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Abstract
The Canada Day Theorem is an identity involving sums of k × k minors of an

arbitrary n× n symmetric matrix. It was discovered as a by-product of the work
on so-called peakon solutions of an integrable nonlinear partial differential equation
proposed by V. Novikov. Here we present another proof of this theorem, which
explains the underlying mechanism in terms of the orbits of a certain abelian group
action on the set of all k-edge matchings of the complete bipartite graph Kn,n.

1 Introduction
The “Canada Day Theorem” refers to the following curious combinatorial fact:
Theorem 1.1. Let T be the n× n matrix with entries

Tij = 1 + sgn(i− j) =


0, i < j,

1, i = j,

2, i > j,

(1.1)
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and let X be an arbitrary symmetric n× n matrix. Then, for 1 6 k 6 n, the sum of the
k × k principal minors of TX equals the sum of all k × k minors of X (principal and
non-principal).

This theorem arose as an unexpected byproduct in our previous paper [8] where we
studied so-called “peakon” (peaked soliton) solutions to a completely integrable nonlinear
partial differential equation discovered by V. Novikov [12]; a brief account of this can be
found in the appendix. The name of the theorem refers to its “birthday” (July 1, Canada’s
national holiday, in 2008).

A k × k minor in an n× n matrix X = (xij) is determined by a choice of k-element
index sets I and J (row and column indices, respectively) from the set [n] = {1, 2, . . . , n}.
We will use the notation

(
[n]
k

)
for the set of all k-element subsets of [n], and write minors

as

|XIJ | = |Xi1...ik,j1...jk | = det


xi1j1 . . . xi1jk... ...
xikj1 . . . xikjk

 , (1.2)

for I, J ∈
(

[n]
k

)
, where i1 < i2 < · · · < ik and j1 < j2 < · · · < jk are the elements of I

and J listed in increasing order. A principal minor is a minor with I = J .
The sum of the k × k principal minors of a matrix A is of course very familiar as

the coefficient of (−1)kzn−k in the characteristic polynomial det(zI − A). The sum of all
k × k minors is much less frequently encountered; one rare example in the literature is
[13], but the results there do not seem directly related to Theorem 1.1, since they deal
with arbitrary matrices where symmetry plays no role.

Example 1.2. In the case n = 3 we have

T =

1 0 0
2 1 0
2 2 1

 , X =

a b c
b d e
c e f

 ,
and hence

TX =

 a b c
2a+ b 2b+ d 2c+ e

2a+ 2b+ c 2b+ 2d+ e 2c+ 2e+ f

 .
The sum of the principal 1× 1 minors of TX is just the trace, (a+ 2b+ 2c) + (d+ 2e) + f ,
which indeed equals the sum of all entries of X (i.e., the sum of all 1× 1 minors). The
sum of the principal 2× 2 minors of TX is∣∣∣∣∣ a b

2a+ b 2b+ d

∣∣∣∣∣+
∣∣∣∣∣ a c
2a+ 2b+ c 2c+ 2e+ f

∣∣∣∣∣+
∣∣∣∣∣ 2b+ d 2c+ e
2b+ 2d+ e 2c+ 2e+ f

∣∣∣∣∣ ,
which, as can be easily verified, equals the sum of all 2× 2 minors of X,∣∣∣∣∣a b

b d

∣∣∣∣∣+
∣∣∣∣∣a c
c f

∣∣∣∣∣+
∣∣∣∣∣d e
e f

∣∣∣∣∣+
∣∣∣∣∣a c
b e

∣∣∣∣∣+
∣∣∣∣∣b d
c e

∣∣∣∣∣+
∣∣∣∣∣b e
c f

∣∣∣∣∣+
∣∣∣∣∣a b
c e

∣∣∣∣∣+
∣∣∣∣∣b c
d e

∣∣∣∣∣+
∣∣∣∣∣b c
e f

∣∣∣∣∣ .
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And, since detT = 1, the single 3× 3 minor of TX (which is of course principal) equals
the single 3× 3 minor of X: det(TX) = detX.

Example 1.3. For n > 3, the cases k = 1 and k = n of the theorem are still easy to
verify: for k = 1 we have

tr(TX) = 1
2 tr(TX) + 1

2 tr((TX)t) = tr
(

1
2(T + T t)X

)
=
∑
i,j

xij

since 1
2(T + T t) is the matrix with 1 in every position, and for k = n we have det(TX) =

detX as before. However, the intermediate cases 2 6 k 6 n− 1 are more involved. (The
reader might want to check the case n = 4, k = 2 to become convinced of this.)

Of particular importance for the Canada Day Theorem are minors whose row and
column indices are interlacing, meaning that

i1 6 j1 6 i2 6 j2 6 · · · 6 ik 6 jk. (1.3)

We abbreviate this condition as I 6 J . Given sets I, J ∈
(

[n]
k

)
, let I ′ = I \ (I ∩ J) and

J ′ = J \ (I ∩ J), and denote the cardinality of I ′ and J ′ by

p = p(I, J) = card(I ′) = card(J ′) = k − card(I ∩ J). (1.4)

Note that I and J are interlacing if and only if I ′ and J ′ are strictly interlacing (abbreviated
I ′ < J ′),

i′1 < j′1 < i′2 < j′2 < · · · < i′p < j′p. (1.5)
With this notation in place, we can state the more precise version of the Canada Day
Theorem that we are actually going to prove; it says that the two sums are both equal to
a third sum involving only minors with interlacing index sets:

Theorem 1.4. Let T and X be as in Theorem 1.1, and let

S =
∑

I,J∈([n]
k )

I6J

2p(I,J) |XIJ | . (1.6)

Then the following holds:

(a) The sum of the principal k × k minors of TX equals S.

(b) The sum of all k × k minors of X equals S.

The following is a short outline of the paper. In Section 2 we use the Cauchy–Binet
formula and the Lindström–Gessel–Viennot path-counting lemma to prove the easier part
of Theorem 1.4, namely part (a), which is true regardless of whether X is symmetric
or not. Part (b) is proved in Section 3, and here it is crucial that X is a symmetric
matrix. We introduce a group of “flips” and study an action of it on the set of all k-edge

the electronic journal of combinatorics 20(1) (2013), #P20 3



matchings of the complete bipartite graph Kn,n. The main technical point is dealt with
in Lemma 3.8, and this leads to the characterization of the orbit structure of the group
action presented in Lemma 3.9, Corollary 3.10 and Corollary 3.11. From these results
it then follows that when expanding each k × k minor according to the definition of the
determinant and adding everything up, terms corresponding to orbits of a certain type
(“non-interlacing”) cancel out, while the other orbits (“interlacing”) give contributions
adding up to the sum S.

It is fair to say that the proof given in the present paper is not entirely different from
the one in [8]. The central concept of (open) clusters introduced in Section 3 has its
counterpart, namely linked pairs, in the original proof. However, the organization of the
proof, in particular the identification of the group action on the set of all k-edge matchings
as the main underpinning for the Canada Day Theorem, is novel.

2 The sum of the principal k × k minors of TX
In this section we prove part (a) of Theorem 1.4. Recall the Cauchy–Binet formula for the
minors of a matrix product [6, Ch. I, § 2]:

|(TX)AB| =
∑

I∈([1,n]
k )
|TAI | |XIB| , for A,B ∈

(
[1,n]
k

)
. (2.1)

Applying this with A = B = J we can rewrite the sum of the principal k × k minors of
TX as ∑

J∈([n]
k )
|(TX)JJ | =

∑
I,J∈([n]

k )
|TJI | |XIJ | . (2.2)

Next, we need to compute the minors |TJI |. Here the notion of interlacing index sets (as
defined in the Introduction) enters.
Lemma 2.1. Let T be defined as in Theorem 1.1. Then, for I, J ∈

(
[1,n]
k

)
,

|TJI | =
2p(I,J), if I 6 J,

0, otherwise,
(2.3)

where p(I, J) = k − card(I ∩ J).
Proof. The matrix T is the path matrix of a planar directed graph of the form illustrated
below in the case n = 4 (i.e., the entry Tab counts the number of paths – zero, one, or two –
from source vertex number a on the left to sink vertex number b on the right):

1

2

3

4

1

2

3

4
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By the Lindström–Gessel–Viennot lemma [10, 11, 7, 1], the minor |TJI | equals the number
of vertex-disjoint path families from sources indexed by J to sinks indexed by I.

Consider a vertex-disjoint path family from the source set J = {1 6 j1 < j2 < · · · <
jk 6 n} to the sink set I = {1 6 i1 < i2 < · · · < ik 6 n}. The planarity of of the graph
allows only paths jm → im. Clearly im 6 jm, since no path can go upwards, and moreover
jm 6 im+1, since otherwise both the path jm → im and the path jm+1 → im+1 would
have to pass through the vertex immediately to the left of sink vertex im+1. Hence, if the
interlacing condition I 6 J is not satisfied, then there are no vertex-disjoint path families
from J to I, and therefore |TJI | = 0 in this case.

Suppose now that I 6 J . For each m = 1, . . . , k we draw a rectangular window over
the graph, with its upper left corner at source vertex jm and its lower right corner at sink
vertex im. Imagine trying to construct a vertex-disjoint path family from J to I. There
will be only one possible path jm → im if the mth window has its height jm − im equal to
zero, or if it shares its top edge with another window; otherwise there will be two possible
paths jm → im. Indeed, when the height is zero there is only one way to start and finish
on the same level. When the top edge is shared, there is again only one path, since the
path corresponding to the window directly above must use the vertex immediately to the
left of sink vertex im+1 (which is on the same level as source vertex jm). Therefore, if we
remove all windows which are of height zero or share their top edge with another window,
then the number of possible vertex-disjoint path systems will be given by 2 to the power
of the number of remaining windows, in other words 2card(I′) where I ′ = I \ (I ∩ J).

Now, inserting the value of |TJI | from this lemma into equation (2.2), we obtain∑
J∈([n]

k )
|(TX)JJ | =

∑
I,J∈([n]

k )
I6J

2p(I,J) |XIJ | = S, (2.4)

which finishes the proof of part (a) of Theorem 1.4.
Remark 2.2. There are several ways to compute the minors |TJI |; see [8] for another
argument using induction on n. Note that the proof above is implicitly taking advantage
of the factorization

T =



1 0 0 · · · 0
1 1 0 · · · 0
0 1 1 . . . ...
... . . . . . . . . . 0
0 · · · 0 1 1





1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 . . . ...
... . . . . . . . . . 0
1 · · · 1 1 1

 . (2.5)

3 The sum of all k × k minors of X
In this section we prove part (b) of Theorem 1.4.
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3.1 Minors and matchings
By the definition of the determinant, we have

|XIJ | = det


xi1j1 . . . xi1jk... ...
xikj1 . . . xikjk

 =
∑
π∈Sk

sgn(π)xi1jπ(1) · · ·xikjπ(k) , (3.1)

where Sk is the symmetric group of permutations on k elements (i.e., bijections π : [k]→ [k]).
A less index-heavy notation is obtained by using that (for given I and J) each permutation
π : [k] → [k] corresponds to a unique bijection τ : I → J via τ(ik) = jπ(k). Setting
sgn(τ) = sgn(π) and X(τ) = ∏

i∈I xiτ(i), we simply get

|XIJ | =
∑

τ : I→J
sgn(τ)X(τ) (3.2)

where the sum runs over all bijections from I to J . We visualize such a bijection τ as a
bipartite graph; for example, with n = 5, the bijection τ : {2, 3, 4} → {1, 3, 5} given by
τ(2) = 3, τ(3) = 5, τ(4) = 1 is drawn as

1
i1 = 2
i2 = 3
i3 = 4

5

1 = j1

2
3 = j2

4
5 = j3

and it corresponds (for the given sets I and J) to the permutation π ∈ S3 represented by
the graph

1 1
2 2
3 3

The sign of τ (and π) is +1 or −1 depending on whether the crossing number of the graph
is even or odd. In this example there are two crossings, so sgn(τ)X(τ) = +x23x35x41 (and
this is one of the six terms in the 3× 3 minor |X234,135|).

Note that when composing two bijections τ1 : I → L and τ2 : L → J , the signs obey
the same rule as for the corresponding permutations:

sgn(τ2 ◦ τ1) = sgn(τ2) sgn(τ1).

Choosing k-element sets I and J together with a bijection τ : I → J is equivalent to
choosing a k-edge matching of the complete bipartite graph Kn,n:
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1 1
2 2
3 3
4 4
5 5

1 1
2 2
3 3
4 4
5 5

(Recall that a matching of a graph X = (V,E) with vertex set V and edge set E is a
subset F ⊆ E such that no two edges in F share a common vertex. One may equivalently
think of the matching as being the subgraph (V, F ). This habit of not distinguishing a
graph from its edge set, when the underlying vertex set is understood, will be used quite
frequently.)

Fix n and k, and let M =Mn,k denote the set of k-edge matchings of Kn,n. We will
use the same symbol τ both for such a matching and for the corresponding bijection, and
slightly abuse the language by speaking about matchings τ : I → J . If τ(i) = j holds for
the bijection τ , then we say that the matching τ contains an edge i → j. (The graph
Kn,n is undirected, but the arrow notation is convenient for distinguishing the left nodes
labelled 1, . . . , n from the right nodes also labelled 1, . . . , n.)

When summing all k × k minors of an n× n matrix X and expanding each minor, the
whole sum turns into an alternating sum over all k-edge matchings of Kn,n:∑

I,J∈([n]
k )
|XIJ | =

∑
I,J∈([n]

k )

∑
τ : I→J

sgn(τ)X(τ) =
∑
τ∈M

sgn(τ)X(τ). (3.3)

In order to prove that this equals∑
I6J

2p(I,J) |XIJ | =
∑
I6J

∑
τ : I→J

2p(I,J) sgn(τ)X(τ)

when X is symmetric, as claimed in Theorem 1.4, we will introduce a certain abelian
group G which acts on M in a way which preserves the weights X(τ) but may change
the signs sgn(τ). Then we compute the sum ∑

τ∈M by adding the terms for each group
orbit separately and then summing over all orbits. As we will see, each orbit containing a
matching τ : I → J with interlacing index sets I 6 J contributes 2p(I,J) terms which all
have the same sign, while the other orbits contain equally many positive and negative
terms and therefore cancel out.

3.2 Clusters of a matching
Fix a matching τ : I → J (viewed as a bipartite graph). Temporarily add auxiliary
horizontal edges r → r for all r ∈ I ∩ J . Split the resulting (multi)graph τ̃ into connected
components, and then remove the auxiliary edges. The remnants of the components of τ̃
form a partition of the edges of τ into what we will call clusters.

Since τ is a matching, no vertex in τ̃ can have degree greater than two, and therefore
the components of τ̃ are paths. A cluster is either called closed or open, depending on
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whether the corresponding component of τ̃ is a closed or an open path. The endpoints of
an open path will also be said to be the endpoints of that open cluster.

Example 3.1. Let n = 8 and k = 7. Here is a matching τ : I → J , where I =
{1, 2, 3, 4, 5, 6, 8} and J = {1, 2, 4, 6, 7, 8}, together with its companion τ̃ obtained by
adding auxiliary horizontal edges r → r for r = I ∩ J = {1, 2, 4, 5, 6, 8}:

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

τ

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

τ̃

There are three connected components in τ̃ (one open path with endpoints 3 ∈ I and 7 ∈ J ,
and two closed paths):

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

Removing the auxiliary edges, we obtain the three clusters of the matching τ (one open
and two closed):
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1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

C1

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

C2

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

C3

Definition 3.2 (Endpoint separation). Let τ : I → J be a matching and C one of its
open clusters. Consider the list consisting of all numbers in I ∪ J , sorted in ascending
order. (If im = jm′ for some m and m′, then include that number twice in the list.) Let
the endpoint separation sep(C) of the cluster C be the number of entries in this sorted list
lying strictly between the numbers labelling the two endpoints of C. For closed clusters C,
we set sep(C) = 0.

Remark 3.3. Observe that the endpoint separation is a property of both the matching and
the cluster, and not just of the cluster itself.

Example 3.4. The open cluster C1 in Example 3.1, with endpoints labelled 3 and 7,
has endpoint separation sep(C1) = 6, since there are six numbers (4, 4, 5, 5, 6, 6) strictly
between the 3 and 7 in the list (1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8). For the closed clusters,
we have sep(C2) = sep(C3) = 0 by definition.

3.3 The group of flips
Given n, let G = Gn be the abelian group obtained by taking the direct sum of

(
n
2

)
copies

of the two-element group Z/(2) (one copy for each pair (i, j) with 1 6 i < j 6 n). We
define an action of G on the set M of k-edge matchings of Kn,n as follows:

• Let fij = (0, . . . , 0, 1, 0, . . . , 0) ∈ G, where the 1 is in the (i, j)th copy of Z/(2). The
elements {fij}i<j generate G, so it is enough to define how they act.

• If there is an open cluster C in the matching τ ∈ M containing one of the edges
i → j and j → i (note that an open cluster cannot contain both), then let fij • τ
be the matching obtained by flipping the whole cluster C, i.e., replacing each edge
a→ b in C by b→ a (and leaving all other edges in τ as they are).

• Otherwise, let fij do nothing: fij • τ = τ .
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It is straightforward to verify that this really defines a group action as claimed, since flips
commute and flipping the same cluster twice is the identity transformation. Note that it
is the flipping of a whole cluster (rather than just an individual edge) that ensures that
fij • τ is still a matching.

Example 3.5. When f28 acts on the matching τ of Example 3.1, the open cluster C1
(here drawn dotted) is flipped, since it is open (with endpoints 3 and 7) and contains the
edge 2→ 8:

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

τ

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

f28 • τ

Lemma 3.6. If the matrix X is symmetric, then X(g • τ) = X(τ) for all flips g ∈ G and all
matchings τ ∈M.

Proof. This is immediate, since replacing the edge a → b by the edge b → a in the
matching τ : I → J corresponds to replacing the matrix entry Xab by Xba in the prod-
uct X(τ) = ∏

i∈I Xiτ(i).

Example 3.7. The flip in Example 3.5 corresponds to changing

X(τ) = X16X28X34X42X55X61X87

into
X(f28 • τ) = X16X82X43X24X55X61X78.

A less trivial aspect of the group action is the relation between sgn(g • τ) and sgn(τ),
and this is where the endpoint separation and the interlacing condition I 6 J will be of
importance.

Lemma 3.8. If the cluster C is flipped when fij acts on τ , then

sgn(fij • τ) = (−1)sep(C) sgn(τ). (3.4)
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Proof. As remarked in Section 3.1, the composition of matchings τ1 : I → L and τ2 : L→ J
(thought of as functions) satisfies sgn(τ2 ◦τ1) = sgn(τ2) sgn(τ1). We will split τ : I → J into
such a composition where τ1 deals with the edges in the cluster and τ2 with the remaining
edges.

Consider an open cluster C in τ with endpoints a ∈ I ′ = I \ (I ∩ J) and b ∈ J ′ =
J \ (I ∩ J):

τ(a) = c1, τ(c1) = c2, τ(c2) = c3, . . . , τ(cm−1) = cm, τ(cm) = b.

We let K = {c1, c2, . . . , cm} ⊂ I ∩ J and define τ1 : I → I + b− a and τ2 : I + b− a→ J by

τ1(x) =
τ(x), if x ∈ K + a,

x, if x ∈ I \ (K + a),
τ2(x) =

x, if x ∈ K + b,

τ(x), if x ∈ I \ (K + b).
(3.5)

(For readability, we have written I + b− a instead of (I ∪ {b}) \ {a} and K + a instead of
K ∪ {a}.) These definitions imply that τ = τ2 ◦ τ1. Schematically, with dashed arrows
indicating the mapping x 7→ x and solid arrows indicating x 7→ τ(x):

I ′

I ∩ J

a

K

b
J ′

I ∩ J

τ1 τ2

The result of flipping the cluster C is fij • τ = τ3 ◦ τ−1
1 , where τ3 : I → J + a − b differs

from τ2 in having the edge a→ a instead of the edge b→ b:

I ′ − a

I ∩ J

b

K

J ′ − b

I ∩ J

a

τ−1
1 τ3

We have sgn(τ3) = (−1)sep(C) sgn(τ2), since if we imagine detaching the edge b→ b from
its vertices and continuously sliding it to the position a → a, the crossing number of
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the matching changes by one each time either the left or the right end of of that edge
moves past a matched vertex, and by the definition of endpoint separation there are
exactly sep(C) matched vertices on the levels strictly between a and b. Together with
sgn(τ−1

1 ) = sgn(τ1), this proves (3.4).

Let us call a matching τ : I → J interlacing if the sets I and J are interlacing, I 6 J
(cf. (1.3)). The orbits of the interlacing matchings (under the action of the flip group G)
will be called interlacing orbits, and all other orbits non-interlacing.

Lemma 3.9. A matching σ belongs to an interlacing orbit if and only if every cluster C
in σ has even endpoint separation sep(C).

Proof. It is clear from the definitions that flipping a cluster does not change its endpoint
separation. Closed clusters always have even endpoint separation by definition (namely,
zero). If C is an open cluster in an interlacing matching τ : I → J , with endpoints
is ∈ I ′ = I \ (I ∩ J) and jt ∈ J ′ = J \ (I ∩ J), then in the case is < jt we find from the
interlacing condition that

· · · 6 js−1 < is < js 6 · · · 6 it︸ ︷︷ ︸
2(t− s) elements

< jt < it+1 6 · · · ,

so that sep(C) = 2(t − s) is even, and the case is > jt is similar. It follows that if σ
belongs to the orbit of an interlacing matching, then every cluster in σ has even endpoint
separation sep(C).

Conversely, given a matching σ : A→ B all of whose clusters have even endpoint sepa-
ration, we form interlacing sets I 6 J by sorting the list of numbers (a1, . . . , ak, b1, . . . , bk)
in ascending order and labelling the elements of the sorted list as (i1, j1, i2, j2, . . . , ik, jk)
(note that I ∩ J = A ∩ B). If a ∈ A and b ∈ B are the endpoints of an open cluster C
in σ, then (a, b) ∈ I × J or J × I (rather than I × I or J × J) because of the assumption
that sep(C) is even. Flipping those open clusters in σ whose endpoints belong to J × I
produces an interlacing matching τ : I → J whose orbit σ belongs to.

Corollary 3.10. All matchings in a given interlacing orbit have the same sign.

Proof. Combine Lemmas 3.8 and 3.9.

Corollary 3.11. In a non-interlacing orbit, there are equally many matchings of each
sign.

Proof. By Lemma 3.9, each matching in a non-interlacing orbit has at least one open
cluster with odd endpoint separation; among those clusters we single out the unique
one with the property that its lowest-numbered node is smaller than that of the other
ones. The operation of flipping that cluster is a sign-reversing involution pairing up the
matchings in the orbit. (It’s sign-reversing by Lemma 3.8, and it’s an involution since the
lowest-numbered node will still be the lowest-numbered node after the flip.)
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Lemma 3.12. (a) The orbit G • τ of a matching τ : I → J contains 2p(I,J) elements.
(b) Each interlacing orbit contains exacly one interlacing matching.

Proof. Recall that p(I, J) = card(I ′) = card(J ′) where I ′ = I \ (I ∩J) and J ′ = J \ (I ∩J).
Each element of I ′ is the endpoint of an open cluster whose other endpoint belongs to J ′
(by the definition of an open cluster), while all other clusters are closed. Thus there are
exactly as many open clusters in τ as there are elements in I ′ and J ′, and each of these
p(I, J) open clusters can be flipped independently of the others. This proves part (a).
To prove part (b) we consider two cases. If an interlacing matching τ has only closed
clusters then by (a) card(G • τ) = 1, hence (b) holds. If, on the other hand, an interlacing
matching τ has at least one open cluster then flipping any open cluster destroys the
interlacing property. This follows from the fact that I ∪ J and I ∩ J are invariant under
flipping, and that there is only one way of constructing interlacing sets with given union
and intersection.

Now we only have to put the pieces together:

Proof of part (b) of Theorem 1.4. LetM∗ ⊂M denote the union of the interlacing orbits.
Then, referring in brackets to the relevant Lemmas and Corollaries above, we have∑

I,J

|XIJ | =
∑
I,J

∑
τ : I→J

sgn(τ)X(τ) (def. of determinant)

=
∑
τ∈M

sgn(τ)X(τ)

=
∑
τ∈M∗

sgn(τ)X(τ) +
∑
τ /∈M∗

sgn(τ)X(τ)

=
∑
I6J

∑
τ : I→J

∑
σ∈G • τ

sgn(σ)X(σ) (def. of M∗, 3.12b)

+ 0 (3.6, 3.11)

=
∑
I6J

∑
τ : I→J

2p(I,J) sgn(τ)X(τ) (3.6, 3.10, 3.12a)

=
∑
I6J

2p(I,J)
( ∑
τ : I→J

sgn(τ)X(τ)

)

=
∑
I6J

2p(I,J) |XIJ | (def. of determinant).

A Appendix
The Canada Day Theorem first arose in the context of nonlinear partial differential
equations in [8]. In this appendix we describe briefly the subject of that paper and how it
resulted in the formulation of the theorem. The nonlinear partial differential equation

ut − uxxt + 4u2ux = 3uuxuxx + u2uxxx, (A.1)
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u(x, t)

Figure 1: A three-peakon solution of the Camassa–Holm equation.

where u = u(x, t), ux = ∂u
∂x

(x, t), ut = ∂u
∂t

(x, t), etc., was derived by V. Novikov [12] as
part of a classification of generalized Camassa–Holm-type equations possessing infinite
hierarchies of higher symmetries. The Camassa–Holm equation

ut − uxxt + 3uux = 2uxuxx + uuxxx, (A.2)

which was formulated by Camassa and Holm in [5] as an integrable shallow water equation
(with u denoting a horizontal velocity component), admits a particularly interesting class
of explicit weak solutions which capture phenomena such as the collision and breakdown
of waves. Miraculously, many of these features turn out to be intrinsically connected to
classical problems in analysis, like Stieltjes continued fractions [3], or the moment problem
[4]. These weak explicit solutions are called peakons (short for peaked solitons) because
of the characteristic e−|x| shape of the waves. Multipeakon solutions are formed by the
superposition of n peakons,

u(x, t) =
n∑
i=1

mi(t) e−|x−xi(t)|, (A.3)

with a suitable time dependence in the amplitudes mi(t) and positions xi(t). Observe that
since these solutions are not differentiable everywhere they only satisfy the PDE (A.2) in
a certain weak sense. The evolution of a three-peakon solution over time is illustrated
in Figure 1. One of the objectives of [8] was to find explicit formulas for the positions
and amplitudes of the peaks for the multipeakon solution of Novikov’s equation (A.1).
After substituting the ansatz (A.3) into (A.1), taking into account the weak nature of the
solutions, one obtains 2n ordinary differential equations which govern the time dependence
of the positions and amplitudes:

ẋk =
(

n∑
i=1

mi e
−|xk−xi|

)2

,

ṁk = mk

(
n∑
i=1

mi e
−|xk−xi|

) n∑
j=1

mj sgn(xk − xj) e−|xk−xj |
 . (A.4)

(By definition, sgn(0) = 0 here.) These equations were already stated in [9] where it was
shown that they constitute a Hamiltonian system, and one of the main results of [8] was
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that they are also Arnol′d–Liouville integrable [2], meaning that there exist n functionally
independent and Poisson commuting constants of motion H1, . . . , Hn. To display these
constants of motion we first define the matrices

P = diag(m1, . . . ,mn),
E = (Eij)ni,j=1, where Eij = e−|xi−xj |,

T = (Tij)ni,j=1, where Tij = 1 + sgn(i− j),
(A.5)

where P and E depend on the variables appearing in (A.4). One can then show that
for every complex λ, the polynomial A(λ) = det(I − λTPEP ) is a constant of motion
for equations (A.4), which implies that the coefficient of λk in the polynomial A(λ) is a
constant of motion. It can also be shown that these coefficients (for 1 6 k 6 n) are in fact
Poisson commuting and functionally independent, thereby providing the desired set of n
constants of motion. By elementary linear algebra, the coefficient of λk can be computed
(up to a sign) as the sum over all k × k principal minors of the matrix TPEP . However,
before this result was found, direct computations for small values of n had indicated
that the constants of motion ought to be given by the sums over all k × k minors of the
symmetric matrix PEP . It was the attempt to reconcile these observations that led to
the formulation of Theorem 1.1, and as a result, the constants of motion now have the
following description:

Theorem A.1. The Novikov peakon ODEs (A.4) admit n constants of motion H1, . . . , Hn,
where Hk equals the sum of all k × k minors (principal and non-principal) of the n× n
symmetric matrix PEP = (mimje

−|xi−xj |)ni,j=1.

As a final remark, let us mention that explicit expressions for the minors of PEP can
be written down easily with the help of the Lindström–Gessel–Viennot lemma; see [8] for
details.
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