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Abstract

It is well known that the set of possible degree sequences for a simple graph on
n vertices is the intersection of a lattice and a convex polytope. We show that the
set of possible degree sequences for a simple k-uniform hypergraph on n vertices is
not the intersection of a lattice and a convex polytope for k > 3 and n > k + 13.
We also show an analogous nonconvexity result for the set of degree sequences of k-
partite k-uniform hypergraphs and the generalized notion of λ-balanced k-uniform
hypergraphs.

1 Introduction

The degree sequence of a graph G on vertices v1, v2, . . . , vn is the sequence d(G) =
(d1, d2, . . . , dn), where di is the degree of the vertex vi in G. The Erdős-Gallai Theo-
rem [2] states that a sequence (d1, d2, . . . , dn) is the degree sequence of a (simple) graph if
and only if

∑
i di is even and the di satisfy a certain set of inequalities. Koren [4] showed

that these inequalities define a convex polytope Dn(2), so that the sequences with even
sum lying in this polytope are exactly the degree sequences of graphs on n vertices. (For
more on this polytope, see [6].)

We consider the analogous question for (simple) k-uniform hypergraphs when k >
2. (We assume throughout that all graphs and hypergraphs are simple.) Klivans and
Reiner [3] verified computationally that the set of degree sequences for k-uniform hyper-
graphs is the intersection of a lattice and a convex polytope for k = 3 and n 6 8 and
asked whether this holds in general. We will show in Section 2 that it does not hold for
k > 3 and n > k + 13.

Similarly, we can associate to a bipartite graph a pair of degree sequences giving
the degrees of the vertices in each part. The Gale-Ryser Theorem [5] gives necessary
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and sufficient conditions in the form of a system of linear inequalities for a pair of degree
sequences to arise from a bipartite graph, so that the set of these pairs of degree sequences
can again be described as the intersection of a lattice and a convex polytope. We will show
in Section 3 that the analogous result does not hold for k-partite k-uniform hypergraphs
if there exist three parts of sizes at least 5, 6, and 6, respectively. We also generalize the
notion of k-partite k-uniform hypergraphs to that of λ-balanced k-uniform hypergraphs
and prove a similar statement in this case.

2 Hypergraph degree sequences

A (simple) k-uniform hypergraph K on the set [n] = {1, 2, . . . , n} is a collection of distinct
elements (called hyperedges) of

(
[n]
k

)
, the k-element subsets of [n]. The degree sequence of

K is d(K) = (d1, d2, . . . , dn), where di is the number of hyperedges in K containing i.
We consider degree sequences as points in Rn. Let ei be the ith standard basis vector,

and for any S = {i1, . . . , ik} ⊂ [n], write eS = ei1i2···ik = ei1 + ei2 + · · ·+ eik . Each degree
sequence d(K) is the sum of some subset of the eS’s, so the convex hull of all such degree
sequences is the zonotope

D = Dn(k) =
{ ∑

S∈([n]
k )

cSeS | 0 6 cS 6 1
}
.

(For more on this polytope, see [1].) Moreover, if we let L ⊂ Zn be the lattice generated
by the eS consisting of lattice points whose coordinates have sum divisible by k (as long
as n > k), then each d(K) lies in D ∩ L. Our main result will be to show that D ∩ L
contains a point that is not the degree sequence of a k-uniform hypergraph when k > 3
and n > k + 13.

As a remark, this is closely related to the weaker question of whether every point of
L lying in the real cone generated by the eS lies in the semigroup generated by the eS.
This is well known to be the case and is equivalent to normality of the monomial algebra
generated by the xS = xi1xi2 · · ·xik . (See, for instance, [7].) It is also easy to derive
the affirmative answer to this question for λ-balanced hypergraphs as defined in the next
section. The essential difference with the present question is that here we are restricted
to using each hyperedge at most once.

For a hypergraph K, we will define D(K) to be the zonotope generated by the hyper-
edges in K, so

D(K) =

{∑
S∈K

cSeS | 0 6 cS 6 1

}
.

Lemma 2.1. Let K be a k-uniform hypergraph on n vertices. For any w ∈ (R∗)n, let
F = F (w) be the face of D(K) on which w is maximized. Then F is a translate of D(K0),
where K0 = K0(w) ⊂ K is the set of hyperedges S ∈ K such that w(eS) = 0. Moreover,
F ∩L contains a point that is not the degree sequence of a subhypergraph of K if and only
if D(K0) ∩ L contains a point that is not the degree sequence of a subhypergraph of K0.
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Proof. To maximize w (
∑
cSeS) =

∑
(cS · w(eS)) for 0 6 cS 6 1, we must take cS = 1

when w(eS) > 0 and cS = 0 when w(eS) < 0, while cS can be arbitrary if w(eS) = 0.
Thus F is a translate of D(K0) by

∑
S∈K+ eS ∈ L, where K+ is the set of hyperedges S

on which w is positive.
The same argument with the added condition that cS equals either 0 or 1 for all S

shows that the degree sequences in F are exactly the translations of degree sequences of
subhypergraphs of K0.

Therefore, to find a point of D ∩ L that is not the degree sequence of a k-uniform
hypergraph, it suffices, by Lemma 2.1, to take K =

(
[n]
k

)
and to exhibit a weight vector w

and a point of D(K0) ∩ L that is not the degree sequence of a subhypergraph of K0.

Proposition 2.2. Let k = 3 and n = 16. If

w = (8, 6, 6, 4, 1, 1, 0, 0, 0, 0,−2,−2,−3,−3,−5,−12),

then
p = (2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1)

lies in D(K0) ∩ L but is not the degree sequence of a subhypergraph of K0.

Proof. Since the sum of the entries of p is 21 = 3 · 7, p lies in L. Also,

p =
1

3
(e2,3,16 + e4,5,15 + e4,6,15 + e5,6,11 + e5,6,12 + e7,8,9 + e7,8,10 + e7,9,10 + e8,9,10)

+
2

3
(e1,4,16 + e1,13,15 + e1,14,15 + e2,13,14 + e3,13,14 + e4,11,12).

Since w vanishes on each eS on the right side, it follows that p ∈ D(K0). However, p is
not the degree sequence of a subhypergraph of K0: since w7 = w8 = w9 = w10 = 0 but
otherwise wi 6= 0 and wi 6= −wj for distinct i, j 6∈ {7, 8, 9, 10}, we have (e7 + e8 + e9 +
e10) · eS is 0 or 3 for any S ∈ K0 (where · indicates the usual inner product on Rn). But
(e7 + e8 + e9 + e10) · p = 4, which is not divisible by 3, so p cannot be the sum of some eS
for S ∈ K0.

Using this, we can easily derive the following.

Theorem 2.3. For k > 3 and n > k + 13, the set of degree sequences of k-uniform
hypergraphs on n vertices is not the intersection of a lattice and a convex polytope.

Proof. It suffices to show that there is a point in D∩L that is not a degree sequence (since
D and L are the smallest convex polytope and lattice containing all degree sequences).
Combining Lemma 2.1 and Proposition 2.2 gives the result for k = 3 and n = 16. Since
Dn(k) is the face of Dn+1(k) with last coordinate 0, Lemma 2.1 also gives the result for
k = 3 and n > 16.

Consider the map f : (d1, d2, . . . , dn) 7→ (d1, d2, . . . , dn,
1
k
(d1 + · · · + dn)). If d is a

k-uniform hypergraph degree sequence on n vertices, then f(d) is a (k + 1)-uniform
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hypergraph degree sequence on n + 1 vertices (simply add vertex n + 1 to all hyper-
edges). Conversely, if the degree sequence of a (k + 1)-uniform hypergraph satisfies
dn+1 = 1

k
(d1 + · · · + dn), then every hyperedge must contain the vertex n + 1, so it is

of the form f(d) for some k-uniform hypergraph degree sequence d. Since f is linear, it
also sends Dn(k) into Dn+1(k + 1), so any counterexample for (n, k) yields a counterex-
ample for (n+ 1, k + 1). An easy induction completes the proof.

It is possible that with additional work or computation the constant 13 may be im-
proved.

In the next section, we will prove an analogous result for k-partite k-uniform hyper-
graphs as well as the more general λ-balanced hypergraphs. (Our construction below can
also be used to prove Theorem 2.3 but with a constant of 14 instead of 13.)

3 λ-balanced hypergraphs

Let λ = (λ1, λ2, . . . , λp) be a partition of k. We say a k-uniform hypergraph is λ-balanced if
its vertex set can be partitioned into p sets V1, . . . , Vp such that each hyperedge contains λi
vertices from Vi. (We will also call a hyperedge λ-balanced if it satisfies this property.) A
(1, 1, . . . , 1)-balanced k-uniform hypergraph is called k-partite. Note that every k-uniform
hypergraph is (k)-balanced.

Let ni = |Vi|, and label the vertices in Vi by vi1, v
i
2, . . . , v

i
ni

. We then associate to a
λ-balanced hypergraph K a degree sequence

d = (d11, d
1
2, d

1
3, . . . ; d21, d

2
2, . . . ; . . . ; dp1, d

p
2, . . . ),

where dij gives the number of hyperedges in K containing vertex vij. As before, this degree
sequence is

∑
S∈K eS, where eS is the sum of the standard basis vectors in Rn1 ×Rn2 ×

· · ·×Rnp corresponding to vertices in the hyperedge S. When ni > λi for all i, the lattice
L generated by all possible eS consists of all sequences d for which there exists q ∈ Z such
that

∑ni

j=1 d
i
j = λiq for all i. (In other words, the sum of the degrees of the vertices in Vi

must be the same integer multiple of λi.)
As before, we let D be the zonotope generated by all eS for λ-balanced hyperedges S

and ask whether all points in D∩L are degree sequences for λ-balanced hypergraphs. We
will again find that this is not the case for any λ when k > 3 and the ni are sufficiently
large. We first consider a special case.

Proposition 3.1. Let λ = (1, 1, 1) and (n1, n2, n3) = (5, 6, 6). Also let

w = (−7,−7,−7,−7,−7; 1, 1, 2, 2, 3, 3; 6, 6, 5, 5, 4, 4),

and define K0 as in Lemma 2.1. Then

p = (11, 9, 6, 3, 1; 2, 4, 6, 8, 3, 7; 2, 4, 6, 8, 3, 7)

lies in D(K0) ∩ L but is not the degree sequence of a subhypergraph of K0.
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Proof. Define points

p− = (10, 8, 4, 2, 0; 1, 3, 5, 7, 2, 6; 1, 3, 5, 7, 2, 6),

p+ = (12, 10, 8, 4, 2; 3, 5, 7, 9, 4, 8; 3, 5, 7, 9, 4, 8),

so p = 1
2
(p− + p+). Note that the sum of the coordinates of the three parts of p− are all

24, so p− ∈ L. Likewise, p+ and p also lie in L.
Let

A = (ars) =


1 2 0 0 0 0
2 3 0 0 0 0
0 0 3 4 0 0
0 0 4 5 0 0
0 0 0 0 1 3
0 0 0 0 3 5

 .

Note that K0 = {{v1q , v2r , v3s} | 1 6 q 6 5, 1 6 r, s 6 6, ars 6= 0}.
Then p− =

∑
eS, where the sum ranges over all S = {v1q , v2r , v3s} such that q < ars.

Likewise p+ =
∑
eS, where the sum now ranges over all S = {v1q , v2r , v3s} with q 6 ars.

Therefore p−, p+, and their midpoint p lie in D(K0).
We will now show that p is not the degree sequence of a hypergraph that uses only

hyperedges in K0. Suppose it were, so that we could write p =
∑

S∈K eS for some
K ⊂ K0. Let B = (brs) be the 6 × 6 matrix such that brs counts the number of q for
which {v1q , v2r , v3s} ∈ K. Then the sequence of row and column sums of B must both be
(2, 4, 6, 8, 3, 7). Since we also know that 0 6 brs 6 5, this means that:

B1 =

(
b11 b12
b21 b22

)
∈
{(

0 2
2 2

)
,

(
1 1
1 3

)
,

(
2 0
0 4

)}
,

B2 =

(
b33 b34
b43 b44

)
∈
{(

1 5
5 3

)
,

(
2 4
4 4

)
,

(
3 3
3 5

)}
,

B3 =

(
b55 b56
b65 b66

)
∈
{(

0 3
3 4

)
,

(
1 2
2 5

)}
.

Moreover, for 1 6 r, s 6 6, the pair {v2r , v3s} can appear in at most min{q, brs} hyper-
edges with one of the vertices in {v11, . . . , v1q}. Therefore, if we let µ = (11, 9, 6, 3, 1), then
µ1 + · · · + µq 6

∑
r,s min{q, brs}. In other words, if ν = (ν1, . . . , ν5) is the partition such

that νq counts the number of brs that are at least q, then µ1 + · · ·+ µq 6 ν1 + · · ·+ νq.
It is now straightforward to show that there are no possible choices of B1, B2, and B3

satisfying these conditions: if B3 = ( 0 3
3 4 ), we cannot choose B1 such that both µ1 6 ν1

and µ1 + µ2 6 ν1 + ν2. Similarly if B3 = ( 1 2
2 5 ), we cannot choose B2 such that both

µ1 +µ2 +µ3 6 ν1 + ν2 + ν3 and µ1 +µ2 +µ3 +µ4 6 ν1 + ν2 + ν3 + ν4. Thus p ∈ D(K0)∩L
is not the degree sequence of a hypergraph using only hyperedges in K0.

Combining Lemma 2.1 and Proposition 3.1 gives our desired result for 3-partite 3-
uniform hypergraphs, and we can easily extend this result to k-partite k-uniform hyper-
graphs.
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Theorem 3.2. For k > 3, consider k-partite k-uniform hypergraphs with parts of sizes
n1, n2, . . . , nk for which n1 > 5, n2 > 6, n3 > 6, and ni > 1 otherwise. The corresponding
set of degree sequences is not the intersection of a lattice and a convex polytope.

Proof. As in Theorem 2.3, combining Lemma 2.1 and Proposition 3.1 gives the result for
k = 3 and (n1, n2, n3) = (5, 6, 6). Also note that the polytopes and lattices for k > 3 with
(n1, n2, n3, n4, . . . , nk) = (5, 6, 6, 1, . . . , 1) are all identical to the k = 3 case (by projecting
away the last k − 3 coordinates) so this also proves those cases. Finally, increasing any
ni but restricting to the face of the zonotope where the new vertices have degree 0 again
reduces to the same case by Lemma 2.1, completing the proof.

Theorem 3.2 is also easy to extend to λ-balanced hypergraphs for all λ when k > 3.
Consider a λ-balanced hypergraph on vertex sets V1, . . . , Vp of sizes n1, n2, . . . , np. We will
say that (n1, . . . , np) is a λ-coarsening of (m1, . . . ,mk) if each Vi can be partitioned into
λi sets such that the sizes of all the resulting sets are m1, . . . ,mk.

Theorem 3.3. Consider λ-balanced hypergraphs with parts of sizes n1, . . . , np, where
(n1, . . . , np) is a λ-coarsening of (m1,m2, . . . ,mk) such that Theorem 3.2 holds for parts
of sizes m1, . . . ,mk. (In particular, this will hold whenever the ni are sufficiently large.)
Then the corresponding set of degree sequences is not the intersection of a lattice and a
convex polytope.

Proof. Let the vertex sets V1, . . . , Vp have corresponding coarsening W1, . . . ,Wk. It suffices
to exhibit a weight vector w such that the corresponding K0 as in Lemma 2.1 is the com-
plete k-partite k-uniform hypergraph on W1, . . . ,Wk. Indeed, any hyperedge in K0 will
be λ-balanced by the definition of λ-coarsening, and the lattice generated by hyperedges
in K0 is a sublattice of the lattice generated by all λ-balanced hyperedges. Therefore
any counterexample for K0 will yield a counterexample for λ-balanced hypergraphs as in
Lemma 2.1.

To exhibit such a weight vector, let N be an integer larger than any mi. Then let the
weight of vertices in W1 be −(1 +N +N2 + · · ·+Nk−2) and in Wi be N i−2 for 2 6 i 6 k.
Then the only way to pick k vertices the sum of whose weights is 0 is to take one from
each Wi. In other words, the only hyperedges in K0 are those that have one vertex from
each Wi, as desired.
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