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Abstract

A rooted circuit is firstly introduced for convex geometries (antimatroids). We
generalize it for closure systems or equivalently for closure operators. A rooted
circuit is a specific type of a pair (X, e) of a subset X, called a stem, and an element
e 6∈ X, called a root. We introduce a notion called a ‘prime stem,’ which plays the
key role in this article. Every prime stem is shown to be a pseudo-closed set of an
implicational system. If the sizes of stems are all the same, the stems are all pseudo-
closed sets, and they give rise to a canonical minimum implicational basis. For an
affine convex geometry, the prime stems determine a canonical minimum basis, and
furthermore gives rise to an optimal basis. A ‘critical rooted circuit’ is a special case
of a rooted circuit defined for an antimatroid. As a precedence structure, ‘critical
rooted circuits’ are necessary and sufficient to fix an antimatroid whereas critical
rooted circuits are not necessarily sufficient to restore the original antimatroid as
an implicational system. It is shown through an example.

Keywords: closure system, Armstrong’s axioms, pseudo-closed set, convex geom-
etry

1 Introduction

A family K ⊆ 2E on a nonempty finite set E is a closure system if it contains E and
closed under intersection. Closure systems appear in many areas such as implicational
system (functional dependencies in relational database theory), formal concept analysis
[7], knowledge space [5], logic [14], and so on. An implicational system is called a set of
functional dependencies in relational database theory. As is well known, a closure system
and a closure operator µ : 2E → 2E are equivalent, and in one-to-one correspondence with
each other. We shall call a pair (µ,E) a closure space.
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For an element e ∈ E and a subset X ⊆ E − e, a pair (X, e) is a rooted circuit when
X is minimal with respect to inclusion relation under satisfying e ∈ µ(X). X ⊆ E − e

is called a stem, and e ∈ E is called a root. A rooted circuit (X, e) is equivalent to the
left-minimal implication X → e defined in Bertet and Monjardet [2]. A specific type of a
stem, called a prime stem, is introduced. In short, a stem is a prime stem if its closure
includes no boundary element. A prime stem plays a key role in this article.

Firstly, every prime stem is shown to be a pseudo-closed set (Theorem 11). In par-
ticular, if the stems of a closure space are all of the same size, they are all pseudo-closed
sets, and give rise to the canonical implicational basis (Theorem 15).

Convex geometries are special cases of closure spaces. In case of an affine convex
geometry, the prime stems give rise to the canonical minimum basis (Theorem 18), and
even more an optimal basis (Theorem 20).

We reveal the difference between the set of critical rooted circuits of an antimatroid
(convex geometry) and an implicational basis. The so-called critical rooted circuits are
necessary and sufficient to determine the original antimatroid (convex geometry) as a
‘transversal’ precedence structure, but not enough to fix the convex geometry (antima-
troid) as an implicational basis. It will be shown through an example in Section 5.

2 Preliminaries

2.1 Closure spaces and rooted circuits

Let E be a nonempty finite set. A map µ : 2E → 2E is a closure operator if it satisfies

(1) A ⊆ µ(A), (2) A ⊆ B =⇒ µ(A) ⊆ µ(B), (3) µ(µ(A)) = µ(A).

We shall call the pair (µ,E) a closure space.
K ⊆ 2E is a closure system (or a Moore family) if it satisfies the following.

(1) E ∈ K, (2) X, Y ∈ K =⇒ X ∩ Y ∈ K.

We call an element of K a closed set. Since K is a finite lower semilattice having the
maximum element E, it is actually a lattice with respect inclusion relation.

For a closure system K, µ : 2E → 2E below is a closure operator.

µ(A) =
⋂

X∈K,A⊆X

X. (1)

Conversely, K = {X ⊆ E : µ(X) = X} holds. Hence there is a one-to-one correspondence
between the closure systems and the closure operators.

A closure system K arising from a closure operator which enjoys the exchange property
is said to be a matroid. When a closure operator µ satisfies the anti-exchange property,
the closure system (µ,E) is a convex geometry.
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We can define independent sets and dependent sets for a closure space (µ,E) in the
following way. A map ex : 2E → 2E defined by

ex(A) = {x ∈ A : x 6∈ µ(A− x)} = {x ∈ A : µ(A− x) 6= µ(A)} (A ⊆ E) (2)

is said to be the extreme-point operator. An element in ex(A) is called an extreme point

of A, and otherwise it is a non-extreme point of A. For A ⊆ E, if ex(A) = A, then A is
said to be an independent set. In other words, a set A is independent if it contains no
non-extreme point. Any subset of an independent set is again an independent set [15].
A set which is not independent is a dependent set. A minimal dependent set is called a
circuit. For a matroid, the independent sets and the circuits defined here agree with the
ordinary definitions of matroid theory.

A pair (X, e) of a set X and an element e is a rooted set if e 6∈ X. In a closure space
(µ,E), a rooted set (X, e) is a rooted circuit if X ⊆ E − e is a minimal set satisfying
e ∈ µ(X) with respect to inclusion relation. X is called the stem and e is called the root.
If C is a circuit of a closure space, C contains at least one non-extreme point, say e ∈ C.
Then (C − e, e) is necessarily a rooted circuit of the closure space.

Let C denote the set of the rooted circuits of a closure space (µ,E), and Stem(µ) be the
collection of the stems of rooted circuits, i.e. Stem(µ) = {X : (X, e) ∈ C for some e ∈ E}.
For a stem X, put int(X) = {f ∈ E : (X, f) ∈ C} and bd(X) = µ(X) − (X ∪ int(X)).
Clearly µ(X) = X ∪ int(X) ∪ bd(X) is a partition. If bd(X) = ∅, we shall call X a prime

stem.
For a matroid M , take any circuit C of M and any element e in C. Then (C −{e}, e)

is a rooted circuit, and vice versa. For a graphic matroid, C − {e} is a prime stem if and
only if C is a chordless cycle. In case of an affine convex geometry in an affine space,
a stem is the set of vertices of a simplex. If the convex closure of the stem includes no
boundary point except the vertices, it is a prime stem.

Compared with our notation of a rooted circuit (X, e), in the former literature such
as [4, 11], they call (X ∪ e, e) a rooted circuit, and an ‘independent set’ in this article is
called a ‘free set’ in them. We shall call a ‘closed independent set’ a free set [15]. The
independent sets of a closure space as well as the free sets constitute a simplicial complex,
in other words, an independence system.

2.2 Implicational systems

We shall describe that an implicational system determines a closure system, and hence a
closure space.

Let E be a nonempty finite set. An implicational system S on E is a relation on 2E,
that is, it is a collection of ordered pairs (A,B) ∈ 2E × 2E. When (A,B) ∈ S, we write
A → B ∈ S, and call it an implication. For an implication A → B ∈ S, A is called a
premise, and B is called a conclusion.

A set X ⊆ E is said to respect A → B if A ⊆ X implies B ⊆ X, or equivalently if
either A 6⊆ X or B ⊆ X. For an arbitrary implicational system S, we shall define

K(S) = {X ⊆ E : X respects every implication A → B ∈ S}.
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That is, a set Y ⊆ E respects all the implications in S if and only if Y ∈ K(S). Let us
denote the closure operator of K(S) by µS. For a subset A of E, let K(S)A = {X ∈ K(S) :
A ⊆ X}. For an implicational system S and implication A → B, if S ′ = S ∪ {A → B} is
equivalent to S, we say that A → B is compatible with S.

Theorem 1 (folklore). For an arbitrary implicational system S, K(S) is a closure system.

An implicational system S is said to be a generating set of a closure system K(S).
If two implicational systems give rise to the same closure system, they are said to be
equivalent.

If an implication A → B can be derived from an implicational system S by applying
Armstrong’s axioms, we say that A → B is induced from S. Armstrong’s axioms are
known to be robust in the sense that C → D is induced from S if and only if C → D is
compatible with S. (Bertet and Monjardet [2] as well as Caspard and Monjardet [3] is a
rich source for closure systems and implicational systems. )

If an implicational system S is invariant under applying the three inference rules (A1),
(A2) and (A3) below, we shall call it a full implicational system.

(A1) If A ⊇ B, then A → B ∈ S. (reflexivity)

(A2) If A → B ∈ S and C → D ∈ S, then A ∪ C → B ∪ D ∈ S. (aug-
mentation)

(A3) If A → B ∈ S and B → C ∈ S, then A → C ∈ S. (transitivity)

These inference rules are called Armstrong’s axioms. The following is an extension of
(A3). The triple of (A1), (A2) and (A3’) is equivalent to Armstrong’s axioms.

(A3’) If A → B ∈ S and B ∪D → C ∈ S, then A∪D → C ∈ S. (overlap)

For an implicational system S on E, suppose K(S) and µS to be the associated closure
system and the closure operator, respectively. It is easy to see that for A,B ⊆ E, every
closed set X ∈ K(S) respects A → B if and only if B ⊆ µS(A). Since the set of
Armstrong’s axioms is known to be sound and complete [13], the full implicational system
equivalent to S is S̄ = {A → B : A,B ⊆ E, B ⊆ µS(A)}. Hence

Proposition 2. For an implicational system S on E and A,B ⊆ E, the following are
equivalent.

(1) A → B is compatible with S.

(2) B ⊆ µS(A).

(3) K(S)A ⊆ K(S)B.

An implicational system giving rise to a closure space (µ,E) is called a generating

implicational system of (µ,E). An implicational system S is non-redundant if for any
X → Y ∈ S, S ′ = S \ {X → Y } is not equivalent to S any more. An implicational basis
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of a closure space (µ,E) is a generating implicational system which is non-redundant. An
implicational basis S is minimum if |S| 6 |S ′| for any S ′ that is equivalent to S, and
S is called optimal if s(S) 6 s(S ′) for any S ′ which is equivalent to S where s(S) =∑

X→Y ∈S(|X|+ |Y |). It is stated in [12] that a minimum implicational basis can be found
in time O(np), where n = ΣX→Y ∈S(|X|+ |Y |) and p = |S|, and an optimal basis problem
is NP-complete.

For any A ⊆ E, we put

A◦ = A ∪
⋃

{µ(X) : X ( A, µ(X) ( µ(A)}, (3)

A• = A◦ ∪ A◦◦ ∪ A◦◦◦ ∪ · · · . (4)

Then A 7→ A• is a closure operator, and A• ⊆ µ(A) holds [17].
W ⊆ E is quasi-closed if W = W • and W 6= µ(W ). A quasi-closed set W is

pseudo-closed if W is a minimal quasi-closed set with respect to inclusion among the
quasi-closed sets W ′ such that µ(W ) = µ(W ′). Then Spseu = {P → (µ(P ) − P ) :
P is a pseudo-closed set} is actually an implicational basis of (µ,E) [3, 8]. This is called
the canonical basis or the Duquenne-Guigues basis.

Example 3. Let us show two examples in which quasi-closed sets are not necessarily
pseudo-closed. Consider a uniform matroid U1,3. Each set of cardinality two is quasi-
closed, but not a pseudo-closed set whereas every singleton is a pseudo-closed set. Sim-
ilarly, in a uniform matroid U2,4, each set of size three is quasi-closed, but not pseudo-
closed. All the sets of size two are pseudo-closed sets.

Theorem 4 ([2, 8, 16, 17]). For a closure space (µ,E), the following hold.

(1) The canonical basis Spseu = {P → (µ(P ) − P ) : P is a pseudo-closed set} is a
minimum basis.

(2) An optimal basis is always a minimum basis.

(3) For each pseudo-closed set P , every optimal basis contains an implication AP → BP

such that AP ⊆ P , µ(AP ) = µ(P ) and |AP | = min{|A| : A ⊆ P, µ(A) = µ(P )} =
min{|A| : X ⊆ P, A• = P}.

3 Stems of closure spaces and pseudo-closed sets

The rooted circuits of a closure space give rise to an implicational generating set of the
original closure system. We write X → e to denote X → {e} for simplicity.

Lemma 5. Let X be an independent set of a closure space (µ,E). Then X is quasi-closed
if and only if it is pseudo-closed.
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Proof. A pseudo-closed set is necessarily a quasi-closed set. Conversely, suppose X is
quasi-closed, but not pseudo-closed. Then there is a proper subset Y ( X such that Y is
pseudo-closed and µ(Y ) = µ(X). Take an element e ∈ X − Y . Since X is independent,
e 6∈ µ(X − e) while µ(Y ) ⊆ µ(X − e). Hence e 6∈ µ(Y ). This contradicts the assumption
that e ∈ µ(X) = µ(Y ).

Lemma 6. Every stem of a closure space is an independent set.

Proof. Let X ∈ Stem(µ) be a stem. If X contains a non-extreme point f ∈ X, then
µ(X) = µ(X − f). This contradicts the minimality of stems.

Lemma 7. In a closure space (µ,E), if A is an independent set, and A′ ( A, then
µ(A′) ( µ(A).

Proof. By definition, for any f ∈ A− A′, f 6∈ µ(A− f) must hold. Hence µ(A′) ( µ(A)
follows.

Lemma 8. For an independent set X of a closure space (µ,E), if there exists (Y, f) ∈ C
such that Y ( X, then f 6∈ X.

Proof. Suppose contrarily f ∈ X. Set X ′ = X − (Y ∪ f). Then X = X ′ ∪ Y ∪ f . From
the assumption, Y ∪ f ⊆ µ(Y ). Hence X ⊆ µ(X ′) ∪ µ(Y ). Now µ(X) ⊇ µ(X ′ ∪ Y ) ⊇
µ(X ′) ∪ µ(Y ) ⊇ X. Thus µ(X) = µ(X ′ ∪ Y ) = µ(X − f) holds. This implies that X is
not independent, a contradiction.

Lemma 9. For a stem X ∈ Stem(µ) of a closure space (µ,E), there is no stem Y ∈
Stem(µ) such that Y ( X if and only if X = X◦. Hence a minimal stem among Stem(µ)
with respect to inclusion relation is a pseudo-closed set.

Proof. (if part) Suppose there exists Y ( X with (Y, f) ∈ C. By Lemma 8, f 6∈ X. If
µ(Y ) = µ(X), it contradicts the minimality of the stem X. Hence µ(Y ) ( µ(X), which
implies µ(Y ) ⊆ X◦ and f ∈ X◦. Thus X◦ ⊇ X ∪ f ) X, and X◦ 6= X.
(only if part) Suppose contrarily X 6= X◦. Take an element f ∈ X◦ −X. By definition,
there exists a rooted circuit (Y, f) ∈ C such that Y ( X and µ(Y ) ( µ(X). This
contradicts the assumption. Hence X = X◦ occurs.

For the last statement, from the above proof, a minimal stem X is a quasi-closed set
since µ(X) 6= X holds by definition. On the other hand, the minimality of X among
Stem(µ) implies the minimality of µ(X) from Lemmas 5 and 6.

Proposition 10. For a stem X ∈ Stem(µ) of a closure space (µ,E), the following are
equivalent.

(1) X is a prime stem.

(2) X is minimal among Stem(µ) with respect to inclusion relation.

(3) X is a pseudo-closed set.

(4) X is a quasi-closed set.
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Proof. (1)⇒ (2) : Suppose contrarily that X is not minimal. Then there exists a rooted
circuit (Y, f) ∈ C such that Y ( X. By Lemma 6, X is an independent set. Hence
f 6∈ X follows from Lemma 8. Thus f 6∈ int(X) and f ∈ µ(X) holds, which implies
µ(X) 6= X ∪ int(X), a contradiction.
(2)⇒ (3) follows from Lemma 9.
(3)⇒ (4) : This is immediate from the definitions.
(4)⇒ (1) : X is a quasi-closed set, but not a prime stem. Then there exists an element
f ∈ bd(X) such that (X, f) is not a rooted circuit. Hence there exists a subset Y ( X

such that f ∈ µ(Y ). Since X and Y are independent sets, Lemma 7 yields µ(Y ) ( µ(X).
Now f ∈ X◦ and f 6∈ X hold. This implies X 6= X◦, and X is not a quasi-closed, a
contradiction.

Theorem 11. For a closure space (µ,E), every prime stem is a pseudo-closed set.

Proof. This directly follows from Proposition 10.

For an implicational system S on a nonempty finite set E, let K(S) be the associated
closure system, and (µS, E) be the corresponding closure space. For an element e in E,
let K(S){e} denote {X ∈ K : e ∈ X}. Then

Proposition 12. Suppose that K(S) contains the empty set ∅, and K(S){a} is a subset of
K(S){b} for two distinct elements a, b ∈ E. Then {a} → {b} is an implication compatible
with S, and {a} is a pseudo-closed set of the closure space (µS, E).

Proof. The first statement and µS({a}) ⊇ {a, b} follow from Proposition 2. The assump-
tion implies µS(∅) = ∅. Hence {a}◦ = {a}∪{µS(A) : A ( {a}, µS(A) ( µS({a})} is equal
to {a}, and so {a} is a pseudo-closed set.

Example 13. The converse of Theorem 11 is not true in general, i.e. a pseudo-closed set
is not necessarily a (prime) stem. Let us consider an implicational system S = {{1, 4} →
{2}, {3, 4} → {1}} on E = {1, 2, 3, 4}. Fig. 1 describes the closure system arising from
S. Now {4} and {1, 4} are all the pseudo-closed sets whereas {4} and {3, 4} are all the
stems. So {1, 4} is a pseudo-closed set, but not a stem. The canonical implicational basis
is {{4} → {2}, {1, 4} → {2}}. In this example, K(S)4 ( K(S)2 holds. Proposition 12
applies to this case. In fact {4} is a pseudo-closed set, and {4} → {2} is a compatible
implication.

Theorem 14. For a closure space (µ,E), if every pseudo-closed set X is a prime stem
and |µ(X)−X| = 1, then Sprime = {X → (µ(X)−X) : X is a prime stem} is the unique
optimal basis.

Proof. First note that every prime stem is a pseudo-closed set by Theorem 11. Hence
a set is pseudo-closed if and only if it is a prime stem. From (3) of Theorem 4, for the
premise A of any implication A → B of an arbitrary optimal basis, there exists a pseudo-
closed set P such that A ⊆ P and µ(A) = µ(P ). From the remark above, P is a prime
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{1,2,4}
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{2,3}

Figure 1: A closure system K(S) of Example 13

stem. Since a stem is necessarily an independent set by Lemma 6, a prime stem P is
an independent set. Hence from Lemma 6, it is a minimal generating set of µ(P ). This
implies A = P , and that every premise of an implication in Sprime is of the minimum size.
By assumption, the conclusions of implications are all singletons, so that they are of the
minimum size. Thus Sprime is shown to be an optimal basis.

Theorem 15. Let (µ,E) be a closure space, and suppose that the sizes of the stems are
all the same. Then for a subset X ⊆ E, the following are equivalent.

(1) X is a stem.

(2) X is a prime stem.

(3) X is a pseudo-closed set.

Proof. (1)⇒(2) : We shall show that every stem is a prime stem. If a stem X ∈ Stem(µ)
is not prime, bd(X) 6= ∅. Take any f ∈ bd(X). Then there exists a subset Y ( X such
that (Y, f) ∈ C is a rooted circuit. This contradicts the assumption that the stem sizes
are all the same. Hence X is a prime stem.
(2)⇒(3) : By Theorem 11, a prime stem X is a pseudo-closed set.
(3)⇒(1) : From the assumption, X = X◦ and X 6= µ(X) hold. Take an element e in
µ(X)−X. Then there is a subset Y of X such that (Y, e) is a rooted circuit. If X = Y ,
then the proof is done. Hence suppose Y is a proper subset of X. If µ(Y ) ( µ(X) holds,
then e is in X◦, and X 6= X◦ happens, which contradicts the assumption that X is a
pseudo-closed set. Hence µ(Y ) = µ(X) holds.

We shall show Y is a quasi-closed set. Now suppose contrarily Y 6= Y ◦. By the
definition of a quasi-closed set, there is a proper subset A of Y such that µ(A) ( µ(Y )
and µ(A) 6⊆ Y . Then there exists an element f in µ(A)\Y and a rooted circuit (A′, f) such
that A′ ⊆ A. A′ and Y are both stems, and A′ is a proper subset of Y , which contradicts
the assumption that the stem sizes are all the same, and so Y = Y ◦ is established. Since
f is in µ(Y )− Y , µ(Y ) 6= Y is obvious So Y is a quasi-closed set. By the minimality of a
pseudo-closed set, X = Y should occur because of µ(Y ) = µ(X). Now X is proven to be
a stem.
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The stem sizes are all the same for some classes of convex geometries, which are
presented in Example 17.

4 Convex geometries

In this article we say that a closure space (µ,E) is a convex geometry on E if µ meets the
anti-exchange property (Ant).

(Ant) If x 6= y, x, y 6∈ µ(A) and y ∈ µ(A ∪ x), then x 6∈ µ(A ∪ y). (x, y ∈
E,A ⊆ E)

The closure system K = {X : µ(X) = X,X ⊆ E} is called a convex geometry. A =
{E − X : X ∈ K} is called an antimatroid. For more details of convex geometries and
antimatroids, we refer to [6, 11].

By our definition, a circuit includes at least one non-extreme point. In case of a convex
geometry, a non-extreme element e in a circuit C is unique, and it gives a unique partition
C = (C − e) ∪ e. (C − e, e) is defined to be a rooted circuit in [11]. This is the origin
of rooted circuits. We have generalized it to a closure space in general. For a convex
geometry, a rooted circuit presented in [11] and our definition are equivalent.

Proposition 16 ([15]). Let (µ,E) be a convex geometry. Then the following hold.

(1) If (X, e) is a rooted circuit, then X ∪ e is a circuit.

(2) Let C be a circuit, and e be the unique non-extreme element in C. Then (C − e, e)
is a rooted circuit.

Example 17. As a result of Theorem 15, for the convex geometries described below, a
set is a pseudo-closed set if and only if it is a stem. For a poset P , we can define a convex
geometry as K = {X ⊆ P : if a, b ∈ X and a 6 c 6 b, then c ∈ X} forms a convex
geometry, called a double shelling convex geometry of a poset P . If a < c < b in P , then
({a, b}, c) is a rooted circuit, and vice versa. Hence the sizes of stems of a double shelling
poset convex geometry are all two. The following are the classes of convex geometries for
which the stem sizes are all two: edge shelling convex geometry of a tree, node shelling

convex geometry of a tree, simplicial shelling convex geometry of a chordal graph, a convex
geometry arising from the edge shelling of a transitively closed digraph. For more details,
we refer to [6, 11].

We shall present another important class of convex geometries. Let E ⊆ Rn be a
nonempty finite set, which is called an affine point configuration, and conv.hull denote
the ordinary convex hull operator in Rn. Then

µE(A) = conv.hull(A) ∩ E (A ⊆ E)

is a closure operator on E satisfying the anti-exchange property, and we shall call the
convex geometry arising from µE the affine convex geometry on E. Although the stems
can be of different sizes for an affine convex geometry, we can determine the canonical
basis.
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Theorem 18. Let (µ,E) be an affine convex geometry on a nonempty finite set E ⊆ Rn.
Then for X ⊆ E, X is a prime stem if and only if it is a pseudo-closed set. Hence

S = {X → (µ(X)−X) : X is a prime stem}

is the canonical minimum basis of (µ,E).

Proof. (only if part) From Theorem 11, a prime stem is necessarily a pseudo-closed set.
(if part) Suppose that X is a pseudo-closed set. Let P = conv.hull(X) be the polytope
of the convex hull of X, and V be the set of the vertices of P . We shall show that P is a
simplex. If it is not a simplex, P can be decomposed to the union of multiple simplexes,
say Y1, . . . , Yk (k > 2). Then V = Y1 ∪ · · · ∪ Yk, and µ(V ) = µ(Y1) ∪ · · · ∪ µ(Yk) = µ(X).
Since X 6= µ(X) from the assumption, there exists an element f ∈ µ(X) − X. Since
f ∈ µ(X) = ∪k

i=1µ(Yi), f ∈ µ(Yj) for some j. Then f ∈ X◦ and f 6∈ X, which leads
to X 6= X◦ and X 6= X•. This contradicts the assumption. Hence P is a simplex.
If bd(X) 6= ∅, X 6= X◦ holds, contradicting the assumption. Hence bd(X) = ∅, and
µ(X) = X ∪ int(X), while µ(V ) = µ(X). Then V ⊆ X is a quasi-closed set and
µ(V ) = µ(X). Hence X should be equal to V since X is a pseudo-closed set. Now X is
proved to be a prime stem.

An equivalent result to Theorem 18 is obtained in [1]. It is worthwhile to compare
Theorem 18 and the problem mentioned in Example 4 of [17].

We shall present an optimal implicational basis of an affine convex geometry. Let
(µ,E) be the affine convex geometry of E in Rn. For each prime stem X ∈ Stem(µ),
choose arbitrarily an element in int(X), which we denote by eX . Then

Lemma 19. Let SP = {X → eX : X is a prime stem} be the set of implications, and SA

be the collection of all the implications induced from SP by applying Armstrong’s axioms.
Then for every rooted circuit (X, e) ∈ C, X → e is in SA.

Proof. For any (X, e) ∈ C, we shall show that X → e is in SA. We use induction on
d = |X|. Since it is an affine convex geometry, d is at least two.
(1) Suppose d = 2: For a given (X, e) ∈ C, let k = |µ(X)|. We use induction on k.
By definition, k is at least 3. If k = 3, |int(X)| = 1 and e = eX should occur. Hence
X → e ∈ SA holds.

Suppose k > 4. Let X = {a, b}. Then k elements, a = a1, a2, . . . , ak = b, are
on a line in the affine space in this order. By definition, there exists 2 6 j 6 k − 1
such that aj = eX . If e = aj = eX , the proof is done. Otherwise e = am, and either
2 6 m 6 j − 1 or j + 1 6 m 6 k − 1 occurs. In the former case, ({a, eX}, e) is in C, and
µ({a, eX}) = j < k = µ({a, b}) holds. Hence by induction hypothesis, {a, eX} → e is in
SA, while {a, b} → eX is in SA. The overlap rule gives {a, b} → e ∈ SA. In the latter
case, the proof is completely similar. Hence X → e ∈ SA is verified.
(2) Suppose d > 3: We shall use induction on k = |µ(X)|. By definition, k is at least
d+ 1.

If k = d + 1, then |int(X)| = 1, and int(X) = {e}. Hence e = eX should hold, and
the proof is done.
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Suppose k > d + 1. Let {Y ⊆ X : |Y | = d − 1} = {Y1, . . . , Yd}. Then µ(X) =
∪{µ(Yi∪eX) : i = 1, . . . , d} since (µ,E) is an affine convex geometry. (This can be actually
considered to be a simplicial decomposition of the simplex X.) Hence e ∈ µ(Yj ∪ eX) for
some 1 6 j 6 d. (In the affine space, Yj ∪ eX is the set of vertices of a simplex in Rn.)
By definition, there exists such a subset W ⊆ Yj ∪ eX that (W, e) ∈ C.

If |W | < d, then by induction hypothesis on d, W → e ∈ SA holds.
In case that |W | = d, it implies that W = Yj ∪ eX and (Yj ∪ eX , e) is in C. Since

µ(Yj ∪ eX) < µ(X), by induction hypothesis on k, Yj ∪ eX → e is in SA, while we have
X → eX ∈ SA. By the overlapping rule, we obtain X ∪ Yj → e ∈ SA. Since Yj ⊂ X, this
is equal to X → e ∈ SA. Now the proof is completed.

Theorem 20. For an affine convex geometry (µ,E), SP = {X → eX : X is a prime stem}
is an optimal implicational basis.

Proof. By Lemma 19, SP and SA are both implicational generating sets of (µ,E), and
for every rooted circuit (X, e) ∈ C, X → e is in SA. Since X is a stem, it is an independent
set by Lemma 6, and X = ex(X) is the unique minimum generating set of µ(X) because
(µ,E) is a convex geometry. Hence by (3) of Theorem 4, each premise of the implication
in SP is of the minimum cardinality. Furthermore, every conclusion of SP is a singleton.
Hence the conclusions of SP is of the minimum size, and SP is an optimal basis.

5 Critical rooted circuits of precedence structures

and implicational bases

For the closure system K ⊆ 2E of a convex geometry (µ,E), A = {E − X : X ∈ K} is
called an antimatroid. Originally, the notion of critical rooted circuits is defined for an
antimatroid (A, E). Let e ∈ E, X ⊆ E − e, and B be the maximum element of A in
E− (X ∪ e). In [11], (X, e) is defined to be a critical rooted circuit of an antimatroid A if
B ∪ e 6∈ A and B ∪ e ∪ x ∈ A for every x ∈ X. It is not immediate, but a critical rooted
circuit is a rooted circuit of the closure operator of the convex geometry. This notion is
made clearer when it is generalized to a closure space (µ,E) [15]. A rooted circuit (X, e)
of (µ,E) is defined to be a critical rooted circuit if the closure µ(X) is minimum among
the closures of the rooted circuits of the same root e with respect to inclusion relation.
Actually, these two definitions are equal in case of a convex geometry which is a special
case of closure space.

An antimatroid is first called a shelling greedoid in [9], and next a shelling structure in
Korte and Lovász [10] which is constructed by an alternative precedence structure. There
is another precedence structure hidden in the proof of Theorem 3.11 of Korte, Lovász and
Schrader [11], which is called here a transversal precedence structure. We shall describe it
explicitly.

A rooted clutter F is the collection of clutters F(e) in 2E−e for e ∈ E. Taking a
rooted clutter F = {F(e) : e ∈ E} as a transversal precedence structure, an antimatroid
language is determined recursively as follows: the null word ǫ is a feasible word. Suppose
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f1 · · · fk to be a feasible word. f1 · · · fkfk+1 is a feasible word if fk+1 6∈ {f1, . . . , fk} and
{f1, . . . , fk} ∩ X 6= ∅ for every X ∈ F(fk+1). For a word α = a1a2 · · · ak, let [α] denote
{a1, a2, . . . , ak}. Then A = {[α] : α is a feasible word of L} is an antimatroid.

Let Cc = {Cr(e) : e ∈ E} be defined by Cc(e) = {X : (X, e) is a critical rooted circuit of
A}. As a transversal precedence structure, the critical rooted clutter Cc of an antimatroid
A restores A. Conversely, if a transversal precedence structure of a rooted clutter F gives
rise to an antimatroid A, then F necessarily includes Cc, i.e. Cc(e) ⊆ F(e) for each e ∈ E.
That is, as a transversal precedence structure, the critical rooted circuits are necessary
and sufficient to determine the original antimatroid. As an implicational generating set,
the set of critical rooted circuits is not enough to reconstruct the original antimatroid
(convex geometry). The implicational system {X → e : e ∈ E,X ∈ Cr(e)} may not be an
implicational generating set of the convex geometry. Example 21 below shows it.

Example 21. In an affine space, suppose that four points 1, 2, 3, 4 are collinear on a line
in this order. See Fig. 2. When applying Theorem 4, we know that S = {{1, 3} →
{2}, {2, 4} → {3}, {1, 4} → {2, 3}} is the canonical basis, while Theorem 20 implies
that S ′ = {{1, 3} → {2}, {2, 4} → {3}, {1, 4} → {2}} is an optimal basis. Cr =
{({1, 3}, 2), ({2, 4}, 3)} is the set of critical rooted circuits whereas Sr = {{1, 3} →
{2}, {2, 4} → {3}} is not an implicational generating set of the closure system of the
affine convex geometry of Fig. 2.

1 2 3 4

Figure 2: Four collinear points

When taking the rooted cocircuits of an antimatroid as an alternative precedence
structure, it restores the original antimatroid. For the details, we refer to [11].
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