〈T1, L〉 meets Π2

in the line T2, and hence Q1, Q2, and Q3 are collinear.
Now, suppose that there is a point R of P , lying in the 3-space 〈T1, T2〉, but not on a

line of P in 〈T1, T2〉, then R lies on a line of P meeting Π1, resp. Π2 in a point R1, resp
R2, not lying on T1 or T2. But then the planes 〈T1, R1〉, and 〈T2, R2〉 must intersect since
both are contained in the 4-space 〈T1, T2, R1, R2〉. This contradicts Π1 ∩ Π2 = ∅.

Theorem 9. All transversal lines to P lie in one of the transversal spaces Π1 or Π2.

Proof. Suppose that there exists a transversal line L = R1R2 to P , not in Π1 or Π2. Let
Si be the line of P through Ri and let Pi, resp. Qi, be the intersection of Si with Π1, resp.
Π2. It follows from Lemma 8 that R1R2 meets the q3 + 1 lines of P that are contained
in the 3-space ρ = 〈P1, P2, Q1, Q2〉. If R1, R2 meets Π1 or Π2, the lines of P in ρ would
intersect, a contradiction. Hence, P1P2, R1R2, Q1Q2 are three disjoint lines in ρ, defining
a regulus R. By Lemma 5(iii) the q3 + 1 lines of P contained in the 3-dimensional space
ρ correspond to q3 + 1 two by two disjoint planes contained in a 5-dimensional subspace
ζ of µ, i.e. they form a plane spread of ζ. Let P = B(r) be a point of L on the line P1Q1

with r ∈ ζ, then connecting r with the q2 + q+1 points of the plane π2 ⊂ ζ corresponding
to the (q2 + q + 1)-secant S2 shows that there are at least q2 + q + 1 lines through P
meeting at least q + 1 lines of the regulus R, a contradiction unless B(ζ) is a line, which
contradicts Theorem 1.

Theorem 10. There are exactly two (n− 1)-dimensional transversal spaces to P.

Proof. This follows immediately from Lemma 7 and Theorem 9.

3.3 The stabiliser of a pseudoregulus

Lemma 11. The stabiliser in PGL(2n, q3) of the pseudoregulus P in PG(2n− 1, q3) acts
transitively on the points of a line of P that do not lie on one of the transversal (n− 1)-
spaces to P.

Proof. Let Π1 and Π2 be the transversal spaces to the pseudoregulus P and let P be a
point on one of the lines L of P but not contained in Πi, i = 1, 2. Let P1, . . . , P2n+1 be
the points of a standard frame of PG(2n− 1, q3), chosen in such a way that P1, . . . , Pn lie
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in Π1, Pn+1 . . . , P2n lie in Π2 and P = P2n+1. It follows that the intersection point Q1 of
the line L with Π1 is 〈e1 + . . . + en〉 and the intersection point Q2 of the line L with Π2

is 〈en+1 + . . . + e2n〉. If Q is a point on L, different from Q1, Q2, then Q has coordinates
〈e1 + . . . + en + s(en + . . . + e2n)〉. It is easy to check that the element φ of PGL(2n, q3)
corresponding to the matrix A = (aij), with aij = 0 if i 6= j, aii = 1 if 1 6 i 6 n and
aii = s if n+ 1 6 i 6 2n, stabilises P and maps P onto Q.

4 The reconstruction of a linear set having a fixed

pseudoregulus

If L is a scattered linear set of rank 3n in PG(2n−1, q3), then we have seen in the previous
section that there exists a unique associated pseudoregulus P . The aim of this section is
to construct a scattered linear set of rank 3n having a given pseudoregulus P as associated
pseudoregulus, and show that there are q − 1 different scattered linear sets of rank 3n
giving rise to the same pseudoregulus P .

Theorem 12. Let L be a scattered linear set of rank 3n in PG(2n− 1, q3).

(i) A plane meets L in 0, 1, q + 1, q2 + q + 1 or q3 + q2 + q + 1 points.

(ii) A plane Γ meeting L in q3 +q2 +q+1 points contains exactly one line with q2 +q+1
points of L.

Proof. (i) Immediate, since a plane meets the scattered linear set L in a scattered linear
set of rank at most 4, by Theorem 1.

(ii) In this case, the plane Γ meets L in a set B(ρ), where ρ has dimension 3. Since a
line of Γ corresponds to a 5-space in PG(8, q) and a 3-space and 5-space always meet in
PG(8, q), all lines of Γ meet L in at least one point. If we denote the number of lines in Γ
meeting L in i points by `i, we get that

∑
i `i = q6+q3+1,

∑
i i`i = (q3+q2+q+1)(q3+1)

and
∑

i i(i− 1)`i = (q3 + q2 + q + 1)(q3 + q2 + q).
If we suppose that all lines meet in 1 or q+1 points, then we obtain that

∑
i(i−1)(i−

(q + 1))`i = 0, a contradiction if we use the previously found values for
∑

i `i,
∑

i i`i and∑
i i(i− 1)`i. Hence, there is a line meeting L in more than q + 1 points, which then, by

Lemma 5(i), meets L in q2+q+1 points. Suppose that L1 and L2 are two different lines in
Π meeting L in q2 + q+ 1 points, then there would be two intersecting (q2 + q+ 1)-secants
to L, a contradiction by Lemma 5(ii).

Remark 13. In the case that n = 2, every plane meets L in q2+q+1 points or q3+q2+q+1
points. This follows also from [2, Theorem 2.4].

Let us fix some more notation. Let P denote a pseudoregulus in PG(2n − 1, q3)
corresponding to the scattered linear set L of rank 3n. Let µ be a (3n − 1)-space such
that B(µ) = L. A (q2 + q+ 1)-secant to L defines a 5-space in PG(6n− 1, q) meeting µ in
a plane. Since every point of L lies on a unique (q2 + q + 1)-secant by Lemma 5(ii), the
(q3n − 1)/(q3 − 1) planes defined in this way determine a spread of µ. Let us denote this
spread by Σ.
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Lemma 14. The spread Σ is Desarguesian.

Proof. As in the proof of Lemma 7, we see that L is the projection of a subgeometry
ρ = PG(3n− 1, q) of PG(3n− 1, q3) from an (n− 1)-space Π onto PG(2n− 1, q3), and the
planes 〈P, P q, P q2〉, with P a point from Π form a Desarguesian spread D in ρ. If we now
return to the spread representation, we get that µ is the projection of ρ from the (3n−1)-
space 〈B(Π)〉. Every plane 〈P, P q, P q2〉, with P on Π corresponds to an 8-dimensional
space, meeting ρ in a plane of D. The projection of this 8-space from 〈B(Π)〉 is a 5-space
λ, meeting µ in a plane. Since λ corresponds to a (q2 + q + 1)-secant, this plane is an
element of the spread Σ. This shows that Σ is the projection of the Desarguesian spread
D, from which the statement follows (see e.g. [5, Theorem 1.5.4]).

Lemma 15. If π1, π2, π3 are planes of Σ defining a regulus with elements π1, . . . , πq+1,
then the 5-spaces 〈B(π1)〉, 〈B(π2)〉, 〈B(π3)〉 determine the regulus with elements 〈B(πi)〉,
i = 1, . . . , q + 1.

Proof. Each plane πi, i = 1, . . . , q+ 1, is contained in some element of the regulus defined
by 〈B(π1)〉, 〈B(π2)〉, 〈B(π3)〉, since a line ` through π1, π2 and π3 meets the elements of the
regulus defined by π1, π2, π3, say `∩πi = {pi}. Now B(p1),B(p2) and B(p3) form a regulus
of the Desarguesian spread D, and the other spread elements in this regulus are B(pi).
Since a line meeting B(pi), i = 1, 2, 3 meets B(pi) for all i = 1, . . . , q+1, B(pi) is contained
in some element of the regulus defined by 〈B(π1)〉, 〈B(π2)〉, 〈B(π3)〉. Since πi and B(pi)
meet in a point, 〈πi,B(pi)〉 is contained in an element of this regulus. The same reasoning
holds for a different transversal line `′, meeting πi in a point p′i, and hence 〈πi,B(p′i)〉 is
contained in an element of this regulus. This implies that 〈B(πi)〉 is an element of the
regulus defined by 〈B(π1)〉, 〈B(π2)〉, 〈B(π3)〉.

Lemma 16. Let q > 2. A set of points S in PG(1, q3), |S| > 3, such that the subline
through any 3 of them is contained in S is either a subline or a full line.

Proof. Let D be the Desarguesian 2-spread of PG(5, q) obtained from PG(1, q3). Suppose
S has at least q+ 2 points, and let ρ1, . . . , ρq+1 be the regulus corresponding to a (q+ 1)-
secant to S and let ρq+2 be a spread element, not in this regulus, corresponding to a point of
S. Let `1 be the transversal line through the point p1 of ρ1 to the regulus ρ1, ρ2, . . . , ρq+1.
Let `2 be the transversal line through p1 of the regulus through ρ1, ρ2 and ρq+2, then
B(`2) ⊂ S by the hypothesis. We will now show that B(〈`1, `2〉) ⊂ S. The plane 〈`1, `2〉
meets ρ2 in a line m. Now every line n in 〈`1, `2〉, not through any of the three points
`1 ∩m, `2 ∩m, `1 ∩ `2, meets `1, `2 and m in a point, and hence, B(n) contains 3 elements
of S. This implies that B(n) ⊂ S for all such lines n. Since q > 2, all lines through one
of the intersection points of m, `1 and `2 now contain at least 3 points of S, hence, this
argument shows that B(〈`1, `2〉) ⊂ S. If S = B(〈`1, `2〉), then this linear set is a linear
set of size q2 + 1 in PG(1, q3), which is not isomorphic to PG(1, q2). By Corollary 13 of
[9], through two points of such a linear set, there is exactly one subline that is completely
contained in this linear set, a contradiction by our assumption on S. Hence, there is an
element ρq+3 of S, not in B(〈`1, `2〉). Repeating the same argument with a transversal
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line `3 through ρ1, ρ2 and ρq+3 and a line of 〈`1, `2〉 shows that B(〈`1, `2, `3〉) ⊂ S, hence,
S is a full line.

Theorem 17. Let q > 2. A line L in PG(2n − 1, q3) meets the point set P̃ of a pseu-
doregulus P in 0, 1, 2, q + 1 or q3 + 1 points. If |L ∩ P̃| = q + 1, then L meets P̃ in a
subline.

Proof. Let L be a line meeting 3 points of P̃ , say P1, P2, P3, and suppose that the points
P1, P2, P3 are not contained in the same line of P . Let ρ1, ρ2, ρ3 be the corresponding
spread elements, then they determine 3 elements of Σ, say π1, π2, π3, and ρi ∈ 〈B(πi)〉. A
line through ρ1, ρ2, ρ3 meets 〈B(π1)〉, 〈B(π2)〉 and 〈B(π3)〉, and by Lemma 15, also 〈B(πi)〉,
i = 4, . . . , q + 1. From this, it follows that the line L meets P̃ in a set of points K such
that the subline through any 3 of them is contained in K. Such a set is either a subline,
or a full line by Lemma 16.

Lemma 18. Let q > 2. Let S̃ be the point set of a set S of q3 + 1 mutually disjoint lines
in PG(3, q3) with the property that the subline through 3 collinear points of S̃ is contained
in S̃. Then a plane Π through a line L of S contains q3 points of S̃, not on L and this
set of q3 points determines a set D of either 1 or q2 + q + 1 directions on L. Moreover,
I ∪D = B(ν), where ν is a 3-space of PG(11, q).

Proof. Since the lines of S are mutually disjoint, the plane Π meets the q3 lines of S,
different from L in a point. Let I = {P1, . . . , Pq3} this set of q3 points. Let D =
{D1, . . . , Dd} be the set of directions determined by the set I. We claim that d = 1 or
d = q2 + q + 1 and that the set I ∪D is an Fq-linear set of rank 4.

Let ρi be the spread element corresponding to Pi. If the q3 points in I are collinear, say
they lie on the line M , then we are in the first case and B(ν) = M = I∪D for all 3-spaces
contained in 〈ρ1, ρ2〉. Otherwise, every line in Π, different from the line L meets S̃ in 0, 1, 2
or q + 1 points by Lemma 16. The line through Pi and Pj, j 6= i, meets L, and hence,
contains a third point of S̃, say Rij. It follows that PiPj meets S̃ in q+ 1 points, forming
a subline. Let `i be the transversal line through a point p1 of ρ1 to the regulus defined
by ρ1, ρi and the spread element corresponding to R1i. We claim that B(〈`2, `3〉) ⊂ S̃.
Each line m in 〈`2, `3〉, for which the points B(`2 ∩ m), B(`3 ∩ m) and 〈B(m)〉 ∩ L are
different points of S̃, induces the subline B(m) contained in S̃ and since q > 2, repeating
this argument for the other lines in 〈`2, `3〉 and m implies that B(〈`2, `3〉) ⊂ S̃. Similarly,
we get that B(〈`i, `j〉) ⊂ S̃ for all i 6= j > 1, hence ν := 〈`2, `3, `4, . . .〉 ⊂ S̃, and ν is a
3-dimensional space, since |I| = q3. If a spread element ρ would intersect ν in more than
a point, every line in Π through the point corresponding to ρ and a point of S̃, would
contain more than q + 1 points of S̃, a contradiction. From this, it follows that B(ν) is
scattered, hence, there are q2 + q + 1 determined directions.

Lemma 19. Let q > 2. A plane through a line L of a pseudoregulus P and a point of P̃,
outside L meets q3 other lines of P in a point, and this set of q3 points determines either
1 or q2 + q + 1 directions on L.
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Proof. Let Π be a plane through one of the lines L of P , and the point R of P̃ , not on L.
Let M be the line of P through R. From Lemma 8, we get that there are exactly q3 + 1
lines of P in 〈L,M〉, and 〈L,M〉 does not contain other points of P̃ . Hence, Π meets
exactly q3 of the lines of P in a point. The statement now follows from Lemma 18.

Lemma 20. Let q > 2. If P is a point of P̃, not on the transversal spaces Π1 and Π2,
then the number of (q + 1)-secants to P̃ through P is q2(q3n−3 − 1)/(q − 1). Moreover, if
L 3 P is a linear set with P as associated pseudoregulus, then each (q + 1)-secant of P
through P is a (q + 1)-secant to L.

Proof. By Lemma 11, we may assume that the point P is contained in the linear set L
defining P̃ . Now |L| = (q3n − 1)/(q − 1) and P lies on a unique (q2 + q + 1)-secant to
L, namely the line S1 of P through P , hence, there are q2(q3n−3 − 1)/(q − 1) (q + 1)-
secants through P to L, which are necessarily also (q + 1)-secants to P̃ by Theorem 9
and Theorem 17. Suppose now that there is a (q + 1)-secant M through P to P̃ which is
not a (q + 1)-secant to L. Then a plane 〈P, S2〉, with S2 a line of P through a point of
M different from P , contains q3 points of L∩ P̃ , not on S2, and q points of M , the plane
〈P, S2〉 contains more than q3 + q2 + q+ 1 points of P̃ , a contradiction by Lemma 19.

Lemma 21. Let q > 2. Let L1 and L2 be two (q + 1)-secants to P̃ through a point P of
P̃. Then the subplane, defined by the intersection of L1 and L2 with P̃ is contained in P̃.

Proof. By Lemma 11, we may assume that the point P is contained in the linear set L
defining P , and from Lemma 20, we get that the (q + 1)-secants to L through P are the
(q + 1)-secants to P̃ . Hence, the subplane, defined by the intersection of L1 and L2 with
P̃ , is the subplane defined by the intersection of L1 and L2 with the linear set L. This
subplane is entirely contained in L, hence, in P̃ .

In the following theorem, we show, given a pseudoregulus, how to construct a linear
set defining this pseudoregulus.

Theorem 22. Let q > 2. Let P be a pseudoregulus in PG(2n−1, q3), let P be a point of P̃,
on the line L of P, not lying on one of the transversal spaces to P. Let T = {L1, L2, . . .}
be the set of (q + 1)-secants through P to P̃, let P (T ) be the set of points on the lines of
T in P̃. Let Πi be the plane 〈L,Li〉, and let Di be the set of directions on L, determined
by the intersection of Πi with P̃. Then Di = D1, for all i, and P (T ), together with the
points of D1 form a linear set L of rank 3n determining the pseudoregulus P.

Proof. By Lemma 20, there are q2(q3n−3 − 1)/(q − 1) lines in T , each defining a subline
through P , that is contained in P̃ . In the spread representation, this implies that there
are q2(q3n−3−1)/(q−1) lines `i through a point x of the spread element corresponding to
P , such that B(`i) ⊂ P̃ . By Lemma 21, B(〈`i, `j〉) ⊂ P̃ , and since the number of (q + 1)-
secants through P is exactly q2(q3n−3 − 1)/(q − 1), this implies that ν := 〈`1, `2, . . .〉 is a
subspace of dimension 3n− 1. Then P (T ) ⊂ B(ν), by construction.

Each plane 〈L,Li〉 contains q3 points of P̃ and q2 (q+1)-secants 〈B(`i1)〉, 〈B(`i2)〉, . . . ,
〈B(`iq2 )〉 through P , and determines a set Di of directions on L. The lines `i1 , . . . , `iq2
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span a subspace νi of ν and each direction of Di is of the form B(y), for some y ∈ νi, and
hence each set of directions Di on L determined by the points of P (T ) is contained in
B(ν)∩L. Since B(ν) intersects L in a linear set, and each Di contains at least q2 + q + 1
points, by Lemma 19, B(ν)∩L is a linear set of rank at least 3. On the other hand, since
B(ν) contains the (q3n− q3)/(q− 1) points of P (T ) and ν has dimension 3n− 1, it follows
that B(ν) is a scattered linear set L of rank 3n and L ∩ L = Di. The scattered linear
set L of rank 3n defines a pseudoregulus P(L), so we need to show that P = P(L). The
(q3n − 1)/(q − 1) points of L all lie on one of the lines of P , hence, a line of P has on
average q2 + q + 1 points of L, and by Lemma 5(i), it is not possible that one of the lines
of P contains more than q2 + q + 1 points of L. This implies that P = P(L).

Corollary 23. Let q > 2. If P is a pseudoregulus, then there are q − 1 scattered linear
sets having P as associated pseudoregulus.

Proof. Counting the number of couples (P,L), where P is a point of the pseudoregulus,
not on one of the transversal spaces and L is a scattered linear set through P having P as
pseudoregulus yields that the number of scattered linear sets having P as pseudoregulus
is equal to q3n−1

q3−1 (q3 − 1) q−1
q3n−1 .

5 A characterisation of reguli and pseudoreguli in

PG(3, q3)

Theorem 24. Let q > 2. Let S̃ be the point set of a set S of q3 + 1 mutually disjoint
lines in PG(3, q3) such that the subline defined by three collinear points of S̃ is contained
in S̃, then S is a regulus or pseudoregulus.

Proof. By Lemma 16, a line meets S̃ in 0, 1, 2, q + 1 or q3 + 1 points.
Case 1: Suppose first that every line meets S̃ in 0, 1, 2 or q3 + 1 points. Let

L be a line of S and let Π be a plane through L. Since Π meets all lines of S and all lines
of S are disjoint, there are exactly q3 points of S̃ in Π, not on L. Let P and Q be two
points of S̃ \L in Π. Since the line PQ has to contain q3 points of S̃ \L, the q3 points of
S̃ in Π are collinear. In this way, we find a line /∈ S contained in S̃, in every of the q3 + 1
planes through L. If two of those lines meet, then the lines of S would not be disjoint, a
contradiction. Hence, we find a set of q3 + 1 mutually disjoint lines S ′, meeting the lines
of S. This shows that S is the opposite regulus to S ′ and vice versa.

Case 2: There is a line M meeting S̃ in exactly q + 1 points. Let P be a
point of M , let L0 be the line of S through P and let L1, . . . , Lq3 be the other lines of

S. A plane 〈Li, P 〉, i = 1, . . . , q3, meets q3 points of S̃ that do not lie on Li. Suppose
that in one of the planes, these q3 points are collinear, say on N , then the plane 〈M,N〉
meets q lines of S in 2 different points, a contradiction since the lines of S are mutually
disjoint. By Lemma 18, this implies that in every plane 〈P,Li〉, there are exactly q2+q+1
(q+1)-secants through P . Let p be a point of the spread element corresponding to P . By
Lemma 18, there is a 3-space νi such that B(νi) ⊂ 〈P,Li〉 ∩ S̃; w.l.o.g. we may choose νi
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through p. Let µi be the plane νi ∩ 〈B(Li)〉. The 3-space νi is the unique 3-space through
p such that B(νi) ⊂ 〈P,Li〉 ∩ S̃ since prj, with rj ∈ µi, is the unique transversal line to
the regulus 〈P,B(rj)〉 ∩ S̃.

The q3 planes µ1, . . . , µq3 are mutually disjoint and satisfy the condition that the line

〈p, x〉, where x is a point on one of the planes µi, corresponds to a subline contained in S̃.
We get that the 3-space 〈p, µi〉 intersects the plane µj for all j non-trivially, and hence,
since the planes µi are mutually disjoint, 〈p, µi〉 and µj meet in a point if i 6= j. This
implies that 〈p, µ1, µ2〉 is 5-dimensional.

We will prove that 〈p, µ1, . . . , µq3〉 is 5-dimensional. W.l.o.g. suppose that µ3 does not
go through the line 〈p, µ1〉 ∩ 〈p, µ2〉.

It is clear that the space ρ := 〈p, µ1, µ2, µ3〉 is at most 6-dimensional, so assume that
ρ is 6-dimensional. Since every plane µi has to meet the spaces 〈p, µ1〉, 〈p, µ2〉, and
〈p, µ3〉, it is clear that if µi is not going through one of the 3 lines `1 := 〈p, µ1〉 ∩ 〈p, µ2〉,
`2 := 〈p, µ1〉 ∩ 〈p, µ3〉 or `3 := 〈p, µ2〉 ∩ 〈p, µ3〉, then µi is contained in 〈p, µ1, µ2, µ3〉. This
means that at least q3− 3q planes µi are in ρ. Let µi be a plane, through one of the lines
`j, j = 1, 2, 3. Repeating the same argument with 3 planes in ρ such that µi is not on the
intersection lines of the cones defined by p and these 3 planes shows that all planes µi are
contained in ρ.

Now let m be a line through p, such that 〈B(m)〉 is not the line L0. Suppose that
m does not meet any of the planes µi. There are q4 + q2 + q + 1 planes through m in ρ
and there are q3(q2 + q + 1) points in ρ contained in one of the planes µi. This implies
that there is a plane ν through m containing at least 3 points lying on one of the planes
µi. Since m does not meet any of the planes µi, the 3 points belong to different planes,
say µ1, µ2 and µ3. Hence, in the plane ν, there are 3 lines n1, n2, n3 through p such
that B(ni) is contained in S̃. Let n4 be a line meeting n1, n2, n3 in different points. As
B(n4) is a subline containing 3 points of S̃, B(π4) is contained in S̃. This implies that
the intersection point p′ := n4 ∩m has necessarily B(p′) contained in a line, say L1 of S.
Since we have assumed that p′ is not on one of the planes µi, p

′ does not lie on µ1 and the
3-space 〈p′, µ〉 is contained in 〈B(L1)〉 ∩ ρ, which means that L1 is entirely contained in
B(ρ). Repeating the same argument for a line meeting n1, n2, n3 in three distinct points
and meeting n4 in a point p′′, different from p′ shows that, if p′′ is not on µi, there is a
second line of S, say L2 contained in B(ρ). But then L1 ∩ B(ρ) = σ1 and L2 ∩ B(ρ) = σ2
with σ1 and σ2 three-spaces in the 6-space ρ. Since σ1 and σ2 necessarily meet in a point,
the lines L1 and L2 meet in a point, a contradiction. This implies that every line through
p in ρ such that 〈B(m)〉 is not the line L0, meets one of the planes µi. There are at least
q5 + q4 + q3 such lines, but as there are only q3 planes and every line through a point of p
and a point of a plane µi contains q points, lying on a plane µi, the number of these lines
is exactly q2(q2 + q + 1), a contradiction. Hence, ρ is 5-dimensional.

Let r be a point of the 5-space ρ, not on one of the q3 planes µi, then there is a line
through r meeting at least 3 different planes of {µi|i = 1, . . . , q3}. This gives rise to a
subline meeting 3 points of S̃, hence, contained in S̃, which implies that B(r) is on the
line L0. We conclude that ρ meets the space 〈B(L0)〉 in a plane.

Now ρ is scattered: suppose that there is a spread element B(π) meeting ρ in a subspace
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π of dimension at least one, then every line through B(π) would contain q2 + 1 points of
S̃, a contradiction. As seen in Lemma 5, the scattered linear set ρ of rank 6 defines a
pseudoregulus in PG(3, q3) and the lines of S are the (q2 + q + 1)-secants to B(ρ), hence,
S is the associated pseudoregulus.
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