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Abstract

For two positive integers n and p, let Lp be the family of labeled n-sets given by

Lp =
{
{(1, `1), (2, `2), . . . , (n, `n)} : `i ∈ [p], i = 1, 2 . . . , n

}
.

Families A and B are said to be cross-intersecting if A ∩ B 6= ∅ for all A ∈ A and
B ∈ B. In this paper, we will prove that for p > 4, if A and B are cross-intersecting
subfamilies of Lp, then |A||B| 6 p2n−2, and equality holds if and only if A and B
are an identical largest intersecting subfamily of Lp.

Keywords: EKR theorem; Intersecting family; cross-intersecting family; labeled
set

1 Introduction

For a positive integer n, let [n] denote the set {1, 2, . . . , n}. Given a set X, by
(
X
k

)
we

denote the set of all k-subsets of X, and let 2X denote the set of all subsets of X. A
family A of sets is said to be t-intersecting if |A∩B| > t for every pair A,B ∈ A. Usually,
A is called intersecting if t = 1.

The Erdős-Ko-Rado Theorem [15] says that if A is an intersecting subfamily of
(

[n]
k

)
where n > 2k, then |A| 6

(
n−1
k−1

)
. This theorem is a central result in extremal set the-

ory and inspires abundant fruits in this field, for an excellent introduction to this we
recommend the survey paper [13].

This theorem has many generalizations, analogs and variations. First, finite sets are
analogous to finite vector spaces ([17, 18, 20]), permutations ([11, 12, 27]) and labeled
sets (signed sets [4, 6] or colored sets [22]), etc. Second, the intersection condition was
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generalized to t-intersection and cross-intersection. Here, families A1,A2, . . . ,Am are
said to be cross-intersecting if A ∩ B 6= ∅ for any A ∈ Ai and B ∈ Aj, i 6= j. Many
authors studied the bound of

∑m
i=1 |Ai| ([19, 5, 6, 7, 8, 9, 10, 29, 30]), and Pyber [25] first

considered the bound of |A||B| for cross-intersecting families A and B. His result was
slightly refined by Matsumoto and Tokushige [24] and Bey [3] as follows.

Theorem 1. If A ⊆
(

[n]
k

)
and B ⊆

(
[n]
`

)
are cross-intersecting with n > max{2k, 2`}, then

|A||B| 6
(
n− 1

k − 1

)(
n− 1

`− 1

)
.

Moreover, the equality holds if and only if A = {A ∈
(

[n]
k

)
: i ∈ A} and B = {B ∈

(
[n]
`

)
:

i ∈ B} for some i ∈ [n], unless n = 2k = 2`.

Tokushige [26] and Ellis, Friedgut and Pilpel [14] generalized the above result to cross-
t-intersecting families of finite sets and cross-t-intersecting subfamilies of the symmetric
group Sn, respectively. This paper provides an analogue of Theorem 1 for families whose
sets we refer to as labeled sets, following [5].

For an n-tuple p = (p1, p2, . . . , pn) such that p1, p2, . . . , pn are positive integers with
p1 6 p2 6 · · · 6 pn, we define the family Lp of labeled sets by

Lp =
{
{(1, `1), (2, `2), . . . , (n, `n)} : `i ∈ [pi], i = 1, 2 . . . , n

}
.

Berge [2] determined the maximum size of intersecting families of labeled n-sets, Liv-
ingston [23] characterized partial optimal intersecting families and Borg [5] completely
solved it by using the shift operator in an inductive argument.

Theorem 2 (Berge, Livingston, Borg). If A is an intersecting subfamily of Lp, then |A| 6
p2p3 · · · pn. When p1 > 3, equality holds if and only if A =

{
{(1, `1), (2, `2), . . . , (n, `n)} :

`i = j
}
, where pi = p1 and j ∈ [p1].

In [5], Borg also determined the upper bound of
∑

16i6m |Ai| for cross-intersecting
subfamilies A1,A2, . . . ,Am of Lp.

In this paper, we consider a special case: p1 = p2 = · · · = pn = p. In this case, we
write Lp as Lp. The main result in this paper is the following theorem.

Theorem 3. Let n and p be two positive integers with p > 4. If A and B are cross-
intersecting families in Lp, then

|A||B| 6 p2n−2,

and equality holds if and only if A = B =
{
{(1, `1), (2, `2), . . . , (n, `n)} : `i = j

}
for some

i ∈ [n] and j ∈ [p].

We will present some preliminary results in the next section, and complete the proof
of the above theorem in Section 3.
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2 Preliminary Results

For the labeled set Lp, we can construct a simple graph, whose vertex set is Lp, and
A,B ∈ Lp are adjacent if and only if A ∩ B = ∅. For convenience, this graph is also
denoted by Lp. Set Γ = Sn o Sp = {(f, g1, g2, . . . , gn) : f ∈ Sn and g1, g2, . . . , gn ∈ Sp}, the
wreath product of the symmetric groups on [n] and [p]. For σ = (f, g1, g2, . . . , gn) ∈ Γ
and {(1, `1), (2, `2), . . . , (n, `n)} ∈ Lp, define

σ({(1, `1), . . . , (n, `n)}) = {(f(1), g1(`1)), . . . , (f(n), gn(`n))}.

Then Γ acts transitively on Lp. In other words, the graph Lp is vertex-transitive. More-
over, every intersecting subfamily of the labeled set Lp corresponds to an independent
set of the graph Lp. In the sequel we shall alternatively use the terms “set” and “graph”
when referring to Lp.

For a graph G, let α(G) denote the independence number of G. Given a subset A of
V (G), we define

NG(A) = {b ∈ V (G) : {a, b} ∈ E(G) for some a ∈ A}

NG(A) = V (G)−NG(A).

If G is clear from the context, for simplicity, we will omit the index G. For B ⊆ V (G), by
G[B] we denote the induced subgraph of G. For short, we abbreviate α(G[B]) to α(B).

For the labeled set Lp we construct another graph L̂p, whose vertex set is the set
{(A,B) ∈ Lp × Lp : A ∩ B 6= ∅}, and (A1, B1) and (A2, B2) are non-adjacent if and only
if A1 ∩ B2 6= ∅ and B1 ∩ A2 6= ∅. By definition it is easy to see that if A and B are
cross-intersecting subfamilies of Lp, then A × B is an independent set of L̂p. Therefore,

|A||B| 6 α(L̂p). To complete the proof of Theorem 3, it suffices to determine the size and

structure of the maximum independent sets in L̂p.
Note that the action of Γ on Lp induces an action on the graph L̂p defined by σ(A,B) =

(σ(A), σ(B)) for σ ∈ Γ and (A,B) ∈ L̂p. For 1 6 i 6 n, set L̂p,i = {(A,B) ∈ Lp × Lp :
|A ∩ B| = i}. Clearly, |A ∩ B| = |σ(A) ∩ σ(B)| holds for all σ ∈ Γ and A,B ∈ Lp, and it

is easy to verify that L̂p,1, L̂p,2, . . . , L̂p,n are all orbits of Γ on L̂p. In other words, every

induced subgraph L̂p,i is vertex-transitive.
In the context of vertex-transitive graphs, the following result named the “no-homo-

morphism lemma” is useful to get bounds on the size of independent sets.

Lemma 4 (Albertson and Collins [1]). Let G and G′ be two graphs such that G is vertex-

transitive and there exists a homomorphism φ : G′ 7→ G. Then α(G)
|V (G)| 6

α(G′)
|V (G′)| , and the

equality holds if and only if for any independent set I of cardinality α(G) in G, φ−1(I) is
an independent set of cardinality α(G′) in G′.

The following Lemma is a variation of the above.
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Lemma 5. (see [11, Theorem 3]) Let G be a vertex-transitive graph, and Ω a transitive

subgroup of Aut(G). Let I be an independent set of G, and let B ⊆ V (G), then |I|
|V (G)| 6

α(B)
|B| . Equality holds if and only if |I ∩ σ(B)| = α(B) holds for all σ ∈ Ω.

Proof. Set D = {σ(B) : σ ∈ Ω} and Du = {D ∈ D : u ∈ D} for u ∈ V (G). Note that
the action of Ω on V (G) is transitive. The size of Du, denoted by r, is independent of
the choice of u. Hence, r|V (G)| = |B||D|. On the other hand, for each D ∈ D, I ∩D is
also an independent set of D, and so |D ∩ I| 6 α(G[B]). Therefore, r|I| 6 α(G[B])|D|.
Combining the above two inequalities gives |I|

|V (G)| 6
α(G[B])
|B| , and equality holds if and only

if |D ∩ I| = α(G[B]) for each D ∈ D.

Since all L̂p,i are vertex-transitive, the above lemma can be applied to them. In more

detail, let K̂ be a subset of L̂p such that K̂ ∩ L̂p,i 6= ∅ for 1 6 i 6 n. Write K̂i = K̂ ∩ L̂p,i
for i ∈ [n]. Then, for any independent set Î of L̂p and i ∈ [n], |Î ∩ L̂p,i| 6 α(L̂p,i), and by

Lemma 5, α(L̂p,i) 6 |L̂p,i|α(K̂i)

|K̂i|
. Therefore,

|Î| =
n∑
i=1

|Î ∩ L̂p,i| 6
k∑
i=1

|L̂p,i|
α(K̂i)
|K̂i|

,

and equality holds if and only if |Î ∩ L̂p,i| = α(L̂p,i) and |Î ∩ L̂p,i ∩ σ(K̂)| = α(K̂i) for all
i = 1, 2, . . . , n and σ ∈ Γ. Equivalently, for each σ ∈ Γ,

|Î ∩ σ(K̂)| =
n∑
i=1

|σ−1(Î) ∩ K̂ ∩ L̂p,i| =
n∑
i=1

α(K̂i) = α(K̂).

We state it as a lemma as follows.

Lemma 6. Let K̂ be a subset of L̂p such that K̂i 6= ∅ for 1 6 i 6 n, where K̂i = K̂ ∩ L̂p,i.
If Î is an independent set of L̂p, then

|Î| 6
n∑
i=1

|L̂p,i|
α(K̂i)
|K̂i|

,

and equality holds if and only if |Î ∩ σ(K̂)| =
∑n

i=1 α(K̂i) = α(K̂) for each σ ∈ Γ.

Arrange the elements

(1, 1), (2, 1), . . . , (n, 1), (1, 2), (2, 2), . . . , (n, 2), . . . , (1, p), (2, p), . . . , (n, p)

in a cycle. Let Ri denote the ith n-interval {(s, j), (s+ 1, j) . . . , (n, j), (1, j + 1), . . . , (s−
1, j+ 1)} of this cycle, where i = n(j− 1) + s with 1 6 s 6 n. Set R = {R1, R2, . . . , Rnp}
and R̂ = {(A,B) ∈ R×R : A ∩ B 6= ∅}. Then, R̂ ⊆ L̂p and R̂i = R̂ ∩ L̂p,i 6= ∅ for each
1 6 i 6 n.
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Clearly, Ri ∩ Rj 6= ∅ if and only if |i − j| < n or |i + np − j| < n for Ri, Rj ∈ R,
and the subgraph of Lp induced by R, which will also be denoted by R, is isomorphic to
the well-known circular graph Circ(n, np). Here, the graph Circ(n, np) has the vertex set
[np], and i and j are not adjacent if and only if |i − j| < n or |np + i − j| < n. Hence,
α(R) = n, and by the well-known result of Katona [21], the maximum independent sets

of R are stars. In the following we will prove that R̂ is the desired subset.
Let A and B be cross-intersecting subfamilies of R. Then, it is obvious that B ⊆

NR(A). For every non-empty A ⊂ V (Circ(n, np))(p > 3), we have proved that if |A| > 2n,
N(A) = ∅; if |A| < 2n, |N(A)| + |A| 6 2n, and equality holds if and only if A =
{i, i+1, . . . , i+ |A|−1} for some i (see [16, Lemma 3.1] or [28, Lemma 2.3]). Therefore, if
A and B are both non-empty, then |A|+ |B| 6 |A|+ |NR(A)| 6 2n. Note that |A||B| = 0
if one of A and B is empty. So we have that |A||B| 6 |A|(2n − |A|) 6 n2, and equality
holds if and only if A and B are some identical maximum independent set ofR. Therefore,
α(R̂) = n2. In the following, we give a stronger result.

Lemma 7. Suppose p > 4. Then

α(R̂) = n2 =
n∑
i=1

α(R̂i),

and Î is a maximum independent set of R̂ if and only if Î = S × S for some maximum
independent set of R.

Proof. For any subsets A,B of R and 1 6 i 6 n, set (A,B)i = |(A × B) ∩ R̂i|. Let S
be a fixed maximum independent set of R and write (S,S)i = ai. Clearly, ai does not

depend on the choice of S, and α(R̂) = n2 =
∑

16i6n ai. To complete the proof, it suffices

to prove that α(R̂i) = ai for each 1 6 i 6 n. To do this, we only need to verify that for

every independent set Î of R̂, |Î ∩ R̂i| 6 ai for 1 6 i 6 n.

Let Î be an independent set of R̂. Then there exists a pair of cross-intersecting
subfamilies C and D of R such that Î ⊆ C × D. Since |C| + |D| 6 2n, we may assume
|C| = s 6 n.

We first consider the simple case when C consists of consecutive elements of R.
Without loss of generality, assume C = {Rn, Rn+1, . . . , Rn+s−1}. For 1 6 t 6 n, set
Ct = {Rn, Rn+1, . . . , Rn+t−1}. Then, D ⊆ N(Cs). For each 1 6 t < n and 1 6 i 6 n, it is
easy to verify that

Ct+1 ×N(Ct+1) = [Ct ×N(Ct+1)] ∪ [{Rn+t} ×N(Ct+1)]

= [Ct ×N(Ct)] ∪ [{Rn+t} ×N(Ct+1)]− [Ct × {Rt}]

and ({Rn+t}, N(Ct+1))i > (Ct, {Rt})i, and consequently we have

(Ct+1, N(Ct+1))i = (Ct, N(Ct))i + ({Rn+t}, N(Ct+1))i − (Ct, {Rt})i > (Ct, N(Ct))i.

Therefore, for 1 6 i 6 n,

(C,D)i 6 (Cs, N(Cs))i 6 (Cs+1, N(Cs+1))i 6 · · · 6 (Cn, N(Cn))i = ai
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because Cn = N(Cn) is a maximum independent set of R.
Now we consider the general case. Without loss of generality, assume R2n ∈ D. Then

C ⊆ N(D) ⊆ N({R2n}) = {Rn+1, Rn+2, . . . , R3n−1}. Suppose C = {Ri1 , Ri2 , . . . , Ris},
where n + 1 6 i1 < i2 < · · · < is 6 3n − 1. Noting p > 4, if Rj ∈ N({Ri1}) ∩N({Ris}),
then it follows from definition that |j − i1| < n and |j − is| < n, that is, is − n+ 1 6 j 6
i1+n−1. Therefore, N({Ri1})∩N({Ris}) = {Ris−n+1, Ris−n+2, . . . , Ri1+n−1} = N(C). Set
C ′ = {Ri1 , Ri1+1, . . . , Ris} and D′ = {Ris−n+1, Ris−n+2, . . . , Ri1+n−1}. Then, C ′ = N(D′),
and the above argument implies that the inequality (C ′,D′)i 6 ai holds for each 1 6 i 6 n.
Note that C ⊆ C ′ and D ⊆ D′. Hence, (C,D)i 6 (C ′,D′)i 6 ai.

Remark. In the above result, the condition that p > 4 is necessary. For example, assume
n = 6 and p = 3, set S = {R1, R2, R3, R4, R5, R6}, C = {R6, R14} and D = {R1, R11}, it
is easy to see that S is a maximum independent set of R and C ×D is an independent set
of R̂, but 2 = (S,S)1 < (C,D)1 = 3 6 α(R̂1), and so

∑6
i=1 α(R̂i) >

∑6
i=1(S,S)i = α(R̂).

3 Proof of Theorem 3

In this section we complete the proof of Theorem 3.

Proof of Theorem 3. Take a maximum independent set S ′ of Lp and set Î ′ = S ′×S ′. Then

Î ′ is an independent set of L̂p with |Î ′| = p2n−2. Note that α(R)
|R| = α(Lp)

|Lp| = |S′|
|Lp| = 1

p
. For

each σ ∈ Γ, Lemma 5 implies |S ′∩σ(R)| = α(R) = n, that is to say, |Î ′∩σ(R̂)| = n2, and

so the equalities |Î ′ ∩ σ(R̂)| = α(R̂) =
∑n

i=1 α(R̂i) hold by Lemma 7. Then, it follows

from Lemma 6 that p2n−2 = |Î ′| =
∑n

i=1 |L̂p,i|
α(R̂i)

|R̂i|
. Therefore, for every independent

set Î of L̂p, we have |Î| 6
∑n

i=1 |L̂p,i|
α(R̂i)

|R̂i|
= p2n−2. Furthermore, the equality holds

if and only if |Î ∩ σ(R̂)| = α(R̂) for all σ ∈ Γ. Then, for each σ ∈ Γ, by Lemma 7,

Î ∩ σ(R̂) = Sσ × Sσ for some maximum independent set Sσ of σ(R). Set S = ∪σ∈ΓSσ.

Noting that the maximality of Î implies that Î = C × D for a pair of cross-intersecting
subfamilies C and D of Lp. Then we have that S is an independent set and S × S ⊆ Î.
On the other hand, it is easy to see that |S ∩ σ(R)| = α(R) holds for all σ ∈ Γ, so

Lemma 5 implies S is a maximum independent set of Lp. Then we obtain Î = S × S
since |Î| = p2n−2 = |S × S|. This completes the proof of Theorem 3.
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Ser. A, 43:85–90, 1986.

[26] N. Tokushige, On cross t-intersecting families of sets, J. Combin. Theory Ser. A, 117:
1167–1177, 2010.
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