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Abstract

The distinguishing chromatic number χD(G) of a graph G is the minimum num-
ber of colours required to properly colour the vertices of G so that the only auto-
morphism of G that preserves colours is the identity. For a graph G of order n, it
is clear that 1 6 χD(G) 6 n, and it has been shown that χD(G) = n if and only if
G is a complete multipartite graph. This paper characterizes the graphs G of order
n satisfying χD(G) = n− 1 or χD(G) = n− 2.

1 Introduction

Unless otherwise specified, this paper uses the notation and terminology of [2]. A labelling
of a graph G is an assignment of labels to the vertices of G. A colouring of G is a special
case of a labelling where no two adjacent vertices share the same label (in this context
we refer to the labels as colours). Note that some authors call such a labelling a proper
colouring whereas in this paper we simply use the term colouring. A labelling of G is
said to be distinguishing provided that no automorphism of G (other than the identity)
preserves the labels. The distinguishing number of G, denoted by D(G), is the minimum
number of labels required to produce a labelling of G that is distinguishing, while the
chromatic number of G, denoted by χ(G), is the minimum number of colours required to
produce a colouring of G. The distinguishing chromatic number of G, denoted by χD(G),
is the minimum number of colours required to produce a distinguishing colouring of G.

The neighbourhood of a vertex v ∈ V (G), denoted by NG(v), is the set of all vertices
of G that are adjacent to v. If x and y are vertices of G, we use the notation x ∼ y if
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xy is an edge of G, and the notation x 6∼ y if xy is not an edge of G. For disjoint sets
A,B ⊆ V (G), we write A ∼ B (respectively A 6∼ B) to mean that for every a ∈ A and
every b ∈ B, a ∼ b (respectively a 6∼ b) holds. In the case that A = {a} we simply write
a ∼ B (respectively a 6∼ B).

A coloured graph is an ordered pair (G, f) where G is a graph and f is a colouring
function mapping vertices of G to a set of colours. A colour class Cr of (G, f) is a set of
all vertices of (G, f) with the same colour r. A singleton (respectively doubleton) colour
class consists of precisely one vertex (respectively two vertices). If f is a colouring of
G, then an automorphism σ of G is called colour preserving if f(σ(v)) = f(v), for every
v ∈ V (G). A vertex v ∈ V (G) is pinned (under the colouring f) if σ(v) = v, for every
colour preserving automorphism σ of G.

A subgraph H of a graph G is said to be induced if for any pair of vertices x and y of
H, xy is an edge of H if and only if xy is an edge of G. If S ⊆ V (G) is the vertex set of
H, then H can be written as G[S] and is said to be induced by S. We use the notation
G\H to denote the induced subgraph G[V (G)\V (H)].

The distinguishing chromatic number has been analyzed (and in some cases computed)
for various classes of graphs, such as paths, cycles, generalized Petersen graphs, hyper-
cubes, interval graphs, planar graphs, trees and bipartite graphs (see [6, 9, 10, 11, 12, 13,
14]). In particular, let Pn denote a path with n vertices and Cn a cycle with n vertices.
It is shown in [6] that

χD(Pn) =

{
2, for n > 2 and n even,
3, for n > 3 and n odd,

and χD(Cn) =

{
3, for n = 3, 5 or n > 7,
4, for n = 4 or n = 6.

(1)

The distinguishing chromatic number has also been discussed in the context of Cartesian
products, graph joins and other binary operations on graphs (see [4, 5, 6, 8]).

An obvious bound on the distinguishing chromatic number of a graph G of order n
is 1 6 χD(G) 6 n. In [6], the graphs that satisfy the upper bound with equality are
characterized.

Theorem 1.1 [6, Theorem 2.3] Let G be a graph of order n. Then χD(G) = n if and
only if G is a complete multipartite graph.

Clearly, any graph G of order n > 2 must satisfy χD(G) > 2. Characterizing graphs
with χD(G) = 2 is an interesting but hard open problem (see [7]). In this paper, we
investigate graphs with large distinguishing chromatic number and in Section 3, we char-
acterize the graphs G of order n that satisfy χD(G) = n− 1 or χD(G) = n− 2. In order
to complete this characterization we present some properties of graphs with large distin-
guishing chromatic number in Section 2. In particular, lower bounds on the distinguishing
chromatic number of induced subgraphs of a graph are given and applied to obtain a list
of forbidden induced subgraphs of graphs G with χD(G) > |V (G)| − 2.
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2 Preliminary results

We first provide an upper bound on χD(G) in terms of the distinguishing chromatic
numbers of a collection of disjoint induced subgraphs of G that span V (G).

Lemma 2.1 Let G be a graph. If V (G) = S1 ∪ S2 ∪ · · · ∪ Sk such that Si ∩ Sj = ∅, for
all i 6= j, then

χD(G) 6
k∑

i=1

χD(G[Si]).

In particular, if H is an induced subgraph of G, then

χD(G) 6 χD(H) + χD(G\H).

Proof. For each i, let fi : Si → {1, 2, . . . , χD(G[Si])} be a distinguishing colouring of
G[Si] using χD(G[Si]) labels. Then the labelling that assigns each vertex v ∈ Si the label
(i, fi(v)) is a distinguishing colouring of G using

∑k
i=1 χD(G[Si]) colours.

One occurrence of equality in Lemma 2.1 is for the join of graphs. In particular, the
join of pairwise disjoint graphs G1, G2, . . . , Gk, denoted by

∨k
i=1Gi, is the graph with

vertex set V (G1)∪V (G2)∪ · · · ∪V (Gk) and edge set E(G1)∪E(G2)∪ · · · ∪E(Gk)∪{xy :
x ∈ V (Gi), y ∈ V (Gj), i 6= j}.

Remark 2.2 [6, Observation 2.1(3)] Let G1, G2, . . . , Gk be pairwise disjoint graphs and
let G =

∨k
i=1Gi. Then

χD(G) =
k∑

i=1

χD(Gi).

An instance where Lemma 2.1 may provide a weak bound is the (disjoint) union
of graphs. In particular, the union of pairwise disjoint graphs G1, G2, . . . , Gk, denoted
by
⋃k

i=1Gi, is the graph with vertex set V (G1) ∪ V (G2) ∪ · · · ∪ V (Gk) and edge set

E(G1) ∪ E(G2) ∪ · · · ∪ E(Gk). For a graph H, we denote
⋃k

i=1H simply as kH.
As in [3], if f and g are two colourings of a graph G, then f and g are said to

be equivalent if there is an automorphism of G that maps (G, f) to (G, g). Let C(G, p)
contain all colourings of G using at most p colours. We use the notation χD(G, p) to denote
the number of equivalence classes in C(G, p) that contain only distinguishing colourings of
G. Note that if p < χD(G), then χD(G, p) = 0. In [3], Cheng looks at the distinguishing
chromatic number of αH, where H is a connected graph.

Remark 2.3 [3, Fact 1(c)] Let G = αH, where H is a connected graph. Then

χD(G) = min{p : χD(H, p) > α}.

This result easily generalizes to the union of an arbitrary collection of pairwise disjoint
graphs. Note that the union of an arbitrary collection of graphs can always be written
in the form

⋃k
i=1 αiGi, where each Gi is connected, and each pair Gi and Gj are non-

isomorphic for every i 6= j.
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Remark 2.4 Let G1, G2, . . . , Gk be pairwise disjoint graphs where each Gi is a connected
graph and each pair Gi and Gj are nonisomorphic for every 1 6 i < j 6 k. If G =⋃k

i=1 αiGi, then

χD(G) = min {p : χD(Gi, p) > αi, for all 1 6 i 6 k} .

If χD(G) is close to |V (G)|, then one may expect χD(H) to be close to |V (H)| for
every induced subgraph H of G. This statement is made precise in the next result.

Lemma 2.5 Let G be a graph, H be an induced subgraph of G and 0 6 t 6 |V (H)|.

(i) If χD(G) > |V (G)| − t, then χD(H) > |V (H)| − t.

(ii) If χD(H) 6 |V (H)| − t, then χD(G) 6 |V (G)| − t.

Proof. Lemma 2.1 implies that

χD(G)− χD(H) 6 χD(G\H) 6 |V (G)| − |V (H)|,

from which (i) and (ii) follow.

Using Lemma 2.5, a list of forbidden induced subgraphs can be obtained for graphs G
of order n that satisfy χD(G) > n− 2.

Notation 2.6 Figures of graphs with dotted lines in this paper represent classes of graphs
obtained by independently replacing each dotted line with either an edge or nonedge. For
example, the class of graphs depicted in Lemma 2.7(F2) consists of five nonisomorphic
graphs.

Lemma 2.7 Let G be a graph of order n. If χD(G) > n − 1, then the following graphs
cannot occur as induced subgraphs of G:

(F1) s s s s
s

�
�
�

A
A
Ap p p p p p p

If χD(G) > n− 2, then the following graphs cannot occur as induced subgraphs of G:
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s s

s
s

s

s

s
�
�
�

�
�
�
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@
@

@
@
@
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���
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HH
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(F3) s
s s

s ss HH
H

���

��
�

HHH

p p p p p p p
p p p p p p p (F4) s

s s
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��
�

H
HHpppppp

p
pppppp
p
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s s
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Proof. The Appendix provides distinguishing colourings (not necessarily optimal) for each
of the graphs in classes (F1)− (F19). The result now follows by Lemma 2.5.

Given a distinguishing colouring f of G, the next lemma provides a lower bound on
the distinguishing chromatic number of a subgraph of G induced by a collection of colour
classes of (G, f).

Lemma 2.8 Let G be a graph and f : V (G)→ {1, 2, . . . , χD(G)} a distinguishing colour-
ing of G. Let Ci be the set of vertices with colour i and A ⊆ {1, 2, . . . , χD(G)}. Then

χD

(
G

[⋃
i∈A

Ci

])
> |A|.

In particular, if S =
⋃
|Ci|=1 Ci, then G[S] is a complete multipartite graph.
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Proof. Let H = G
[⋃

i∈A Ci
]

for some A ⊆ {1, 2, . . . , χD(G)}. To derive a contradiction,
suppose that χD(H) < |A|. Let gH : V (H)→ A be a distinguishing colouring of H using
exactly χD(H) colours. We extend gH to a colouring of G by defining

g(x) =

{
gH(x), if x ∈ H,
f(x), otherwise.

As g colours G with fewer than χD(G) colours, it cannot be distinguishing. Therefore,
there is a nontrivial automorphism σ : V (G) → V (G) that preserves colours of g. Note
that x ∈ V (H) if and only if σ(x) ∈ V (H). Let σH be the restriction of σ to V (H).
Then, σH is a colour preserving automorphism for (H, gH). Since gH is a distinguishing
colouring, it must be that σH is the identity. Therefore, σ pins every vertex in H. Now,
viewing σ as a colour preserving automorphism of (G, f), it must be that σ is the identity
as f is a distinguishing colouring of G. This is a contradiction.

Note that if S =
⋃
|Ci|=1 Ci, then χD(G[S]) > |S|. Thus, by Theorem 1.1, G[S] is a

complete multipartite graph.

The next lemma lists forbidden induced labelled subgraphs in (G, f), when f is a
distinguishing colouring.

Lemma 2.9 Let G be a graph and f : V (G) → {1, 2, . . . , χD(G)} be a distinguishing
colouring of G. Let S be the set of all vertices belonging to singleton colour classes and
suppose Cr is a doubleton colour class with Cr = {x, y}. Then, for any a, b, c ∈ S, the
following induced labelled subgraphs cannot occur in (G, f):

(F20) sb

sa s x
s y (F21) sb

sa s x
s y (F22) sb

sa s x
s y (F23) sb

sa s x
s y@

@
@

(F24) sb

sa s x
s y@

@
@

(F25)

sc

sb

sa s x
s y

�
�
�

(F26)

sc

sb

sa s x
s y

Proof. Let H be one of (F20) − (F23) and suppose H occurs as an induced labelled
subgraph in (G, f). Then by Lemma 2.8 using A = {r, f(a), f(b)}, we have χD(H) > 3, a
contradiction as each of (F20)− (F23) has distinguishing chromatic number two. A similar
argument holds for (F25) and (F26), each of which has distinguishing chromatic number
three.

Let H be the induced subgraph (F24) and f̂ : V (G) → {1, 2, . . . , χD(G), χD(G) +
1}\{f(a), f(b)} the colouring:

f̂(u) =

{
χD(G) + 1, if u = a or b,

f(u), otherwise.
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Since NH(a) 6= NH(b) and NH(x) = NH(y), f̂ pins a and b. But then any colour preserving
automorphism of (G, f̂) is also a colour preserving automorphism of (G, f). Thus, f̂ is a
distinguishing colouring of G using χD(G)− 1 colours, a contradiction.

In reference to Lemma 2.8, the next result provides information about the neighbour-
hoods of pairs of vertices that belong to the same part of the complete multipartite graph
G[S].

Lemma 2.10 Let G be a graph and f : V (G) → {1, 2, . . . , χD(G)} a distinguishing
colouring of G. Let S be the set of all vertices belonging to singleton colour classes and
suppose Cr is a doubleton colour class with Cr = {x, y}. Let u, v ∈ S with u 6∼ v. Then
either

(a) NG[S∪{x,y}](u) = NG[S∪{x,y}](v), or,

(b) u, v belong to a part of G[S] with size exactly two and G[{u, v, x, y}] ∼= 2K2.

Proof. By Lemma 2.9(F23, F24), if u ∼ x and u ∼ y, then (a) is satisfied. By Lemma
2.9(F20, F24), if u 6∼ x and u 6∼ y, then again (a) is satisfied. By Lemma 2.9(F20, F23), if
u ∼ x and u 6∼ y, then we must have either v ∼ x and v 6∼ y, or G[{u, v, x, y}] ∼= 2K2.
In the case that v ∼ x and v 6∼ y, (a) is satisfied. In the case that G[{u, v, x, y}] ∼= 2K2

we have v 6∼ x and v ∼ y. Furthermore, u, v belong to a part of size exactly two in the
graph G[S], for otherwise there is a c with c 6∼ u, c 6∼ v, and hence one of (F20), (F23) or
(F25) from Lemma 2.9 occurs.

3 Graphs with χD(G) = |V (G)|−1 or χD(G) = |V (G)|−2

In this section, we characterize the graphs that satisfy χD(G) = |V (G)| − 1 or χD(G) =
|V (G)| − 2 by using the tools developed in Section 2. First, we define an operation on
graphs that allows us to “blow up” vertices of G by replacing them by copies of arbitrary
graphs. For any graph G with vertices (v1, . . . , vn) and for any collection of vertex disjoint
graphs H1, . . . , Hn, let G(H1, . . . , Hn) denote the graph obtained from G by replacing each
vi with a copy of Hi and replacing each edge vivj by Hi ∨Hj. Note that this operation is
defined and used in [1]. If an Hi is vacuous, i.e., Hi = ∅, then replacing vi by ∅ refers to
deleting vi and all edges incident to it.

We next introduce some notation that allows us to partition the vertices belonging
to singleton colour classes of a coloured graph (G, f) according to their adjacency to
nonsingleton colour classes.

Notation 3.1 Let G be a graph, f a distinguishing colouring of G and S the set of all
vertices belonging to singleton colour classes of (G, f). Let A = V (G)\S. For each
A ⊆ A, define VA = {v ∈ S | v ∼ A, v 6∼ A\A}. Then S can be partitioned as follows:

S =
⋃
A⊆A

VA.
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Furthermore, define HA = G[VA] for each A ⊆ A. If A = {a1, . . . , ak}, we often write
Va1···ak to mean V{a1,...,ak} and Ha1···ak to mean H{a1,...,ak}. In the case that A = ∅, we
simply write V0 and H0.

Theorem 3.2 Let G be a graph of order n > 3. Then χD(G) = n− 1 if and only if G is
the join of a complete multipartite graph (possibly vacuous) with one of the following:

(i) 2K2, or,

(ii) H ∪K1, where H is a complete multipartite graph with at least two parts.

Proof. Observe that by Remarks 2.2 and 2.4, if G is the join of a complete multipartite
graph with one of (i) or (ii), then χD(G) = n− 1.

For the other direction, let G be a graph of order n > 3 and let f be a distinguishing
colouring of G using exactly n − 1 colours. Let S be the set of all vertices belonging to
singleton colour classes and suppose Cr is a doubleton colour class with Cr = {x, y}. Note
that |S| = n − 2 and x 6∼ y. By Lemma 2.8, G[S] is a complete multipartite graph. By
Lemma 2.10, for each part P of G[S], either

(a) NG(u) = NG(v) for every u, v ∈ P , or

(b) |P | = 2 and G[P ∪ {x, y}] ∼= 2K2.

By Lemma 2.7(F5), there is at most one part satisfying (b), say Q where Q could be
vacuous. If Q 6= ∅, then by Lemma 2.7(F1), we have S\Q ∼ Q ∪ {x, y}. Therefore,
G ∼= G[S\Q] ∨ 2K2 and thus, G has the form described in (i).

Otherwise Q = ∅ and every part P of G[S] satisfies (a). As described in Notation 3.1,
define VA and HA for each A ⊆ {x, y}. Note that each of H0, Hx, Hy, Hxy is a complete
multipartite graph and G[S] = H0 ∨Hx ∨Hy ∨Hxy. By Lemma 2.9(F22), at least one of
Vx and Vy is empty. Without loss of generality assume that Vy = ∅. By Lemma 2.9(F21),
H0
∼= Kr, for some r > 0. Thus,

G ∼= Hxy ∨ Ĝ(Kr, Hx, x, y),

where Ĝ with vertices (v0, v1, x, y) is the following labelled graph:

sy

Ĝ(v0, v1, x, y)

sv1 s x
s v0@

@
@

Note that the graph H = G[V0 ∪ Vx ∪ {x}] is a complete multipartite graph. If H
has exactly one part, then Vx = ∅ implying that G is a complete multipartite graph,
contradicting that χD(G) = n − 1. Therefore H has at least two parts and G has the
form described in (ii).
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We now look at possible forms a graph G of order n may have under the condition
χD(G) = n − 2. First, we define two labelled graphs Ĝ1 and Ĝ2 along with a class of
labelled graphs G3 consisting of two nonisomorphic graphs.

s ss
s ss

v6

v5v3

v2 v4v1

Ĝ1(v1, . . . , v6)

��
�

HHH

HH
H

��� s ss
s ss

v6

v5v3

v2 v4v1

Ĝ2(v1, . . . , v6)

���

��
�

H
HH

HH
H

�
��
HHH

J
J
J
J










s
v3

sv2 sv4
s
v5

G3(v1, . . . , v5)

sv1�
��

HHH pppppp
p

The labelled graphs Ĝ1 and Ĝ2 have vertices (v1, . . . , v6) while a labelled graph Ĝ3 belong-
ing to the class G3 has vertices (v1, . . . , v5). The vertices of these graphs will be “blown
up” to obtain graphs with distinguishing chromatic number χD(G) = |V (G)| − 2.

Theorem 3.3 Suppose H1, H2 and H3 are complete multipartite graphs (possibly vacu-
ous) and let r, s > 1 be integers. Let G be a graph of order n > 4 with χD(G) = n − 2.
Then G is the join of a complete multipartite graph (possibly vacuous) and one of the
following:

(i) C6

(iii) 2K2 ∨ 2K2

(v) Ĝ2(H1, v2, v3, v4, v5, v6)

(vii) C5

(ii) 2K3

(iv) Ĝ1(H1, v2, v3, v4, v5, v6)

(vi) P5

(viii) Ĝ3(H1, H2, H3, Kr, Ks), for Ĝ3 ∈ G3

Proof. Let G be a graph of order n > 4 and let f be a distinguishing colouring of G using
exactly n−2 colours. Let S be the set of all vertices belonging to singleton colour classes.

Suppose there is a colour class of (G, f) containing three vertices, say x1, x2, x3. As
f is distinguishing, we have NG(x1) 6= NG(x2), and hence, there is a v ∈ S such that
without loss of generality v ∼ x1 and v 6∼ x2 hold. Now let f̂ be the colouring f with
x2 recoloured by f(v). Note that every colour preserving automorphism σ of (G, f̂) pins
x2 as NG(x2) 6= NG(v) and {x1, x2, x3} forms an independent set in G. Thus, v is also
pinned by σ. As f is distinguishing, both x1 and x3 are pinned by σ. Therefore, every
distinguishing colouring that has a colour class of size three can be transformed into a
distinguishing colouring with two doubleton colour classes.

Suppose Cr and Cs are distinct doubleton colour classes with Cr = {x, y} and Cs =
{w, z}. Note that |S| = n − 4, x 6∼ y and w 6∼ z. By Lemma 2.8, G[S] is a complete
multipartite graph (possibly vacuous). By Lemma 2.10, for each part P of G[S], either

(a) NG(u) = NG(v) for every u, v ∈ P ,

(b) P = {a, b}, G[P ∪ {x, y}] ∼= 2K2, and NG[S∪{w,z}](a) = NG[S∪{w,z}](b),

(c) P = {c, d}, G[P ∪ {w, z}] ∼= 2K2, and NG[S∪{x,y}](c) = NG[S∪{x,y}](d), or
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(d) |P | = 2, G[P ∪ {x, y}] ∼= 2K2, and G[P ∪ {w, z}] ∼= 2K2.

By Lemma 2.7(F5), there is at most one part satisfying (b), say Q, at most one part
satisfying (c), say R, and at most one part satisfying (d), say T , where Q, R and T could
be vacuous. Furthermore, if T 6= ∅, then every other part of G[S] must satisfy (a).

For convenience, we let J1 = G\{w, z} and J2 = G\{x, y}. By Lemma 2.8, we have
χD(J1) > n − 3 and χD(J2) > n − 3. Hence, each of J1 and J2 is either complete
multipartite or one of the graphs in Theorem 3.2.

Case (1): T 6= ∅. In this case, Q = R = ∅. As 2K2 is an induced subgraph of
both J1 and J2, it must be that J1 ∼= 2K2 ∨ G[S\T ] and J2 ∼= 2K2 ∨ G[S\T ], where
G[S\T ] is a complete multipartite graph of order n − 6. Thus, S\T ∼ T ∪ {x, y, w, z}.
Consider G[T ∪ {x, y, w, z}]. By Lemma 2.7(F3, F4, F5, F6), either G ∼= G[S\T ] ∨ C6 or
G ∼= G[S\T ] ∨ 2K3. Thus, G has the form described in (i) or (ii).

For the remainder of the proof we assume that T = ∅.
Case (2): Q 6= ∅ and R 6= ∅. As 2K2 is an induced subgraph of both J1 and J2, it

must be that J1 ∼= 2K2 ∨ G[S\Q] and J2 ∼= 2K2 ∨ G[S\R], where G[S\Q] and G[S\R]
are complete multipartite graphs of order n− 6. Thus, S\(Q∪R) ∼ Q∪R∪ {x, y, w, z}.
Furthermore, Q ∼ {w, z}, R ∼ {x, y} and Q ∼ R. Consider G[Q ∪ R ∪ {x, y, w, z}].
By Lemma 2.7(F2), {x, y} ∼ {w, z}. Hence, G ∼= H ∨ (2K2 ∨ 2K2), for some complete
multipartite graph H, and thus G has the form described in (iii).

Case (3): Q 6= ∅ and R = ∅. Suppose Q = {a, b}. Let f̂ be a recolouring of G using
n − 3 colours obtained by replacing the colour f(a) with f(b). Such a colouring cannot
be distinguishing, and thus there is a colour preserving automorphism σ of (G, f̂) that
maps a to b, x to y and pins every vertex in S\Q. Hence, dG(x) = dG(y) and dG(a) =
dG(b). Let R1 = G[{a, b, w, z}] and R2 = G[{x, y, w, z}]. Note that dR1(a) = dR1(b) and
dR2(x) = dR2(y).

As 2K2 is an induced subgraph of J1 it must be that J1 ∼= 2K2∨G[S\Q], where G[S\Q]
is a complete multipartite graph of order n−6. Hence, S\Q ∼ Q∪{x, y} and each part P
in G[S\Q] satisfies (a). Furthermore, NR1(a) = NR1(b). By Lemma 2.9(F22), there do not
exist vertices u, v in distinct parts of S such that G[{u, v, w, z}] is isomorphic to the graph
in (F22). Thus, we may assume without loss of generality that for every part P of G[S]
(including Q), if P ∼ z then P ∼ w. As R1 6∼= 2K2, J2 is either a complete multipartite
graph or J2 ∼= H2∨ (H3∪{z}) for complete multipartite graphs H2 and H3. Let V̂ consist
of the parts P in G[S\Q] that satisfy P ∼ z and let H = G[V̂ ], Hc = G[(S\Q)\V̂ ]. Given
the structure of J2, the graph G[Hc ∪ {w}] is complete multipartite.

By Lemma 2.7(F6, F7), we require dR1(a) 6= 0 and dR2(x) 6= 0. If dR1(a) = 2 then by
Lemma 2.7(F5, F7) we have dR2(x) = 2. Therefore,

G ∼= H ∨ Ĝ2(G[Hc ∪ {w}], a, x, b, y, z),

and thus G has the form given in (v).
Now, suppose dR1(a) = 1. Then Q ∼ w, otherwise Q ∼ z would imply Q ∼ w

contradicting that dR1(a) = 1. By Lemma 2.7(F13), it must be the case that dR2(x) = 1.
By Lemma 2.7(F9), we have either w ∼ {x, y} or z ∼ {x, y}. In the case that w ∼ {x, y},

G ∼= H ∨ Ĝ1(G[Hc ∪ {w}], a, x, b, y, z),
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and thus G has the form given in (iv). Otherwise, z ∼ {x, y} and by Lemma 2.7(F14) we
have Hc = ∅, that is, S\Q ∼ Q ∪ {x, y, w, z}. Therefore, G ∼= H ∨ C6, and thus G has
the form described in (i).

Case (4): Q = ∅ and R 6= ∅. This case is symmetric to Case (3).
For the remainder of the proof, we may assume that Q = R = ∅.
Case (5): In this case, every part P of G[S] satisfies (a). As described in Notation

3.1, define VA and HA for each A ⊆ {x, y, w, z}. Note that each such HA is a complete
multipartite graph, and furthermore, since each part of G[S] satisfies (a) we have

G[S] =
∨

A⊆{x,y,w,z}

G[HA].

By Lemma 2.9(F22), it must be the case that

|Vx ∪ Vxw ∪ Vxz ∪ Vxwz| · |Vy ∪ Vyw ∪ Vyz ∪ Vywz| = 0

and
|Vw ∪ Vxw ∪ Vyw ∪ Vxyw| · |Vz ∪ Vxz ∪ Vyz ∪ Vxyz| = 0.

Without loss of generality, we may assume

Vy = Vyw = Vyz = Vywz = Vz = Vxz = Vxyz = ∅.

By Lemma 2.9(F21), each of H0, Hx, Hxy, Hw, Hwz is an independent set, at most one
of V0, Vx, Vxy can be nonempty, and at most one of V0, Vw, Vwz can be nonempty. Let
B = V0 ∪ Vx ∪ Vxy and C = V0 ∪ Vw ∪ Vwz. If B = ∅, define W = {w} and Z = {z};
otherwise, fix b ∈ B and let f̂1 be a recolouring of G using (n−3) colours by replacing the
colour f(b) with f(w) = f(z). Since such a colouring cannot be distinguishing, there is a
colour preserving automorphism of (G, f̂1) that maps b to either w or z, and thus NG(b)
is equal to either NG(w) or NG(z). Define independent sets

W =

{
{w} ∪B, if NG(b) = NG(w),
{w}, otherwise,

and Z =

{
{z} ∪B, if NG(b) = NG(z),
{z}, otherwise.

Similarly, if C = ∅, define X = {x} and Y = {y}; otherwise, fix c ∈ C and let f̂2 be a
recolouring of G using (n−3) colours by replacing the colour f(c) with f(x) = f(y). Since
such a colouring cannot be distinguishing, there is a colour preserving automorphism of
(G, f̂2) that maps c to either x or y, and thus NG(c) is equal to either NG(x) or NG(y).
Define independent sets

X =

{
{x} ∪ C, if NG(c) = NG(x),
{x}, otherwise,

and Y =

{
{y} ∪ C, if NG(c) = NG(y),
{y}, otherwise.

By construction, for each u, v ∈ X, NG(u) = NG(v), and similarly for Y , W and Z. Thus,
we must have X ∼ W or X 6∼ W , and similarly for pairs {X,Z}, {W,Y } and {Y, Z}.
Then,

G ∼= Hxywz ∨ Ĝ4(Hxw, Hxwz, Hxyw, X, Y,W,Z),

where Ĝ4 having vertices (v1, v2, v3, x, y, w, z) belongs to the class of labelled graphs G4
depicted as follows:
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G4(v1, v2, v3, x, y, w, z)

Case (5.1): If X ∼ W , then G ∼= Hxywz ∨ Ĝ3(H1, H2, H3, Z, Y ) for Ĝ3 ∈ G3, where

H1 =


Hxw ∪X, if X 6∼ Z,W ∼ Y ,
Hxw ∪W, if X ∼ Z,W 6∼ Y ,

Hxw ∪X ∪W, if X 6∼ Z,W 6∼ Y ,
Hxw, if X ∼ Z,W ∼ Y ,

H2 =

{
Hxwz ∪X, if X ∼ Z,

Hxwz, if X 6∼ Z,
and H3 =

{
Hxyw ∪W, if W ∼ Y ,

Hxyw, if W 6∼ Y .

Therefore, G has the form described in (viii).
Case (5.2): Now, suppose that X 6∼ W . If X 6∼ Z and W 6∼ Y , then

G ∼= Hxywz ∨ Ĝ3(Hxw ∪X ∪W,Hxwz, Hxyz, Z, Y )

for Ĝ3 ∈ G3, and hence G has the form described in (viii). Thus, we may assume that
either X ∼ Z or W ∼ Y holds.

If Hxw 6= ∅, then by Lemma 2.7(F8, F9, F15),

G[Hxw ∪X ∪ Y ∪W ∪ Z] ∼= P5 or G[Hxw ∪X ∪ Y ∪W ∪ Z] ∼= C5.

By Lemma 2.7(F11, F12), we must have Hxwz = Hxyw = ∅ and hence G has the form
described in (vi) or (vii).

Otherwise, Hxw = ∅. By Lemma 2.7(F10) along with the assumption that either
X ∼ Z or W ∼ Y holds, it must be the case that either Hxwz = ∅ or Hxyw = ∅. Without
loss of generality, suppose Hxyw = ∅. Then

G ∼=


Hxywz ∨ Ĝ3(X ∪ Z, ∅, Hxwz, Y,W ), if Y 6∼ Z,

Hxywz ∨ Ĝ3(X,Z,Hxwz, Y,W ), if Y ∼ Z,X ∼ Z,

Hxywz ∨ Ĝ3(∅,W ∪ Z,Hxwz, Y,X), if Y ∼ Z,X 6∼ Z, Y ∼ W ,

for Ĝ3 ∈ G3, and hence G has the form described in (viii).

We next determine conditions on graphs G satisfying χD(G) = |V (G)| − 2 when G is
the join and union of complete multipartite graphs.

Lemma 3.4 Let Γ0, Γ1, and Γ2 be complete multipartite graphs (possibly vacuous) and
G ∼= Γ0 ∨ (Γ1 ∪ Γ2). Then χD(G) = |V (G)| − 2 if and only if Γ1 ∪ Γ2 is isomorphic to:

(i) Γ ∪K2, where Γ is a complete multipartite graph with at least three vertices,
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(ii) Γ ∪K2, where Γ is a complete multipartite graph with at least two parts, or

(iii) 2K3.

Proof. If G is one of the graphs in (i) − (iii) then by Remarks 2.2 and 2.4 we have
χD(G) = |V (G)| − 2.

For the other direction, let G ∼= Γ0∨ (Γ1∪Γ2) for complete multipartite graphs Γ0, Γ1,
and Γ2. By Remark 2.2, χD(G) = |V (G)|−2 if and only if χD(Γ1∪Γ2) = |V (Γ1∪Γ2)|−2.
Without loss of generality we may assume that |V (Γ1)| 6 |V (Γ2)|. Note that |V (Γ1)| > 2
for otherwise G is a either a complete multipartite graph or a graph in Theorem 3.2. If
|V (Γ2)| > 4 and |V (Γ1)| > 3, then χD(Γ1 ∪ Γ2) 6 |V (Γ1 ∪ Γ2)| − 3 by Remark 2.4. If
|V (Γ1)| = |V (Γ2)| = 3, then we require χD(Γ1∪Γ2) = 4. If Γ1 6∼= Γ2, then χD(Γ1∪Γ2) = 3.
Furthermore,

χD(K3 ∪K3) = 6, χD(P3 ∪ P3) = 3 and χD(K3 ∪K3) = 4.

Therefore, Γ1 ∪ Γ2 satisfies (iii). Otherwise, we must have |V (Γ1)| = 2. If Γ1
∼= K2, then

either Γ2
∼= K2 or Γ1 must have at least three vertices. Thus, Γ1 ∪ Γ2 satisfies either (i)

or (ii). If Γ1
∼= K2, then Γ2 must have at least two parts, and hence G satisfies (ii).

To characterize the graphs G in Theorem 3.3 having distinguishing chromatic number
|V (G)| − 2 we define the following three labelled graphs.

sv2

sv1 s v4
s v3

Ĝ5(v1, v2, v3, v4)

sv2

sv1 s v5
s v3s v4

Ĝ6(v1, v2, v3, v4, v5)

��
�

PPP

s s
s s

s sv1
v2

v6 v5

v3

v4
@@
PPPP

�
�
�

A
A
A

����
��

Ĝ7(v1, v2, v3, v4, v5, v6)

Furthermore, define K̂2 and K̂3 to be the labelled complete graphs of orders two and
three respectively, where K̂2(v1, v2) has vertices (v1, v2) and K̂3(v1, v2, v3) has vertices
(v1, v2, v3). In particular, if H1, H2 are nonvacuous complete multipartite graphs, then
K̂2(H1, H2) represents a complete multipartite graph with at least two parts.

Theorem 3.5 Let G be a graph of order n > 4. Then χD(G) = n− 2 if and only if G is
the join of a complete multipartite graph (possibly vacuous) with one of the following:

(a) P5 (b) C5

(c) C6 (d) 2K3

(e) Kr ∪K2, for r > 2 (f) K̂2(Kr, H1) ∪K2, for r > 2

(g) K̂3(H1, H2, H3) ∪K2 (h) K̂2(H1, H2) ∪K2
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(i) 2K2 ∨ 2K2 (j) 2K2 ∨ (K̂2(H1, H2) ∪K1)

(k) 2K2 ∪K1 (l) (2K2 ∨H1) ∪K1

(m) Ĝ3(H1, H2, H3, K1, K1), for Ĝ3 ∈ G3 (n) Ĝ5(H1, H2, K1, K1)

(o) Ĝ5(K1, H1, H2, K1) (p) Ĝ6(K1, H1, H2, H3, K1)

(q) Ĝ7(H1, H2, H3, H4, K1, K1)

where each of H1, H2, H3, H4 is a nonvacuous complete multipartite graph.

Proof. For one direction, by Remark 2.2 and Theorem 1.1, we must show that if G is
one of (a) − (q), then G has distinguishing chromatic number |V (G)| − 2. If G is one of
(a)− (c), by Equation (1) the result holds. By Lemma 3.4, the result holds for (d)− (h).
By Remark 2.2, the result holds for (i) and (j) as these graphs are the join of two graphs
in Theorem 3.2. One can also check using Remarks 2.2 and 2.4 that the result is true for
(k) and (l).

Finally, let G be one of (m)− (q). Note that G has an induced complete multipartite
subgraph H of order |V (G)| − 2 such that each u, v ∈ V (H) with u 6∼ v satisfies NG(u) =
NG(v). Thus, each vertex in V (H) requires a distinct colour giving χD(G) > |V (H)| =
|V (G)| − 2. Furthermore, χD(Ĝ5) = 2, χD(Ĝ6) = 3, χD(Ĝ7) = 4, and χD(Ĝ3) = 3 for
each Ĝ3 ∈ G3. As G contains one of these graphs as an induced subgraph, by Lemma
2.5(ii), G satisfies χD(G) 6 |V (G)| − 2, and hence χD(G) = |V (G)| − 2 whenever G is of
the form (m)− (q).

For the other direction, let G be a graph satisfying one of (i)− (viii) in Theorem 3.3
such that χD(G) = |V (G)| − 2. We show G has the form of one of (a)− (q). To simplify
the proof, we make use of the following claim that follows directly from Lemma 3.4.

Claim: Let χD(G) = |V (G)|−2 and G ∼= Γ0∨(Γ1∪Γ2), where Γ0, Γ1, Γ2 are complete
multipartite graphs (possibly vacuous). Then G has the form described in one of (d)−(h).

The graphs in Theorem 3.3 of the form (i), (ii), (iii), (vi), (vii) are listed in (c), (d),
(i), (a), (b) respectively. The graphs in Theorem 3.3(iv) are listed in (k) and (l).

Let G be a graph in Theorem 3.3(v) with χD(G) = |V (G)|− 2. Then G ∼= H0∨ 2K2∨
(H ∪K1) for complete multipartite graphs H0 and H. If H has at most one part, then
χD(G) = |V (G)| − 1, a contradiction. Therefore, H has at least two parts and G has the
form listed in (j).

Finally, let G be a graph in Theorem 3.3(viii) with χD(G) = |V (G)|−2. Then G is the
join of a complete multipartite graph H0 (possibly vacuous) with Ĝ3(H1, H2, H3, Kr, Ks),
where Ĝ3 ∈ G3, r, s > 1 are integers and H1, H2, H3 are complete multipartite graphs
(possibly vacuous).

Case (1): H1 = H2 = H3 = ∅. In this case, G is a complete multipartite graph and
so χD(G) = |V (G)|, a contradiction.
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Case (2): H2 = H3 = ∅ and H1 6= ∅. In this case, G satisfies the claim where
Γ0 = H0, Γ1 = H1 and Γ2 = G\{H0 ∨H1}.

Case (3): H1 = H3 = ∅ and H2 6= ∅. If v4 ∼ v5 in Ĝ3, then G satisfies the claim with
Γ0 = H0 ∨ Kr, Γ1 = H2 and Γ2 = Ks. If v4 6∼ v5 in Ĝ3, the G satisfies the claim with
Γ0 = H0, Γ1 = H2 ∨Kr and Γ2 = Ks.

Case (4): H1 = H2 = ∅ and H3 6= ∅. This case is symmetric to Case (3).
Case (5): H1 = ∅ and H2, H3 6= ∅.
Case (5.1): Ĝ3 ∈ G3 has v4 ∼ v5. If H2

∼= Kt for some t > 1, then G satisfies the
claim with Γ0 = H0 ∨ (Kt ∪Ks), Γ1 = H3 and Γ2 = Kr.

Otherwise, H2 has at least two parts. By symmetry, we may also assume that H3 has
at least two parts. By Lemma 2.7(F19) we must have r = s = 1. Therefore, G is of the
form described in (q).

Case (5.2): Ĝ3 ∈ G3 has v4 6∼ v5. By Lemma 2.7(F17), either r = 1 or s = 1. Without
loss of generality suppose that r = 1. If H2

∼= K1, then has the form described in (n).
Otherwise, H2 has at least two vertices and by Lemma 2.7(F18) we must have s = 1, and
hence G has the form described in (o).

Case (6): H2 = ∅ and H1, H3 6= ∅.
Case (6.1): Ĝ3 ∈ G3 has v4 ∼ v5. By Lemma 2.7(F17), either H1

∼= K1 or r = 1. If
H1
∼= K1 and r > 2, then by Lemma 2.7(F18) we have H3

∼= K1, and thus G has the form
described in (n). Otherwise, H1 6∼= K1 and r = 1. By Lemma 2.7(F18) we have s = 1, and
hence G has the form described in (n).

Case (6.2): Ĝ3 ∈ G3 has v4 6∼ v5. If H1
∼= Kt for some t > 1, then G satisfies the

claim with Γ0 = H0, Γ1 = H3 ∨ (Kt ∪Ks) and Γ2 = Kr. Otherwise, H1 has at least two
parts. By Lemma 2.7(F16), r = s = 1, and thus G has the form described in (p).

Case (7): H3 = ∅ and H1, H2 6= ∅. This case is symmetric to Case (6).
Case (8): H1, H2, H3 6= ∅. In this case, G has the form described in (m).
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[9] W. Klöckl. On distinguishing and distinguishing chromatic numbers of hypercubes.
Discuss. Math. Graph Theory, 28(3):419–429, 2008.

[10] C. Laflamme and K. Seyffarth. Distinguishing chromatic numbers of bipartite graphs.
Electron. J. Combin., 16:#R76, 2009.

[11] A.K. Lal and B. Bhattacharjya. Breaking the symmetries of the book graph and the
generalized Petersen graph. SIAM J. Discrete Math., 23(3):1200–1216, 2009.

[12] S. Negami and S. Sakurai. Distinguishing chromatic numbers of planar graphs. Yoko-
hama Math. J., 55(2):179–188, 2010.

[13] M.E. Watkins and X. Zhou. Distinguishability of locally finite trees. Electron. J.
Combin., 14:#R29, 2007.

[14] J. Weigand and M.S. Jacobson. Distinguishing and distinguishing chromatic numbers
of generalized Petersen graphs. AKCE J. Graphs Combin., 5(2):199–211, 2008.

Appendix

Each colouring depicted is a distinguishing colouring for every graph in that class. In some
cases, a class of graphs in Lemma 2.7 is split up into multiple subclasses (for example,
the class of graphs (F7) is partitioned into two subclasses: (F 1

7 ) and (F 2
7 )).
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